
Computing and Informatics, Vol. 39, 2020, 952–972, doi: 10.31577/cai 2020 5 952

A MAPREDUCE ALGORITHM
FOR MINIMUM VERTEX COVER PROBLEMS
AND ITS RANDOMIZATION

Morikazu Nakamura, Daiki Kinjo, Takeo Yoshida

Faculty of Engineering
University of the Ryukyus
Okinawa 903-0213, Japan
e-mail: morikazu@ie.u-ryukyu.ac.jp

Abstract. MapReduce is a programming paradigm for large-scale distributed infor-
mation processing. This paper proposes a MapReduce algorithm for the minimum
vertex cover problem, which is known to be NP-hard. The MapReduce algorithm
can efficiently obtain a minimal vertex cover in a small number of rounds. We show
the effectiveness of the algorithm through experimental evaluation and compari-
son with exact and approximate algorithms which demonstrates a high quality in
a small number of MapReduce rounds. We also confirm from experimentation that
the algorithm has good scalability allowing high-quality solutions under restricted
computation times due to increased graph size. Moreover, we extend our algorithm
to randomized one to obtain a good expected approximate ratio.

Keywords: MapReduce, minimum vertex cover, Hadoop, optimization, algorithm
design, randomized algorithm

1 INTRODUCTION

MapReduce is a programming paradigm introduced by Google [1] as a promising
software platform for large-scale distributed information processing. MapReduce
uses functional programming and is composed of mappers for per-record compu-
tation and reducers for results aggregation [2]. MapReduce platforms can be im-
plemented on a large number of commodity computers or computer clusters which
provides scalability and fault tolerance – the most important characteristics required

A MapReduce Algorithm for MVC Problems and Its Randomization 953

for large-scale distributed processing [3, 4]. The number of processing nodes can be
easily increased to handle growing large data.

Spark is another distributed computing platform for big-data analysis [5]. Com-
pared to Hadoop, a well-known MapReduce platform, Spark’s in-memory computa-
tion is high-speed [6, 7]. On the other hand, Hadoop was designed for efficiency in
cost and time. This mechanism, based on an enormous volume of data on several
storage nodes leads to outstanding scalability with lower costs, even though the real-
time computation is sacrificed. Although Hadoop and Spark are often compared,
their roles are differentiated, and they can coexist mutually [6, 7].

Large graphs are often used for modeling various real life objects, systems, and
services, for example, road networks, relations among SNS (social network service)
members, citation networks of research papers, the hyperlink structure of web pages,
and various relations among pieces of digital content on the Internet. The number
of vertices in such graphs may be several million, hundreds of millions, several bil-
lion, or even more. For such huge graphs, structured data mining requires graph
algorithms such as breadth-first search (BFS), depth-first search (DFS), minimum
spanning tree (MST), or shortest path problem (SPP). Traditional computing plat-
forms and paradigms are not suited to this task because they are insufficiently
scalable. Therefore, MapReduce algorithms for graph problems are an important
research field [8, 9, 10, 11, 12, 13, 14, 15]. Many application areas of this topic are
expected in engineering, biology, and the medical sciences [16, 17]. Several MapRe-
duce programming platforms have been so far developed [13, 14, 15, 18, 19, 20]
that provide APIs for graph operations and show how to implement some basic al-
gorithms, such as page ranking, SPP, and MST, by using those APIs. There are
also MapReduce algorithms for the maximum clique problem [21], the maximum
cover problem [22], the maximum flow problem [23], and the shortest-path prob-
lem [24].

The minimum vertex cover problem (MVC) is a basic problem in graph the-
ory, and it is well known to be computationally intractable, that is, NP-hard [25].
Approximate solutions with a two-approximation ratio can be easily constructed
from maximal matching, and then the approximation factor has been slightly im-
proved [26, 27].

We propose a MapReduce algorithm for MVC, a greedy algorithm that dras-
tically improves the solution quality compared to maximal matching-based algo-
rithms. In our previous works, we presented the first version of the algorithm with-
out detailed experimental evaluation and deep discussion [28]. Moreover, in this
paper we extend the original algorithm into randomized one to avoid the worst case
solution quality happened in specific situations.

In [32], MapReduce algorithms for well-known problems are proposed, where
they show the theoretical approximation ratio is two for the minimum vertex cover
problem. On the other hand, our first algorithm may lead to solutions of worse
quality for special cases than the MapReduce algorithm in the literature. However
our randomized version can overcome such worst case situation and obtain solutions
with expected approximation ratio 4/3. Moreover we show by experimental eval-

954 M. Nakamura, D. Kinjo, T. Yoshida

uations that obtained solutions are quite better than the expected approximation
ratio.

The remainder of the paper is organized as follows. In Section 2, we briefly
give some basic background on graphs, MVC and MapReduce. In Section 3, we
propose our MapReduce algorithm for MVC and show its correctness. In Section 4,
we perform a computational experiment to evaluate our proposal. In Section 5,
a randomized MapReduce algorithm is presented. Finally, in Section 6, we conclude
the paper with some remarks.

2 PRELIMINARIES

This section explains some graph notations, the definition of a minimum vertex
cover, and a basic background on MapReduce for the readability of the remaining
paper.

2.1 Graphs

Graphs are denoted by a 2-tuple G = (V,E) with vertex set V and edge set E, where
the elements of E are 2-element subsets of V. If each edge in E has an orientation
(that is, a direction), the graph becomes a directed graph and is shown as ~G =

(V, ~E). Figure 1 a) shows the graph G = (V,E) where V={v1, v2, v3, v4, v5} and
E = {(v1, v2), (v1, v3), (v2, v4), (v2, v5), (v3, v5)}. Figure 1 b) shows a directed graph
whose underlying graph is the graph in (a).

v
3

v
5

v
4

v
2

v
1

v
3

v
5

v
4

v
2

v
1

(a) Undirected Graph (b) Directed Grapha) Undirected graph

v
3

v
5

v
4

v
2

v
1

v
3

v
5

v
4

v
2

v
1

(a) Undirected Graph (b) Directed Graphb) Directed graph

Figure 1. Graph

The degree d(v) of a vertex v is the number of edges connected to v. In the case
of directed graphs, the in-degree din(v) and the out-degree dout(v) of a vertex v are
defined as the number of incoming and outgoing edges, respectively. Examples are
d(v1) = 2, d(v2) = 3 in Figure 1 a) and din(v2) = 1 and dout(v2) = 2 in Figure 1 b).
A matching M of a graph G = (V,E) is a subset of E such that no pair of edges in
M shares a vertex. A matching is maximal if adding any edge not in M results in
no longer being a matching. A vertex cover VC of a graph G = (V,E) is a set of

A MapReduce Algorithm for MVC Problems and Its Randomization 955

vertices such that each edge in E is incident to at least one vertex in VC. For ex-
ample, in Figure 1, {(v1, v3), (v2, v5)} is a maximal matching and {v2, v3} is a vertex
cover. More detailed information on graphs can be referred to the literature [31, 30].

2.2 Minimum Vertex Cover Problem

The minimum vertex cover problem is a classical graph problem and is known to
be NP-hard. The problem is formulated for an input graph G = (V,E) with the
vertex set V = {1, 2, . . . , n} and the edge set E = {(v, u)|v and u ∈ V} as an integer
programming problem.

MVC (Integer Programming):

min
∑
v∈V

xv (1)

s.t.

xu + xv ≥ 1,∀(u, v) ∈ E, (2)

xv ∈ {0, 1}. (3)

For the problem, a factor-2 approximate solution can be obtained from a max-
imal matching constructed by a simple greedy algorithm. Figure 2 gives an ap-
proximate solution. The dotted edges express a maximal matching. We can easily
confirm that all endpoints of the dotted edges, the vertices with bold lines, comprise
a vertex cover of the graph. The approximation factor is no more than two since
the minimum vertex cover should include at least one endpoint of each edge in the
matching.

Figure 2. Approximation solution based on maximal matching

2.3 MapReduce Model

MapReduce is a framework for large-scale distributed computing based on the well-
known master-slave parallel processing pattern [1]. MapReduce programs are com-
posed of map operations and reduce operations. Map operations play a role in the

956 M. Nakamura, D. Kinjo, T. Yoshida

per-record computation and Reduce operations in the results aggregation. In Map
operations, the master divides the input data into multiple data sets and assigns
these sets to worker nodes. Note that the input data can be stored beforehand in
distributed data storage near worker nodes to reduce the overhead incurred by data
division and assignment. Each worker processes the assigned data according to the
map operation and returns the output to its master node. In Reduce operations,
the master lets workers collect the outputs of the map operations and combine them
to form the answer to the problem. Workers perform these operations in parallel,
taking key–value pairs as processing primitives. The MapReduce processing can be
formally explained as follows.

For sets of the input key–value pairs U i
0, i = 0, 1, . . . ,m − 1, the MapReduce

program performs the following steps.

For t = 1, 2, 3, . . . , T do

1. Execute Map: Input each pair (k, v) in U i
t−1 to mapper Mi, i = 0, 1, . . . ,m−1

and the mapper performs the Map operation. Each mapper generates a sequence
of pairs, (k1, v1), (k2, v2), . . . , as the result. Let us denote the multiset of key–
value pairs generated by Mi at tth round by Û i

t , used in Shuffle step.

2. Shuffle: For each k, let Vk,i be the multiset of values vj such that (k, vj) ∈ Û i
t .

The MapReduce system constructs the multiset Vk,i from Û i
t .

3. Execute Reduce: For each k, input k and some arbitrary permutation of Vk,i

to reducer Ri, i = 0, 1, . . . , r−1 and perform the Reduce operation. The reducer
generates a sequence of key–value pairs (k, v′1), (k, v′2), . . . , as the result. Let
U i
t , i = 0, 1, . . . ,m − 1 be the multiset of key–value pairs generated by Rj,

j = 0, 1, . . . , r − 1.

MapReduce is a promising platform for distributed large-scale computation.
However, algorithms for MapReduce are quite different from ordinary algorithms
we have used. Therefore, we need to design suitable algorithms for the platform.

3 MAPREDUCE ALGORITHM FOR MVC

In this section we propose a MapReduce algorithm for the minimum vertex cover
problem. Algorithm 1 shows a pseudocode for the algorithm, MapReduceMVC.

Before going to the explanation, we introduce some notations. Functions N :
V→ 2|V| and d : V→ {0, . . . , |V| − 1} return the set of the vertices neighboring v
and degree of v, v ∈ V, respectively. Function index : V→ {1, . . . , |V|} returns the
index of v.

A relation ≺ on V and directed graphs induced by ≺ is defined as follows:

Definition 1. Let G be an undirected graph with vertex set V and edge set E.
Let us denote by v ≺ u the relation such that (d(v), index(v)) is smaller than
(d(u), index(u)) in the lexicographical order on {0, . . . , |V | − 1} × {1, . . . , |V |}.

A MapReduce Algorithm for MVC Problems and Its Randomization 957

Algorithm 1 Pseudocode for MapReduce algorithm

1: procedure MapReduceMVC:
2: – – STEP1:
3: V C[v]← true, for all v;
4: Adj[v]← true, for all v;
5: – – STEP2:
6: if v is source then
7: V C[v]← false;
8: end if
9: repeat

10: – – STEP3:
11: if V C[u] = true, for all u ∈ N(v) then
12: Adj[v]← true;
13: else
14: Adj[v]← false;
15: end if
16: – – STEP4:
17: if V C[v] = true and Adj[v] = true and ∃u ∈ N(v), Adj[u] = false then
18: V C[v]← false;
19: end if
20: if V C[v] = false and Adj[v] = false then
21: Let Nf be {u|u ∈ N(v), V C(u) = false};
22: if u ≺ v,∃u ∈ Nf then
23: V C[v]← true;
24: end if
25: end if
26: until No modification is taken place in STEP4
27: – – STEP5:
28: xv ← 1 if V C[v] = true, otherwise xv ← 0, for all v ∈ V;

Definition 2. For an undirected graph G = (V,E), its directed graph induced by

≺, ~G = (V, ~E), is constructed by orienting each edge (v, u) ∈ E from v to u when
v ≺ u.

The following lemma is straightforwardly obtained from the definition since the
relation ≺ is transitive.

Lemma 1. Let ~G = (V, ~E) be the directed graph induced by ≺ for a given undi-

rected graph G = (V,E). Then ~G is an acyclic graph.

Definition 3. For an acyclic directed graph ~G = (V, ~E), v ∈ V is called a source
if din(v) = 0.

Figure 3 shows an example of the edge orientation, where the number in each
vertex v represents index(v). Figure 3 b) shows the directed graph constructed from

958 M. Nakamura, D. Kinjo, T. Yoshida

0

12

3

45

6

7 8

9

a) Undirected Graph

0

12

3

45

6

7 8

9

b) Directed Graph

Figure 3. Example of edge orientation

the undirected graph in Figure 3 a). The vertices 0, 3, 5, 6, 8, and 9 are sources of
the acyclic graph. In MapReduceMVC, each worker node can compute the relation
≺ between the assigned vertex and its neighbors since workers know the index and
the degree of all the neighbors.

Arrays of boolean variables V C[v] and Adj[v] indicate whether or not v is in
the vertex cover and whether or not all the neighbor vertices of v are in the cover,
respectively. At the end of the algorithm (Line 28), a vertex cover is constructed by
collecting all vertices v such that V C[v] = true.

The algorithm is composed with five STEPs and each STEP corresponds to
one MapReduce operation. No worker can proceed to the next STEP (MapReduce
operation) before all the workers complete the current operation.

At STEP1 (Lines 3 and 4), V C[v] and Adj[v] are initialized to true for all the
vertices. Note that our algorithm initially adds all the vertices into the vertex cover,
then gradually excludes unnecessary vertices in STEP3 and 4.

STEP2 (Lines 6 to 8) sets V C[v] to false for each v if v is a source. Each source
vertex becomes a trigger to reduce the size of the vertex cover from the initial vertex
cover constructed at STEP1.

STEP3 (Lines 11 to 15) and STEP4 (Lines 17 to 25) are iteratively executed in
the repeat-until statement. STEP3 updates Adj[v] for all vertices. Adj[v] needs to
be updated whenever there is a neighbor u ∈ N(v) such that V C[u] was changed in
the previous iteration.

STEP4 is composed of two parts. The first part (Lines 17 to 19) is for improving
the vertex cover by attempting to decrease its size. The second part (Lines 20 to 25)
checks and maintains feasibility of the solution. No solution is feasible when there

A MapReduce Algorithm for MVC Problems and Its Randomization 959

exists a pair v and u such that (v, u) ∈ E, yet V C[v] = V C[u] = false. In such
case, V C[v] is set to true if u ≺ v, otherwise V C[u] is set to true to repair its
infeasibility.

a

b

c

d

e

f

a) C[v] and Adj[v] after STEP1

a

b

c

d

e

f

b) C[v] and Adj[v] after STEP2

a

b

c

d

e

f

c) C[v] and Adj[v] after STEP3

a

b

c

d

e

f

d) C[v] and Adj[v] after STEP4

a

b

c

d

e

f

e) C[v] and Adj[v] after STEP3

a

b

c

d

e

f
f) C[v] and Adj[v] after STEP4

Figure 4. Demonstration of MapReduceMVC for a line graph

Figure 4 shows a demonstration example where we depict the steps of the algo-
rithm when applied to a line graph with seven vertices. In the figure, a pair of letters
such as T T, T F, or F T (where T means true and F means false) below a vertex
corresponds to a pair of values of V C[v] and Adj[v]. Time proceeds from top to
bottom in the figure. The pair of boolean values at each vertex is initialized to T T
by STEP1 shown in Figure 4 a). Both vertices 1 and 7 are sources in this example,
and so become F T at STEP2. Figure 4 c) shows that Adj[v] becomes false for each
of vertices 2 and 6 since 1 and 7 are removed from the vertex cover at Figure 4 b).
In Figure 4 d), each of vertices 3 and 5 is removed from the vertex cover since Adj[v]
for 2 and 6 was changed to false. In Figure 4 e), Adj[v] for vertex 4 is updated.
Finally in (f), we confirmed no modification is performed where each vertex should
be either T F or F T. All vertices with T F are included in the vertex cover obtained
by the algorithm.

We show now the validity of our algorithm by the following lemma and theorem.

Lemma 2. MapReduceMVC completes its execution after the kth STEP4 if and
only if V C[v] = true and Adj[v] = false or V C[v] = false and Adj[v] = true, for
all v ∈ V at the end of the kth STEP3, where k is a natural number.

Proof.

Sufficiency: We assume the following condition holds: For all v ∈ V, V C[v] =
true and Adj[v] = false or V C[v] = false and Adj[v] = true after the kth

STEP3. Considering synchronous execution of MapReduce operations, Adj[v],
for all v ∈ V, has a correct value after STEP3, that is, Adj[v] = true when
V C[u] = true, for all u ∈ N[v], otherwise Adj[v] = false. At the kth STEP4,
V C[v] can be modified when V C[v] = true and Adj[v] = true or V C[v] = false

960 M. Nakamura, D. Kinjo, T. Yoshida

and Adj[v] = false but not otherwise. Therefore, no modification occurs at the
kth STEP4, so the algorithm can break the repeat condition and complete its
execution.

Necessity: We assume the algorithm stops its execution and there exists a node v
such that V C[v] = true and Adj[v] = true or V C[v] = false and Adj[v] = false.

(CASE1: Suppose that V C[v] = Adj[v] = true,∃v ∈ V.) for all u ∈ N[v],
V C[u] = true since Adj[v] = true and also for all u ∈ N[v], Adj[u] = true be-
cause the condition at STEP4 (Line 17) does not hold at the end of the algorithm.
By repeating the same consideration, we finally find that for all v ∈ V, V C[v] =
Adj[v] = true. However, according to Lemma 1, at STEP2 there exists at least
one source vertex v that lets V C[v] = false. Only Line 20 in STEP4 can change
V C[v] from false to true, and it is performed only when there exists a neighbor u
such that V C[v] = V C[u] = false. Moreover, only one side of both vertices v and
u can be changed from false to true according to the order relation ≺. Therefore
there should exist at least one vertex v such that V C[v] = false even if such sit-
uations occur successively on adjacent vertices. This situation contradicts the first
assumption.

(CASE2: Suppose that V C[v] = Adj[v] = false,∃v ∈ V.) There exists at least
one vertex u ∈ N(v) such that V C[u] = false since Adj[v] = false. Moreover,
Adj[u] = false because V C[v] = false. This situation holds the condition of the
second if statement in STEP4. Therefore, the algorithm cannot break the repeat-
until loop statement. This situation contradicts the first assumption. 2

Theorem 1. MapReduceMVC outputs a minimal vertex cover for a given graph.

Proof. From Lemma 2, for all v ∈ V, V C[v] = true and Adj[v] = false or V C[v] =
false and Adj[v] = true after the algorithm stops its execution. Therefore, the
output of the algorithm should generate a vertex cover since V C[u] = true for all
u ∈ N(v) when V C[v] = false. It is also obvious that no proper subset of the vertex
cover obtained by the algorithm can be a vertex cover, that is, it shows minimality.
2

4 EXPERIMENTAL EVALUATION

We implemented our MapReduce algorithm under Hadoop [3] and evaluated its
solution quality and the number of MapReduce rounds. For comparison purposes, we
developed a Hadoop program of the maximal matching-based vertex cover algorithm
described above.

Test graph data were randomly generated based on two topological characteris-
tics: random graphs and scale-free graphs. A graph is scale-free if its degree distri-
bution follows a power law. Scale-free graphs are known as a model often observed
in actual networks [29]. Random graphs with average degree d were generated such
that vertex degrees follow the Guassian distribution with average d and variance 1.

A MapReduce Algorithm for MVC Problems and Its Randomization 961

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 0 200 400 600 800 1000

A
p

p
ro

x
im

a
te

 R
a

ti
o

Number of vertices

exact solution
degree 10
degree 30
degree 50
degree 70

Figure 5. Solution quality vs. graph size for random graphs (our proposal)

4.1 Solution Quality

We first evaluate the solution quality of our MapReduce algorithm by comparing it
with its maximal matching-based algorithm. The Gurobi optimizer, a commercial
solver, was used to obtain exact solutions but it could not exactly solve problem
instances of huge size random graphs within a reasonable time. We therefore eval-

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 0 200 400 600 800 1000

A
p

p
ro

x
im

a
te

 R
a

ti
o

Number of vertices

exact solution
degree 10
degree 30
degree 50
degree 70

Figure 6. Solution quality vs. graph size for random graphs (maximal matching-based
algorithm)

962 M. Nakamura, D. Kinjo, T. Yoshida

uated, for random graphs of size 100 to 1 000, the quality of approximate solutions
by comparing with that of exact solutions, while for random graphs with 1 000 to
10 000 vertices, we just compared both approximate algorithms, our proposal and
the maximal matching-based algorithm.

When it comes to scale-free graphs, the Gurobi optimizer was able to solve
problem instances of 1 000 000 vertices. This is because the exact algorithm can
drastically prune branches of the search tree for the power-law distribution of edge
degree in the scale-free graphs. Therefore, for scale-free graphs, we varied the num-
ber of vertices up to 1 000 000 to compare with exact solutions.

Figures 5 and 6, respectively, depict the solution quality of our algorithm and
that of the matching-based algorithm.

In the figures, the horizontal axis shows the number of vertices and the vertical
axis shows the approximate ratio compared to the exact solution. Here we take the
quality of the exact solution as 1. For the experiments, we varied the average degree
of a vertex from 10 to 70 and prepared ten different instances of each. Therefore,
the values in the figures show the average of ten executions. Figures 7 and 8 show
results for larger random graphs, where the curves express the size of the obtained
minimal vertex covers for each degree. These figures indicate that both algorithms
obtained lower quality solutions for smaller degrees of random graphs. That is,
loosely-coupled random graphs are harder to solve approximately than are tightly-
coupled ones. The results indicate that our algorithm can obtain quite good solutions
of less than 5 % approximate ratio, even for degree 10, while the approximate ratio
of the matching-based algorithm was more than 30 % in case of the degree 10.

For scale-free graphs, we compare both approximate algorithms with the exact
algorithm and depict the quality versus the graph size in Figure 9. The results
confirm that our algorithm performs very well also for scale-free graphs compared
to the matching-based algorithm.

Through experimental evaluation, we confirmed the effectiveness of our proposed
algorithm. From a quality point of view, our algorithm outperformed the maximal
matching-based algorithm. The maximal matching-based algorithm progressively
constructs a maximal matching, then generates a minimal vertex cover from the
maximal matching. The algorithm is based on a greedy policy for the maximality
of matching, but not for the minimality of the vertex cover. In contrast, our algo-
rithm focuses on minimizing the size of the vertex cover. Our algorithm generates
an initial vertex cover that includes only |V | − |Sources| vertices, and then removes
unnecessary vertices step-by-step in a greedy manner. This direct greedy operation
greatly improves the solution quality as compared with the maximal matching-based
algorithm.

4.2 Number of Rounds

Instead of measuring real computation time of MapReduce operations, we usually
evaluate the number of rounds of MapReduce operations. Actual computation time
is much more understandable for performance evaluations, but it strongly depends

A MapReduce Algorithm for MVC Problems and Its Randomization 963

 0

 2000

 4000

 6000

 8000

 10000

 0 2000 4000 6000 8000 10000

S
iz

e
 o

f
O

b
ta

in
e

d
 V

e
rt

e
x
 C

o
v
e

r

Number of vertices

degree 10
degree 30
degree 50
degree 70

Figure 7. Results for large random graphs (our proposal)

 0

 2000

 4000

 6000

 8000

 10000

 0 2000 4000 6000 8000 10000

S
iz

e
 o

f
O

b
ta

in
e

d
 V

e
rt

e
x
 C

o
v
e

r

Number of vertices

degree 10
degree 30
degree 50
degree 70

Figure 8. Results for large random graphs (maximal matching-based algorithm)

on conditions of the computing platform, such as the number of processing nodes,
cpu spec, memory size, network architecture, and traffic situation. Therefore, the
number of rounds becomes the most reliable factor by which to evaluate the compu-
tation time of MapReduce programs. In our experiment, we measured the number
of rounds of two approximate algorithms. Figures 10 and 11 respectively depict
the number of rounds used in our algorithm and the maximal matching-based algo-
rithm for random graphs. Figure 12 compares the number of rounds for scale-free
graphs.

964 M. Nakamura, D. Kinjo, T. Yoshida

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 0 200000 400000 600000 800000 1e+06

A
p

p
ro

x
im

a
te

 R
a

ti
o

Number of vertices

exact solution
our proposal

maximal matching

Figure 9. Solution quality vs. graph size for scale-free graphs (our proposal)

The results indicate that our algorithm requires relatively few rounds, compared
to the maximal matching-based algorithm. The real computation time is propor-
tional to the number of rounds in the experiment and the curves of the number of
rounds are almost constant with respect to the number of vertices. Therefore, our
algorithm has good scalability regarding graph size.

 0

 10

 20

 30

 40

 50

 0 2000 4000 6000 8000 10000

N
u

m
b

e
r

o
f
ro

u
n

d
s

Number of vertices

degree 10
degree 30
degree 50
degree 70

Figure 10. Number of rounds vs. graph size for random graphs (our proposal)

A MapReduce Algorithm for MVC Problems and Its Randomization 965

 0

 50

 100

 150

 200

 250

 0 2000 4000 6000 8000 10000

N
u

m
b

e
r

o
f
ro

u
n

d
s

Number of vertices

degree 10
degree 30
degree 50
degree 70

Figure 11. Number of rounds vs. graph size for random graphs (maximal matching-based
algorithm)

5 RANDOMIZED MAPREDUCEMVC

MapReduceMVC is not always highly efficient. We consider here a special class
of graphs, called k-flower graphs for which our original MapReduceMVC may not
output good quality of solutions.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 200000 400000 600000 800000 1e+06

N
u

m
b

e
r

o
f
ro

u
n

d
s

Number of vertices

our proposal
maximal matching

Figure 12. Number of rounds vs. graph size for scale-free graphs

966 M. Nakamura, D. Kinjo, T. Yoshida

Definition 4. A graph G = (V,E) is called a k-flower graph when V = {v0, v1, v2,
. . . , v3·(k−1)+3} and E = ∪ki=1{(v0, v3·(i−1)+1), (v3·(i−1)+1, v3·(i−1)+2), (v3·(i−1)+2,
v3·(i−1)+3), (v3·(i−1)+3, v0)}.

Definition 5. For k-flower graph G = (V,E), the vertex v0 is called center ver-
tex and subgraph G(i) = (V(i),E(i)), i = 1, 2, . . . , k, is called a petal of k-flower
graph G where V(i) = {v0, v3·(i−1)+1, v3·(i−1)+2, v3·(i−1)+3}, E(i) = {(v0, v3·(i−1)+1),
(v3·(i−1)+1, v3·(i−1)+2), (v3·(i−1)+2, v3·(i−1)+3), (v3·(i−1)+3, v0)}.

Figure 13 depicts 3-flower graph and its exact and the worst case vertex covers,
where the vertices colored in red denote the vertices in the obtained vertex cover and
the number beside a vertex shows its index. Figures 13 a) and 13 b) represent the
exact solution and the worst case solution obtained by our MapReduce algorithm,
respectively. From the definition, we can easily prove that the size of the optimal
solution and the worst case solution for k-flower graphs are

|VCbest| = k + 1, (4)

|VCworst| = 2 · k + 1, (5)

respectively. Therefore, the approximation ratio for k-flower graphs is

|VCworst|
|VCbest|

=
2 · k + 1

k + 1
≈ 2. (6)

1

2

3 4

8

7

6 59

10

1

2 3

4

(a) Optimal Solution (b) Worst Case Solution
a) Optimal solution

1

2

3 4

8

7

6 59

10

1

2 3

4

(a) Optimal Solution (b) Worst Case Solution
b) Worst case solution

Figure 13. Solution example for 3-flower graphs

Randomized algorithms allow us to avoid the worst case solution, where we uti-
lize only randomized index function in our MapReduceMVC. Our algorithm requires
the construction of a directed graph for the input graph by the edge orientation

A MapReduce Algorithm for MVC Problems and Its Randomization 967

Figure 14. All patterns of randomized index

based on the lexicographical order on (≺, index). In k-flower graphs, the edge ori-
entation depends on the index values of the terminal vertices since all the vertices
except for the center vertex have degree 2. This is the reason why it is hard for our
original MapReduceMVC to solve k-flower graphs.

Let us calculate the expected size of minimal vertex covers to be obtained by the
randomized MapReduceMVC for k-flower graphs. Figure 14 shows all the patterns
of indexing for one petal of a k-flower graph, where a, b, and c express the index
value for the corresponding vertex. The vertex with the smallest index number out
of a, b, and c should be a source which can not be in the final vertex cover. The
vertices colored in red are in the vertex cover. From the figures, the expected value
of the number of vertices in VC per petal except for the vertex v0, E(|VC(petal)|
is

E(|VC(petal)|) = 1 · 2

3
+ 2 · 1

3
=

4

3
. (7)

Since v0 is in VC only when the indexing is either a > c > b or c > a > b for all the
petals, the expected value for the center vertex in VC, E(|VC(v0)| is

E(|VC(v0)|) = 1−
(

1

3

)k

. (8)

968 M. Nakamura, D. Kinjo, T. Yoshida

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 5000 10000 15000 20000 25000 30000

A
p

p
ro

x
im

a
te

 R
a

ti
o

Number of vertices

Optimum Solution
Obtained Solution(Randomized)

Worst Case Solution

Figure 15. Solution quality of randomized MapReduceMVC for k-flower graphs

Therefore, the expected value of |VC| is

E(|VC|) = k · E(|V C(petal)|) (9)

=
4

3
· k + 1−

(
1

3

)k

. (10)

The expected approximation ratio is as follows:

E

(
|VC|
|VCbest|

)
=

4
3
· k + 1−

(
1
3

)k
k + 1

≈ 4

3
. (11)

To confirm the validity of the expected approximate ratio, we performed an ex-
periment. Figure 15 shows the average curves of the approximate ratio in which we
solved MVC for k-flower graphs 20 times by the Randomized MapReduceMVC with
varying the number of vertices. From the figures, our randomized MapReduceMVC
could achieve the same approximate ratio as the one we calculated in (11). Our
randomized algorithm can be easily implemented since we just need to introduce
a randomized index function to the original one.

Theorem 2. RandomizedMapReduceMVC outputs a minimal vertex cover with
the expected approximate ratio 4/3 for k-flower graphs.

6 CONCLUSION

We proposed a MapReduce algorithm for the minimum vertex cover problem and
proved its validity. We performed an experimental evaluation of our proposal and

A MapReduce Algorithm for MVC Problems and Its Randomization 969

measured the quality of solutions and the number of rounds of MapReduce op-
erations. We observed that our algorithm could generate a reasonable quality of
approximate solutions compared to the exact algorithm for random graphs with 100
to 1 000 vertices and scale-free graphs with 1 000 to 1 000 000 vertices. We also com-
pared our algorithm with the well-known maximal matching-based minimum vertex
cover algorithm, and our algorithm outperformed it not only in terms of solution
quality but also in terms of computation time.

Finally we introduced a class of graphs, k-flower graphs, which it is hard for our
algorithm to solve, and we have proposed a randomized version of MapReduceMVC.
Just by using the randomized index function, our algorithm can obtain the expected
approximate ratio 4/3 for k-flower graphs.

REFERENCES

[1] Dean, J.—Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clus-
ters. Proceedings of the 6th Symposium on Operating System Design and Implemen-
tation (OSDI ’04), 2004, pp. 137–150.

[2] Karloff, H.—Suri, S.—Vassilvitskii, S.: A Model of Computation for MapRe-
duce. Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete
Algorithms, 2010, pp. 938–948, doi: 10.1137/1.9781611973075.76.

[3] Holmes, A.: Hadoop in Practice. Manning Publications Co., Greenwich, 2012.

[4] Guhther, N. J.—Puglia, P.—Tomasette, K.: Hadoop Superlinear Scalability.
Communications of the ACM, Vol. 58, 2015, No. 4, pp. 46–55, doi: 10.1145/2719919.

[5] Apache Spark. https://spark.apache.org/.

[6] Ketu, S.—Mishra, P.K.—Agarwal, S.: Performance Analysis of Distributed
Computing Frameworks for Big Data Analytics: Hadoop vs. Spark. Computación
y Sistemas, Vol. 24, 2020, No. 2, pp. 669–689, doi: 10.13053/cys-24-2-3401.

[7] Mostafaeipour, A.—Jahangard Rafsanjani, A.—Ahmadi, M.—Arockia
Dhanraj, J.: Investigating the Performance of Hadoop and Spark Platforms
on Machine Learning Algorithms. The Journal of Supercomputing, Vol. 77, 2021,
pp. 1273–1300, doi: 10.1007/s11227-020-03328-5.

[8] Lin, J.—Schatz, M.: Design Patterns for Efficient Graph Algorithms in MapRe-
duce. Proceedings of the Eighth Workshop on Mining and Learning with Graphs.
2010, pp. 78–85, doi: 10.1145/1830252.1830263.

[9] Warashina, T.—Aoyama, K.—Sawada, H.—Hattori, T.: Efficient K-Nearest
Neighbor Graph Construction Using MapReduce for Large-Scale Data Sets. IEICE
Transactions on Information and Systems, Vol. E97.D, 2014, No. 12, pp. 3142–3154,
doi: 10.1587/transinf.2014edp7108.

[10] Devi, N. S.—Mane, A.C.—Mishra, S.: Computational Complexity of Minimum
P4 Vertex Cover Problem for Regular and K1, 4-Free Graphs. Discrete Applied Math-
ematics, Vol. 184, 2015, pp. 114–121, doi: 10.1016/j.dam.2014.10.033.

https://doi.org/10.1137/1.9781611973075.76
https://doi.org/10.1145/2719919
https://spark.apache.org/
https://doi.org/10.13053/cys-24-2-3401
https://doi.org/10.1007/s11227-020-03328-5
https://doi.org/10.1145/1830252.1830263
https://doi.org/10.1587/transinf.2014edp7108
https://doi.org/10.1016/j.dam.2014.10.033

970 M. Nakamura, D. Kinjo, T. Yoshida

[11] Guruswami, V.—Sachdeva, S.—Saket, R.: Inapproximability of Minimum Ver-
tex Cover on k-Uniform k-Partite Hypergraphs. SIAM Journal on Discrete Mathe-
matics, Vol. 29, 2013, No. 1, pp. 36–58, doi: 10.1137/130919416.

[12] Lattanzi, S.—Moseley, B.—Suri, S.—Vassilvitskii, S.: Filtering: A Method
for Solving Graph Problems in MapReduce. Proceedings of the 23rd Annual ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA ’11), 2011,
pp. 85–94, doi: 10.1145/1989493.1989505.

[13] Plimpton, S. J.—Devine, K.D.: MapReduce in MPI for Large-Scale Graph
Algorithms. Parallel Computing, Vol. 37, 2011, No. 9, pp. 610–632, doi:
10.1016/j.parco.2011.02.004.

[14] Malewicz, G.—Austern, M.H.—Bik, A. J. C.—Dehnert, J. C.—Horn, I.—
Leiser, N.—Czajkowski, G.: Pregel: A System for Large-Scale Graph Processing.
Proceedings of the 2010 ACM SIGMOD International Conference on Management of
Data (SIGMOD ’10), 2010, pp. 135–146, doi: 10.1145/1807167.1807184.

[15] Kambatla, K.—Rapolu, N.—Jagannathan, S.—Grama, A.: Asynchronous
Algorithms in MapReduce. Proceedings of 2010 IEEE International Conference
of Cluster Computing, Heraklion, Greece, 2010, pp. 245–254, doi: 10.1109/clus-
ter.2010.30.

[16] Bellettini, C.—Camilli, M.—Capra, L.—Monga, M.: State Space Explo-
ration of RT Systems in the Cloud. Cornell University Library, arXiv:1203.6806
[cs.SE], 2012, 6 pp.

[17] Taylor, R.C.: An Overview of the Hadoop/MapReduce/HBase Framework and Its
Current Applications in Bioinformatics. BMC Bioinformatics, Vol. 11, 2010, No. S1,
doi: 10.1186/1471-2105-11-s12-s1.

[18] Liang, F.—Lu, X.: Accelerating Iterative Big Data Computing Through MPI.
Journal of Computer Science and Technology, Vol. 30, 2015, No. 2, pp. 283–294, doi:
10.1007/s11390-015-1522-5.

[19] Yu, W.K.—Wang, Y.D.—Que, X.Y.—Xu, C.: Virtual Shuffling for Efficient
Data Movement in MapReduce. IEEE Transactions on Computers, Vol. 64, 2015,
No. 2, pp. 556–568, doi: 10.1109/tc.2013.216.

[20] Kang, U.—Tsourakakis, C. E.—Faloutsos, C.: PEGASUS: Mining Peta-Scale
Graphs. Knowledge and Information Systems, Vol. 27, 2011, No. 2, pp. 303–325, doi:
10.1007/s10115-010-0305-0.

[21] Wu, B.—Yang, S.—Zhao, H.—Wang, B.: A Distributed Algorithm to Enumer-
ate All Maximal Cliques in MapReduce. Proceedings of the 2009 Fourth International
Conference on Frontier of Computer Science and Technology, 2009, pp. 45–51, doi:
10.1109/fcst.2009.30.

[22] Chierichetti, F.—Kumar, R.—Tomkins, A.: Max-Cover in Map-Reduce. Pro-
ceedings of the 19th International Conference on World Wide Web (WWW ’10), 2010,
pp. 231–240, doi: 10.1145/1772690.1772715.

[23] Halim, F.—Yap, R.H.C.—Wu, Y.: A MapReduce-Based Maximum-Flow Al-
gorithm for Large Small-World Network Graphs. Proceedings of the 2011 31st In-
ternational Conference on Distributed Computing Systems, 2011, pp. 192–202, doi:
10.1109/icdcs.2011.62.

https://doi.org/10.1137/130919416
https://doi.org/10.1145/1989493.1989505
https://doi.org/10.1016/j.parco.2011.02.004
https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1109/cluster.2010.30
https://doi.org/10.1109/cluster.2010.30
https://doi.org/10.1186/1471-2105-11-s12-s1
https://doi.org/10.1007/s11390-015-1522-5
https://doi.org/10.1109/tc.2013.216
https://doi.org/10.1007/s10115-010-0305-0
https://doi.org/10.1109/fcst.2009.30
https://doi.org/10.1145/1772690.1772715
https://doi.org/10.1109/icdcs.2011.62

A MapReduce Algorithm for MVC Problems and Its Randomization 971

[24] Kumar, P.—Singh, A.K.: MapReduce Algorithm for Single Source Shortest Path
Problem. International Journal of Computer Network and Information Security (IJC-
NIS), Vol. 12, 2020, No. 3, pp. 11–21, doi: 10.5815/ijcnis.2020.03.02.

[25] Karp, R.M.: Reducibility Among Combinatorial Problems. In: Miller, R. E.,
Thatcher, J. W., Bohlinger, J. D. (Eds.): Complexity of Computer Computations.
Springer, Boston, MA, The IBM Research Symposia Series, 1972, pp. 85–103, doi:
10.1007/978-1-4684-2001-2 9.

[26] Karakostas, G.: A Better Approximation Ratio for the Vertex Cover Problem.
In: Caires, L., Italiano, G. F., Monteiro, L., Palamidessi, C., Yung, M. (Eds.):
Automata, Languages and Programming (ICALP 2005). Springer, Berlin, Heidel-
berg, Lecture Notes in Computer Science, Vol. 3580, 2005, pp. 1043–1050, doi:
10.1007/11523468 84.

[27] Bar-Yehuda, R.—Even, S.: A Local-Ratio Theorem for Approximating the
Weighted Vertex Cover Problem. In: Ausiello, G., Lucertini, M. (Eds.): Annals
of Discrete Mathematics 25. North-Holland Mathematics Studies, Vol. 109, 1985,
pp. 27–45, doi: 10.1016/s0304-0208(08)73101-3.

[28] Kinjo, D.—Nakamura, M.: A MapReduce Algorithm for Minimum Vertex Cover
Problem. Proceedings of International Technical Conference on Circuits and Systems,
Computers and Communications, 2013, pp. 505–508.

[29] Li, L.—Doyle, J. C.—Willinger, W.—Alderson, D.: Towards a Theory of
Scale-Free Graphs: Definition, Properties, and Implications. Internet Mathematics,
Vol. 2, 2005, No. 4, pp. 431–523, doi: 10.1080/15427951.2005.10129111.

[30] Bondy, J.A.—Murty, U. S.R.: Graph Theory with Applications. Elsevier Science
Publishing, 1976.

[31] Diestel, R.: Graph Theory. Second Edition. Springer-Verlag, New York, 2000.

[32] Harvey, N. J.A.—Liaw, C.—Liu, P.: Greedy and Local Ratio Algorithms in the
MapReduce Model. Proceedings of the 30th ACM Symposium on Parallelism in Algo-
rithms and Architectures (SPAA ’18), 2018, pp. 43–52, doi: 10.1145/3210377.3210386.

https://doi.org/10.5815/ijcnis.2020.03.02
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/11523468_84
https://doi.org/10.1016/s0304-0208(08)73101-3
https://doi.org/10.1080/15427951.2005.10129111
https://doi.org/10.1145/3210377.3210386

972 M. Nakamura, D. Kinjo, T. Yoshida

Morikazu Nakamura received his B.E. and M.E. degrees from
the University of the Ryukyus in 1989 and 1991, respectively,
and D.E. degree from Osaka University in 1996. He is currently
Professor in the area of computer science and intelligent systems,
Faculty of Engineering, University of the Ryukyus, Japan. His
research interests include theory and applications on mathemat-
ical systems. He is a member of IEICE and IEEE.

Daiki Kinjo received his B.E. and M.E. degrees in information
engineering from the University of the Ryujyus in 2012 and 2014,
respectively. He is currently Engineer in KLab Inc. His research
interests include distributed computing, network computing, and
data analysis.

Takeo Yoshida received his B.E. and M.E. degrees in electrical
engineering from the Nagaoka University of Technology and the
D.E. degree in electrical engineering from the Tokyo Metropoli-
tan University in 1991, 1993 and 1997, respectively. He is cur-
rently Assistant Professor in the Department of Engineering,
University of the Ryukyus, Japan. His research interests include
dependable computing, VLSI design, and graph theory. He is
a member of IEEE and IPSJ.

