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Abstract. High-dimensional with limited-sample size (HDLSS) datasets exhibit
two critical problems: (1) Due to the insufficiently small-sample size, there is
a lack of enough samples to build classification models. Classification models with
a limited-sample may lead to overfitting and produce erroneous or meaningless
results. (2) The ’curse of dimensionality’ phenomena is often an obstacle to the
use of many methods for solving the high-dimensional with limited-sample size
problem and reduces classification accuracy. This study proposes an unsupervised
framework for high-dimensional limited-sample size data classification using dimen-
sion reduction based on variational autoencoder (VAE). First, the deep learning
method variational autoencoder is applied to project high-dimensional data onto
lower-dimensional space. Then, clustering is applied to the obtained latent-space of
VAE to find the data groups and classify input data. The method is validated by
comparing the clustering results with actual labels using purity, rand index, and nor-
malized mutual information. Moreover, to evaluate the proposed model strength,
we analyzed 14 datasets from the Arizona State University Digital Repository. Also,
an empirical comparison of dimensionality reduction techniques shown to conclude
their applicability in the high-dimensional with limited-sample size data settings.
Experimental results demonstrate that variational autoencoder can achieve more
accuracy than traditional dimensionality reduction techniques in high-dimensional

with limited-sample-size data analysis.
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1 INTRODUCTION

By essence, in many domains, including computational biology, bioinformatics, ecol-
ogy, geology, neuroscience datasets are characterized by a small number of samples
N (records), but a large number of features p (dimensions). These datasets are called
the high-dimensional limited-sample size (HDLSS) dataset (aka ‘fat’ dataset), of-
ten written as p > N. HDLSS data classification and clustering both are cru-
cial and challenging tasks in data mining and machine learning. High variance
and bias are the main concern for HDLSS data analysis. As a result, simple and
highly-regularized classification and regression techniques often become the method
of choice [I].

The caution of insufficiently small-sample size has been flagged, especially dan-
gerous to draw conclusions from the limited-sample dataset [2, Bl @]. In HDLSS
datasets, typically sample size is too small to allow for the split into train-test test-
ing or k-fold cross-validation. However, data miners train a classifier model and
estimate the classification accuracy. It can be challenging to build a stable and
reliable classifier and draw a conclusion from such limited-samples.

The difficulty occurs when dealing with high-dimensional data, where the accu-
racy of classifiers or clustering algorithms tends to deteriorate are often referred to
as the curse of dimensionality [5], 6]. Consequently, dimensionality reduction (DR)
is an innovative and important tool in the fields of data analysis, data mining, and
machine learning. Several techniques have been proposed for DR such as principal
components analysis (PCA) [7, 8, 9], independent components analysis (ICA) [10],
factor analysis (FA) [I1], multidimensional scaling (MDS) [12], and non-negative
matrix factorization (NMF) [I3]. Traditional methods like PCA, ICA, FA, and
classical MDS suffer from being based on linear models.

However, recently, some nonlinear dimensionality reduction (NLDR) (aka ‘man-
ifold learning’) methods have been developed and have become a popular topic.
Traditional DR methods PCA, ICA, FA, and TSVD usually require sufficient data,
otherwise, they might be less effective. In the context of N > p, there is a relatively
large application of PCA, ICA, FA, and TSVD. In the case of p > N, transformed
lower-dimension (d) is lower than or equal to sample size (d < N), there is difficulty
to preserved information about the original data in such too lower-dimensional space.
Therefore, for the HDLSS problem (p > N), it is clear that the basic formulation
of PCA, ICA, FA, and TSVD does not work.

Over the decades, deep learning (DL) has succeeded in a variety of fields to
extract information from high-dimensional data such as image, speech, text, and
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vision [I4} [15]. The limitation of DL is getting a large number of training data to
ensure learning accuracy. Different types of deep learning architecture have been
proposed to solve the problem of insufficient samples [I6, [I7]. Recently, unsupervised
deep learning models such as generative adversarial net (GAN) and variational au-
toencoder (VAE) have shown the modeling power without the labels. VAEs harness
to generate ‘blurry’ data compared with other generative models, also more stable
to train [I8]. Moreover, unlike many existing techniques (e.g., PCA, ICA, FA),
VAE also capable of reducing the dimension as necessary from the high-dimensional
space.

Recently, we examined that VAE based dimensionality reduction outperforms
PCA, fastICA, FA, NMF, and LDA in HDLSS data classification in a supervised
model [48]. Tt is also addressed that classifiers and obtained reduced dimensions
show inconsistent behavior w.r.t classification accuracy and vary considerably. This
discrepancy raises the supervised framework applicability to HDLSS data analysis,
yet critical. Although there are varieties of classification algorithms, the challenge
is an appropriate selection in the application of the limited-sample domain. Hence,
it is more advantageous to use an unsupervised framework. We favored an idea of
the unsupervised model, in [T9]. It is noteworthy to mention that this paper is an
extension of our work reported at the 4th International Conference on Advanced
Robotics and Mechatronics [19].

This study manifests an extensive empirical analysis of traditional DR tech-
niques and the effectiveness of the approach we proposed in [I9]. The proposed
DR approach can maintain a reasonable size of dimensions even after the reduction,
unlike many existing methods that often reduce the dimensions too heavily. The
problem with a huge number of dimensions is known as the curse of dimensionality,
but we argue that there is a blessing of dimensions as well in the sense that we
often need a reasonable size of dimensions for useful data analysis. The proposed
DR approach can maintain a reasonable-size of dimensions and utilize the blessing
of dimensions in the HDLSS setting.

The contribution of this study is to present an unsupervised framework for
HDLSS data classification. In particular, we employed the deep learning technique
variational autoencoder for dimensionality reduction, and the clustering is applied
on the obtained latent variables (low-dimensional space) to group data, and then
validated clustering results with the original class labels. We tested the effective-
ness of the proposed framework in varieties types of fourteen HDLSS datasets, such
as biology, image, mass, and spectrometry, and comparisons with various reduced
dimensions in classification are also shown. Moreover, we provided an empirical com-
parison of different dimensionality reduction methods, compare their performances
on a wide range of challenging HDLSS datasets, and conclude their applicability to
HDLSS application.

The paper is organized as follows. Section [] surveyed related works on dimen-
sionality reduction of HDLSS data analysis. In Section [3] the idea of the proposed
method is described. Empirical comparisons and concluding remarks are in Sec-
tions [ and 5] respectively.
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2 RELATED WORK
2.1 State-of-the-Art Data Dimensionality Reduction Techniques

HDLSS data analysis is vital for scientific discoveries in many areas. When dealing
with HDLSS data, the overfitting and high-variance gradients are the main chal-
lenges in majority models. In the past, significant work has been done on HDLSS
asymptotic theory, where the sample size N is fixed or N/p — 0 as the data di-
mension p — oo [20, 6]. In the HDLSS context, Jung and Marron explored several
types of geometric representations and showed inconsistent properties of the sample
eigenvalues and eigenvectors [21].

In past decades, numerous dimensionality reduction (DR) techniques, including
PCA [7,18, 9], ICA [10], FA [11], MDS [12], NMF [13] proposed. PCA is perhaps one
of the oldest and best-known DR methods in high-dimensional data processing and
mining. Traditional methods like PCA, ICA, FA, and classical MDS suffer from be-
ing (based on) linear models. Recently, to discover the intrinsic manifold structure
of the data, nonlinear DR algorithms are developed, such as locally linear embed-
ding (LLE) [22], kernel PCA (KPCA) [23], sparse PCA (SPCA) [24], and spectral
embedding (SE) [25]. DR methods can be roughly categorized into supervised and
unsupervised. Semi-supervised DR is recognized as a new issue in semi-supervised
learning, which learns from a combination of both labeled and unlabeled data. Ta-
ble [T] presents a summary of canonical DR methods to clarify their characteristic in
HDLSS (p > N) settings.

Supervised or classification methods are often used for HDLSS data analysis.
Most achievements in the supervised model show that more samples and lower-
dimension can improve the performance of classifiers. However, sufficient large-
samples are essential to building a classification model with good generalization
ability, expected that perform equally well on the training and independent testing
dataset. Consequently, the classification technique does not suit with small-sample
size dataset, to avoid overfitting (training and validation data), the unsupervised
(that is, clustering) methods also applied for HDLSS analysis.

Many researchers considered PCA in the classification and clustering of bio-
logical data in the context of HDLSS, among them are [26, 27, 28, 29]. In fact,
PCA reduces the dimensionality of the data linearly, and it may not extract some
nonlinear relationships of the data. In the same vein, [30), BI] pointed that though
many researchers considered PCA as a DR method, it is even more useful for data
visualization in high-dimensional contexts. NMF is another widely used tool for
high-dimensional data analysis. NMF has also been applied for gene clustering,
microarray and protein sequence data analysis, and recognition [32, 33]. PCA is de-
terministic while NMF is stochastic, so NMF appears to be more suitable for HDLSS
data analysis than PCA. In [48], explored that PCA, ICA, FA, LDA, MBDL, and
NMF are not efficient for dimensionality reduction in HDLSS data classification.

For decades, deep learning (DL) techniques have achieved state-of-the-art perfor-
mance with large-sample sizes in many domains. Nevertheless, recently, few efforts
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have been devoted to applying DL to the HDLSS settings by [34, b3l [15]. DLs also
suffer overfitting on HDLSS problems. The ‘Dropout’ method was proposed to pre-
vent overfitting by reducing the parameters of the full-connection layer, for detail see
[35], [T6]. Also, a transfer learning-based deep convolutional neural network (CNN)
has been developed to solve the problem of the small-sample dataset [I7]. In the
last few years, a variety of supervised and semi-supervised deep learning models has
blossomed in the context of natural language processing (NLP). Recently, there have
few efforts to develop unsupervised learning techniques by building upon variational
autoencoders [36], 37, [38].

Algorithm Method Degrees of Freedom
Principal components analysis (PCA) [7, 8, 9] LDR d< N
Independent components analysis (fastICA) [I0] LDR d< N
Factor analysis (FA) [11] LDR d< N
Truncated SVD (aks LSA) [39] LDR d<N
Latent Dirichlet allocation (LDA) [0, 4T] NLDR d<p*
Mini-batch dictionary learning (MBDL) [42] NLDR d<px
Non-negative matrix factorization (NMF) [13] NLDR d<px*
Kernel PCA (KPCA) [23] NLDR d<N
Sparse PCA (SPCA) [24] NLDR d<px
Locally linear embedding (LLE) [22] NLDR d<N
Spectral embedding (SE) [25] NLDR d<N
Multidimensional scaling (MDS) [12] NLDR/LDR d<p *
Autoencoder (AE) [43], [45] NLDR/LDR d<p*

Degrees of freedom is possible computed number of latent variables

* indicates succeed at most are desired to keep dimension

Table 1. A summary of most known and used dimensionality reduction techniques in the
HDLSS setting. N: number of the samples, d: dimensionality of the latent space, p: di-
mensionality of the data space, LDR: linear dimensionality reduction; NLDR: nonlinear
dimensionality reduction.

2.2 Variational Autoencoder (VAE) Model

Kingma and Welling [43] introduced the VAE, which is based on the autoencoding
framework as a latent variable generative model (see Figure . VAE can discover
nonlinear explanatory features through data compression and nonlinear activation
functions. A traditional autoencoder (AE) consists of an encoding and a decoding
phase where input data is projected into lower-dimensions and then reconstructed.
AE is deterministic and trained by minimizing reconstruction error. In contrast,
VAE is stochastic and learns the distribution of explanatory features over sam-
ples. VAE achieves these properties by learning two distinct latent representations:
amean (u) and standard deviation (o) vector encoding. The model adds a Kullback-
Leibler (KL) divergence term to the reconstruction error, which also regularizes
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weights by constraining the latent vectors to match a Gaussian distribution [44].
In a VAE, these two representations are learned concurrently through the use of
a reparameterization trick that permits a backpropagated gradient. Importantly,
projected data onto an existing VAE feature space enabling new data to be as-
sessed. In this, we aim to build a VAE that compresses high-dimensional features
and reveals a relevant latent space.

A VAE performs density estimation on p(z, z) where z are latent variables, to
maximize the likelihood of the observed data z, where z; € X C R™ is the "
observation: log p(X) = S°N  log p(z;).

Define
A
Data (x) latent state Reconstruction (x)
distributions Sample from
| distributions |

w \'

l . @
| Encoder (Inference) Decoder (Generatlve
Pe(z]X) qo(X|2)

Figure 1. Variational autoencoder (VAE) framework [43, 45]

A VAE consists of an encoder, a decoder, and a loss function unit.

The encoder is a neural network, compresses data x into a latent space z. En-
coder’s transformed representation is d-dimensional, which is much small than the
original p-dimensions. The lower-dimensional space is stochastic; encoder output
parameter is pg(z|x), which is a Gaussian probability density. Encoder weight and
bias parameter is 6.

The decoder is another neural network, gets input as latent representation z and
output the parameters of a probability distribution of the data. Its weight and bias
parameter is ¢. Decoder reconstructs the data is denoted by g,(z|2). It goes from
a smaller to a larger dimension. Information loss computed using the reconstruction
log-likelihood log gy (z|%). This measure states how effectively decodes the z into
N real-valued numbers. VAE uses a decoder-based generative model as

p(x,z) = p(z[2)p(2),
p(z) = N(z;0,1).
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The loss function of the VAE is the negative log-likelihood with a regularizer.
Since the marginal likelihood is difficult to work with directly for non-trivial models,
instead a parametric inference model p(z|z) is used to optimize the variational lower-
bound on the marginal log-likelihood

L(,0,0) = —Ey(zjay [log go(w:]2)] + KL(pg(z|2:)[[p((2)). (1)

In Equation , the first term of L is reconstruction error or expected negative
log-likelihood of the i*® data point of the decoder. The second term KL(.|.) is a
regularizer, the KL-divergence between the encoder and decoder distribution, to
minimize the KL-divergence from a chosen prior distribution.

3 METHOD

This study proposes an unsupervised adaptation for HDLSS data classification,
which aims to exclusively apply a generative model variational autoencoder (VAE)
to investigate dimensionality reduction ability on the HDLSS dataset. In this frame-
work, we divided an unlabeled HDLSS dataset into groups based on the hidden prop-
erties of the data. However, conventional classification techniques cannot cope with
this HDLSS dataset due to insufficient sample size to build and test a classifier or
cross-validation. The proposed unsupervised scheme for HDLSS data classification
is illustrated in Figure 2}

Map onto lower- . Validate result with .
. . N > Clustering — > Results evaluation
dimension using VAE

HDLSS dataset ~ —» available labels

High-dimensional Lower-dimensional Data groups Verify with original
data space labels

Figure 2. Proposed framework

Consider D = [X,Y] = [(z1,21), (x2,¥2), -, (Tky Yg)s - - -, (Zn,yn)] be & N X p
data matrix, where p > N; where p and N are the number of features and samples,
respectively. z; € X is the i observation and the class label is y; € Y belonging
to C' classes. X is mapped a choice of p-dimensional onto a d-dimensional repre-
sentations Z, z; = (21, 22,...,24), where d < p, such that the transformed lower-
dimensional representations z; = Z”z; can preserve the information of the original
data. The key aspects of the framework are as follows:

Dimensionality reduction: The first step of the proposed framework is the di-
mensionality reduction, which receives the HDLSS dataset as input, and then
class labels are removed from the dataset. Consequently, the deep learning model
VAE is applied to the unlabeled data to project desirable high-dimensional data
onto lower-dimensional space. The deep learning technique VAE empowers the
method to avoid overfitting.
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Clustering: Then, the clustering technique is applied to the obtained transformed
low-dimensional space to find the data groups. The exploratory and unsuper-
vised learning nature of the clustering demands efficient to use that would benefit
from the combination in the strength of the framework. A clustering technique
groups similar data in a cluster, whereas dissimilar data in different clusters.
K-means is widely used and one of the prominent data mining techniques for
its simplicity. In this study, simple K-means clustering is used. Determining
the number of clusters in a dataset is fundamental in K-means clustering, which
requires the user to specify the number of clusters K to be generated. There are
different methods for identifying the optimal number of clusters in a dataset,
including DBSCAN, Xmeans, I-Nice, Elbow, Silhouette, Gap statistic.

Decision making: The last step of the proposed framework is decision making,
which validated the clustering results with the original class labels. Assume
that sample points from one class form clustered in the same group.

4 EXPERIMENT AND DISCUSSIONS
4.1 Datasets for Experiments

The experiments were conducted on 14 high-dimensional limited-sample size p > N
datasets obtained from the Arizona State University repositoryﬂ. Table [2| presents
the detail of the datasets.

4.2 Experiment Settings

Experiments were designed for the empirical study of DR techniques on the HDLSS
dataset. We applied two types of experiments:

1. without dimensionality reduction (WDR), which ensures that all the original
features were used for classification, and

2. with dimensionality reduction (DR), where original data space mapped into
a new space with a much smaller number of dimensions were used for classifica-
tion.

In this study, different choices of latent-space were investigated (i.e., 2, 10, 20, 50,
100, 150, 200, 250, ..., 500) to see how the dimensionality of the projected space
affects the performance. To evaluate the effectiveness of dimensionality reduction
various DR methods were applied, such as VAE, AE, PCA, Kernel PCA, LLE, MDS,
Sparse PCA, NMF, Truncated SVD, SE.

Computations were performed using machines with x64-based processor Intel(R)
core i7-7700, CPU 3.60 Hz, and 8.0 GB memory. VAE code implementation using
the CPU based on Tensorflow and Keras libraries.

! http://featureselection.asu.edu/
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ID Dataset Abbrev. N P ¢ Type
1 ALLAML ALL 72 7129 2 continuous, binary
2 CARCINOM CAR 174 9182 11 continuous, multi-class
3 CLLSUB_111 CLL 111 11340 3 continuous, multi-class
4 GLIS85 GLI 85 22283 2 continuous, binary
5 GLIOMA GMA 50 4434 4 continuous, multi-class
6 NCI9 NCI 60 9712 9 discrete, multi-class
7 PROSTATE.GE PROS 102 5966 2 continuous, binary
8 SMK_CAN_187 SMK 187 19993 2 continuous, binary
9 TOX_171 TOX 171 5748 4  continuous, binary
10 ORLRAWS10P ORL 100 10304 10 continuous, multi-class
11 PIXRAWI10P PIX 100 10000 10 continuous, multi-class

12 WARPARI10P WPAR 130 2400 10 continuous, multi-class
13 WARPPIE10P WPIE 210 2420 10 continuous, multi-class
14 ARCENE ARC 200 10000 2 continuous, binary

Table 2. Characteristics of the datasets. ID 1-9 are biological, 10-13 are face image,
and 14 is mass-spectrometry dataset (IN: number of samples, p: number of features, and
¢: number of classes).

4.3 VAE Design

For the structure of the VAE, we exhaustedly investigated the best setting, such as
the number of intermediate layers, the size of each intermediate layer, batch size,
and learning rates. It is found that the network structure of VAE also affects the
performance of the feature extraction. In the experiment, VAE is performed on the
single intermediate layer (encode) with the following architecture: input encoded
onto d-dimensional latent space (d = z = 2, 10, 20, 50, 100, 200, . .., 500) and recon-
structed back to the original dimension. We kept the intermediate dimension as
10% of the original data space. The network parameter optimized with an ‘adam’
optimizer, included ‘rectified linear units’ and batch normalization in the encoding
stage, and ‘sigmoid’ activation in the decoding stage. A parameter scope is per-
formed on batch size 50, 100, 150, and 200; epochs 100, 200, and 300; learning rates
0.005, 0.001, 0.0015, and 0.0025; and warmups (k) 0.01, 0.05, 0.001, and 0.0005.
k controls how much the KL-divergence loss contributes to learning. In general,
training was relatively stable for many parameter combinations. Ultimately, the
best parameter combination based on validation was batch size 100, learning rate
0.0005, and epochs 200. Training stabilized after about 120 epochs.

4.4 Determining Number of Clusters in Dataset

A large variety of clustering methods has been proposed to discover the inherent
cluster structure in data. DBSCAN [46], Xmeans [47], and I-nice [49] are popular
methods for determining the number of clusters, K. We use these three methods to
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determine the K-value for the clustering of this study. Table B presents the obtained
number of clusters of the algorithms. Results showed that the DBSCAN is inefficient
when applied to large-dimensional data. To determine the K value for K-means, we
assumed that the number of classes is equal to the number of clusters.

4.5 Evaluation Criteria

The attained results were analyzed in terms of three external cluster evaluation
measures: purity [50], rand index (RI) [5I], and normalized mutual information
(NMI)[52]. Purity is the percent of the total number of objects classified correctly,
it is calculated as follows:

K
1
Purity = 5 Z max;|C; N'Y| (2)
1

where IV is number of objects in the dataset, K is number of clusters, C; is a cluster
in C, and Y] is the classification which has the max count for cluster C;.

Rand index (RI) is another popular cluster validation index, measures the per-
centage of correct decisions, it can be defined as Equation .

B TP+TN
" TP+ FP+FN+TN

RI (3)
where T'P and F'P are the numbers of true positive and false positive, whereas TN
and F'N are the numbers of true and false negative, respectively.

Normalized mutual information (NMI) is the mutual information between the
clustering and the classification on the shared object membership, with a scaling
factor corresponding to the number of object in the respective clusters, can define
by Equation (EI)
1(Cy,Y))

W=y T a2

(4)

where I(C;,Y;) denotes the mutual information between true assigned class and
obtained cluster label, and H(C;) is the entropy of cluster C; while information
about Y; classes is available. The range of NMI is between [0,1]. A higher value
indicates a better quality of clustering.

4.6 Analysis and Discussions

The attained results were analyzed in terms of the average on different used dimen-
sions. The results of each selected dimension were obtained by the best of 5 runs.
Tables [, B and [0 show the summarized achieved averaged values of different di-
mensionality reduction (DR) techniques for each experimental dataset’s purity, RI,
and NMI, respectively.
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DBSCAN I-nice Xmeans

Dataset| AE  KPCA LLE MDS SE SPCA TSVD NMF PCA VAE|AE KPCA LLE MDS SE SPCA TSVD NMF PCA VAE|AE KPCA LLE MDS SE SPCA TSVD NMF PCA VAE
ALL |1/2 1/1 1/ 1/1 1/3 1/1 1/1 1/2 1/2 1/2 |2/3 2/3 2/2 2/2 2/3 2/4 2/3 2/2 2/3 2/3(2/2 2/2 2/3 2/3 2/3 2/3 2/2 2/3 2/2 2/2
CAR |2/8 1/7 1/4 1/2 2/5 1/8 1/7 3/10 2/8 2/8 |7/107/10 4/8 2/5 5/118/12 7/9 10/128/11 8/10|6/10 3/5  8/122/2 4/123/4 2/3  4/11 2/3 6/9
CLL |12 1/2  1/4 1/1 1/2 1/2 1/2 1/2 1/2 1/2 |2/4 3/5 2/4 2/4 2/5 2/5 2/5 2/4 2/3 2/3|2/4 2/3 2/5 2/2 3/4 2/3 2/2 2/5 2/3 2/3
GLI [1/3 1/3 174 1/1 2/6 1/2 1/1 2/3 1/3 2/3 [2/4 2/3 2/3 2/4 2/4 2/3 2/4 2/3 2/3 2/3 (2/3 2/2 2/2 2/2 2/4 2/2 2/2 2/5 2/2 2/4
GMA |1/2 1/t 1/3 1/2 1/4 1/2 1/1 1/2 1/1 1/2 (3/4 2/3 2/4 3/5 3/5 3/5 2/4 2/4 3/4 3/5|2/5 2/2 2/3 2/5 2/7 2/2 2/2 2/3 2/3 2/5
NCI 1/3 1/2  1/2 1/2 1/3 1/2 12 1/2 1/2 1/3 |6/9 5/8 6/8 7/9 8/106/8 7/9 6/9 6/8 6/10(2/5 2/3 2/4 2/2 2/4 2/2 2/2 2/4 2/4 2/5
PROS |1/2 1/1 2/6 1/2 1/3 1/3 1/2 1/2 1/1 1/2 |2/4 2/4 2/4 2/5 2/5 2/4 2/5 2/3 3/3 3/4(2/4 2/4 2/6 2/2 2/9 2/4 2/3 2/6 2/3 3/5
SMK |1/2 1/t 1/2 1/5 1/5 1/5 1/1 1/2 1/1 1/2 |2/4 2/4 2/4 2/4 2/3 2/4 3/5 2/3 2/4 2/4|2/4 2/3 2/4 2/3 2/5 3/4 2/3 2/5 2/3 3/6
TOX |12 1/6 1/1 1/1 /7 1/4 1/7 1/8 1/6 1/2 |3/5 3/5 4/6 2/4 4/6 3/7 3/5 3/5 3/5 3/51|2/5 2/3 3/5 2/2 2/3 3/4 2/2 2/5 2/2 2/3
ORL |2/9 1/7 1/121/7 1/8 2/11 3/7 8/9 1/7 3/10|7/117/9  7/126/11 7/118/12 6/11 8/11 7/11 8/11|2/6 2/3  2/102/2 6/165/7 2/3 2/5 2/3 5/8
PIX 3/103/10 2/6 1/8 3/107/11 3/10 6/10 4/10 4/8 |6/11 6/11 5/8 6/9 6/116/12 6/11 7/11 7/11 7/10|4/122/9  2/133/4 3/4 7/14 3/10 2/14 4/7 7/13
WPAR |2/8 1/9 1/121/6 2/9 7/8 1/9 7/10 2/10 4/7 |6/9 5/8 5/8 5/9 5/9 5/9 5/9 6/9 5/8 6/9 |2/5 2/3 2/3 2/2 2/5 2/3 2/2 2/2 2/2 2/4
WPIE |2/8 1/17 1/171/5 1/7 1/6 7/16 1/3 1/8 3/9 |7/9 6/9 7/114/6 6/8 6/9 6/11 8/9 6/9 8/9 |2/8 2/3 2/2 3/5 6/173/5 2/3 3/17 2/5 2/7
ARC |1/2 1/5 3/6 1/3 3/4 1/5 1/4 1/7 1/5 1/2 |2/4 3/5 3/5 3/5 3/4 3/5 3/5 3/3 3/5 2/3 |2/7 3/7 3/163/3 3/133/8 2/9 7/12 4/7 2/8

Table 3. Summarized results of three cluster number determination methods on each dataset. The values shown in the table are
minimum and maximum number of clusters obtained over the applied different number of dimensions, i.e., 2, 10, 20, 50, 100, 200,
300, 400, 500 (min/max).
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Table [] shows the achieved average purity of different DR techniques for each
experimental dataset; it is observable that VAE outperformed others. Considering
all the experiments, VAE (1.4), AE (3.2), and SPCA (3.6) were ranked from first
to third, respectively. KPCA (5.1) and TSVD (5.3) were ranked as fourth and fifth
ranks subsequently. It reveals the strength of VAE, preserve more information in
lower-dimensional space in the context of HDLSS.

Besides, the average RI of each algorithm over all experiments is listed in Table [}
Among the techniques, VAE (1.3), AE (2.6), and SPCA (3.9) were ranked from first
to third in terms of the correct decision. Nonetheless, the superior RI of VAE
shows that not only it copes with the HDLSS but also outperforms traditional
DR techniques such as LLE, MDS, PCA, KPCA, NMF, SE, TSVD. Based on the
reported results in Table [6, VAE (2.3) is ranked as the most normalized mutual
information measure. AE (3.1) is ranked second, and the third rank is assigned to
SPCA (3.9).

Based on the observations from Tables ] [f] and [6] it can be seen VAE is robust
against the HDLSS dataset. AE, SPCA, and KPCA also perform well, while tradi-
tional DR techniques PCA, NMF, LLF, MDS, TSVD, and SE provide quite poor

performance.

To assess the importance of the projected space size in the HDLSS problem,
we can examine in a little more detail the performances of the 14 datasets with
different numbers of dimensions, as shown in Appendix A (Tables , ,
[A6, [AT [AS, (A10, [A11} [A12] [A13] [A14). From observation, it is
therefore of interest to note that the performance gained with the raise of di-
mension size. It is impressive that VAE almost always achieved the highest ac-
curacy in used different reduced dimensions. Moreover, it seems that SPCA and
MDS are affected by the size of dimensionality and stable for a wide range of
dimensions, while other methods (i.e., PCA, KPCA, LLE, SE) typically require
relatively more dimensions to obtain good accuracy. It is worthwhile to men-
tion that the use of VAE, AE, SPCA, and KPCA is advantageous compared to
other techniques, they can preserve more information in possible higher-dimensional
space. Though, analyzing in lower-dimensional space is much easier than in a
higher-dimensional space. Noted that 7 out of 14 datasets (i.e., 1, 2, 4, 5, 9,
10, and 11) were provided the best results where respective dimensions d > N.
So, it is reasonable to try to more latent space concerning the preservation of
information that increases the chances of obtaining useful results. Thus, it can
be concluded that VAE is providing the best DR for the unsupervised HDLSS
data classification in this study; also, AE, SPCA, KPCA can be a competitive
choice.

One major limitation of this framework is that when the data has a complex
distribution (each class has different distribution). For instance, we assumed the
number of clusters is equal to the number of classes, the assumption is not valid
when distinctive mini-clusters exist.
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Dataset| WDR|AE KPCA LLE MDS SE SPCA TSVD NMF PCA VAE

ALL 70.8 |73.4 3) 72.6 (1) 64.2 (9 67.4 (5) 56.3 (10) 73.6 2) 70.8 55 68.1 (r) 69.8 6y 86.1 (1)
CAR [66.7 [56.7 3) 55.1 5y 47.8 8y 50.9 (n 43.6 99 57.2 (2 54.6 ) 37.2 (10) 56.6 1y 71.4 (1)
CLL 53.2 |55.2 ) 55.1 59 H54.1 8y 53.0 99 55.3 39 55.7 (2 54.4 vy 50.5 (10) 54.6 ) 61.0 (1)
GLI 64.7 169.8 5) 69.7 ) 67.1 (p 70.5 @@ 65.9 99 T71.0 2) 70.9 39 61.6 (10) 66.8 8y T71.4 (1)
GMA [60.0 [62.6 2) 57.0 ) 46.0 10y 55.6 (n 48.0 (9 60.7 4) 62.0 3y 52.7 8y 58.5 5y 65.6 (1)
NCI 43.3 150.1 (2) 42.1 (a5) 42.1 @a5) 40.0 8y 37.1 o) 44.6 3) 41.7 ) 35.2 0y 40.8 (v 50.9 ()
PROS |57.8 [58.5 (4) 58.4 (6.5) 57.8 8y 5H8.5 (a) 57.1 (99 58.5 (1) 5&.4 (6.5 55.8 (10) 58.6 (2) 59.7 (1)
SMK 51.9 |55.1 8) 55.7 3 58.2 1) 56.4 29 52.6 (100 55.6 (4) 55.4 (5.5) H4.3 (9 55.4 (5.5 55.3 (1)
TOX |44.4 |51.3 (2) 45.1 (5.5) 39.8 (99 43.8 vy 40.5 8) 46.3 (1) 48.2 3 36.4 (10) 45.1 (5.5 56.9 (1)
ORL 76.0 |76.1 2) 72.4 a5 60.5 8) 72.4 a5 59.5 (99 73.7 3 72.0 6y 47.0 (10) 68.2 (ry 78.7 (1)
PIX 81.0 |86.4 (3 77.4 vy 57.3 99 81.4 ) 5H9.8 8y 86.8 (2) 81.8 (4.5) H4.3 (10) 81.8 (a.5) 88.0 (1)
WPAR |32.3 |37.4 2 27.5 ) 31.2 4 27.2 (n 27.1 85) 27.8 (5 23.8 (10) 31.6 3) 27.1 (8.5 39.1 1)
WPIE |31.0 |58.8 29 30.1 (n 36.7 0y 29.8 (99 27.4 o) 29.9 (s) 30.6 55 38.9 3y 30.2 6p 62.2 (1)
ARC 34.0 |64.8 3) 64.9 29 55.3 99 62.9 (» 55.0 o) 63.2 6) 63.8 1y 59.6 5y 63.6 59 66.3 (1)

Table 4. Average purity (in %) of different dimensions of different techniques on datasets.
Higher value is better and values in parentheses indicate the rank of algorithm.

Dataset WDR|AE KPCA LLE MDS SE SPCA TSVD NMF PCA VAE
ALL 58.1 163.9 2 59.7 4y 56.3 (m 55.9 (99 50.5 0y 60.6 39 58.4 59 56.1 ) 57.7 ) 76.8 1)
CAR [91.2 [89.3 @) 87.7 @ 80.3 @ 87.0x 76.5 10 89.4 2 88.0¢) 784 ¢ 89.0 @ 93.3
CLL 55.3 |57.6 3.5 H7.2 (5.5 52.2 (99 56.6 (1) 52.4 8y 57.6 35 57.2 5.5 47.5 10y 57.7 2 587 (1)
GLI 53.8 [68.2 1) 57.3 (1 56.1 8 58.7 3 54.6 10y 58.5 4y 58.3 5) 57.4 6y 55.7 (9 5H8.8 (2
GMA |73.1 |74.6 35 73.7 ) 57.8 10) 70.1 (n 59.5 99 74.6 35 73.8 5) 64.8 8y 74.7 2 75.4 1)
NCI 80.7 [82.9 2 809 ) 79.8 ) 81.0 5) T76.6 (99 82.7 3 82.6 1y 56.4 10y 80.0 (n 85.1 1)
PROS [50.7 |51.0 5y 51.0 55 51.2 (2 51.0 5y 50.9 .5 51.0 55 50.9 85 50.4 10y 51.0 5y 51.6 (1)
SMK [49.8 [50.7 2y 50.4 (6.5 51.5 (1) 50.6 3 50.0 0y 50.4 6.5) 50.3 (8.5) 50.5 (4.5) 50.3 (8.5) 50.5 (a.5)
TOX 679 |69.1 29 68.2 3 57.8 @ 66.0(n 59.1 s 68.1 @ 67.8 ¢ 46.2 o) 67.7 ) 72.2 1)
ORL [93.6 (934 35) 93.4 3.3 85.9 (99 92.7 5) 86.5 () 93.5 2 92.8 5) 80.7 10y 91.9 (n 94.3 ()
PIX 95.1 |96.4 3y 94.2 vy 83.0 (10) 95.2 6) 85.6 8y 96.5 2 95.4 5) 84.7 o) 95.5 ) 96.8 (1)
WPAR [83.9 [83.3 2 82.6  72.0 10) 82.7 3 78.0 (8 82.1 (6.5) 82.1 (6.5 74.3 99 82.3 5) 85.2 (1)
WPIE |82.3 |87.3 (2 83.2 35) 78.2 (8) 83.2 35) 76.6 (99 82.8 55 82.4 (v) 74.6 10) 82.6 ¢y 90.1 (1)
ARC 54.9 |53.8 3) 54.2 29 50.5 (99 53.3 (n 50.3 10y 53.4 6) 53.7 @) 51.9 8y 53.6 5) 55.1 (1)

Table 5. Average RI (in %)

4.7 Run-Time

of different dimensions of different techniques on datasets.
Higher value is better and values in parentheses indicate the rank of algorithm.

The average run-time of different applied dimensions of each dimensionality reduc-
tion method on each dataset is provided in Table [ It clearly illustrates that AE
and VAE are slower and computationally expensive than the corresponding methods
for training the network, which lasted more than 2x to 3x. It can be seen that VAE
is faster than AE to achieve selected (suitable) dimensionality reduction. Besides,
KPCA, LLE, MDS, SE, SPCA, TSVD, NMF, and PCA were not much different in
running time. Furthermore, VAE and AE consumed more run-time compared to
other methods but was provided the best performance.
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Dataset| WDR|AE KPCA LLE MDS SE SPCA TSVD NMF PCA VAE

ALL 090 |.148 3y .139 4) .118 ) .078 (99 .052 (o) .149 2y .114 (ry .081 () .119 (5) .446 (1)
CAR  [.322 [.590 5) .574 ) .504 sy .523 (r) 457 (9 .593 (2 .576 5) .341 10y .590 .5 .723 (1)
CLL 87 |.258 3y .253 (59 .145 (99 .231 (vp 181 8y .260 2y .245 ) .132 0y .272 1) .256 ()
GLI 197 1147 5 205 29 .090 () 129 ) .033 10y 174 39 217 1y .074 & .049 99 .159 (v
GMA |.491 |.525 2 .540 1y .287 (0) .456 vy .332 (99 .517 ) .506 5) .378 (&) .520 39 .487 (6)
NCI 435 1,492 ) 419 6) 424 5) .396 (9) .404 sy .459 3) .457 (1) .359 (o) 417 7y .520 ()
PROS |.019 ].040 5y .023 (s.5) .041 4y .023 (8.5 .060 (1) .023 (s.5) .023 (8.5 .043 3y .024 ) .049 (2
SMK |.001 [.010 (s.5) .009 ¢y .033 1y .012 3y .010 (5.5 .008 (9) .008 (o) .019 (2 .008 9y .011 (a)
TOX 164 |.318 29 239 ) .195 (8) .242 (5) .152 (99 .259 @) .272 3y .133 10y .235 (» .355 ()
ORL 849 |.820 1) .822 (2.5 .708 8y .803 (5) .645 (99 .829 1) .798 6y .544 0y .781 (1) .822 (2
PIX 902 |.904 2y .863 (1) .696 (99 .871 5y .709 8y .910 ) .870 6y .637 10y .877 1y .901 (3)
WPAR |.288 |.372 (29 .230 (9 .302 ) .241 ) .231 sy .246 5y .206 0y .306 3y .236 ( .415 )
WPIE [.328 |.514 (29 .316 (5.5 .405 3y .310 8) .245 (10) .316 (5.5 .308 (o) .386 1y .314 vy .659 ()
ARC 091 |.073 3 .080 2y .022 (99 .059 vy .011 10y .063 (5.5) .069 1y 0.038 (8) .063 5.5y .090 (1)

WDR: without dimensionality reduction; AE: autoencoder; KPCA: kernel PCA; LLE: locally linear
embedding; MDS: multi-dimensional scaling; SE: spectral embedding; SPCA: sparse PCA; TSVD:
truncated singular value decomposition; NMF: non-negative matrix factorization; PCA: principal com-
ponent analysis; VAE: variational autoencoder

Table 6. Average NMI of different dimensions of different techniques on datasets. Higher
value is better and values in parentheses indicate the rank of algorithm.

4.8 Statistical Analysis

In this section, we examined two statistical significance tests deemed most appro-
priate for the multiple-methods evaluation. We carried the nonparametric sign test
and Friedman test for hypothesis testing.

Dataset | AE KPCA LLE MDS SE SPCA TSVD NMF PCA VAE
ALL 66.1 11.4 11.0 10.5 11.5 13.0 11.7 11.8 12.6 32.0
CAR 71.4 14.6 124 123 13.6 15.1 12.4 12.3 13.6 384
CLL 75.0 18.3 16.1 22.8 224 225 18.5 18.1 18.4 42.0
GLI 779 254 25.1 24.6 24.7 244 268 25.7 247 449
GMA |56.7 84 9.6 11.3 109 106 9.2 8.5 104 27.7
NCI 62.4 134 13.2 134 135 139 14.0 145 133 334
PROS |58.5 11.7 10.3 10.8 11.6 12.6 11.6 11.5 12,6 27.5
SMK 76.4 24.5 23.2 244 243 243 251 23.3 233 454
TOX 574 11.1 10.1 10.2 119 123 11.2 11.6 124 294
ORL 64.2 19.9 17.7 21.8 214 20.7 185 175 17.7 40.6
PIX 61.1 18.9 144 178 16.5 19.6 14.6 14.7 149 40.1
WPAR |45.3 9.0 10.6 104 12.7 12.1 12.9 8.5 9.1 283
WPIE [49.4 9.3 11.3 11.3 13.6 133 123 9.5 9.4 304
ARC 71.4 22.6 23.0 235 219 228 213 21.8 216 474

Table 7. Average run-time of different reduced dimensions of different methods for each
dataset (in seconds). The values shown in the table are the average of applied different
dimensions, i.e., 2, 10, 20, 50, 100, 200, 300, 400, and 500.
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4.8.1 Sign Test

Figure 3] illustrates a statistical comparison of VAE over state-of-the-art techniques.
The nonparametric test, right-tailed sign test is carried out in the significance level
a = 0.05 (i.e., 95% significance level). In the figure, for each metric, the first ten
bars exhibit the z-value (test statistic value) for VAE against other techniques,
whereas the eleventh bar presents the z-ref value. If the calculated z-value is
greater than the z-ref value, then it indicates that the observed performance of
VAE against the corresponding technique is statistically significant. From Figure [3
it is clear that the results obtained by VAE are significantly better than without
DR and traditional DR techniques, although NMI seems quite poor for WDR and
SPCA.

[__IT1=vsWDR [[173=vsKPCA [ T5=vs MDS M T7 =vs SPCA [___]T9=vs NVF [N zref
I T2-vsAE IT4-vsLLE [ T6=vsSE [IMTS=vsTSVD [ T10=vs PCA

Sign test on Purity Sign test on RI Sign test on NMI

Figure 3. Sign test of VAE on the used 14 experimental datasets

4.8.2 Friedman Test

The Friedman test is used to assess there are any statistically significant differences
between the distributions of methods. The p-values (.000 < .05) for this test are
very small. Therefore, it is plausible that the eleven methods are significantly differ-
ent. From Table[§ we have sufficient evidence to conclude a statistically significant
difference between VAE and methods. For pairwise comparisons, we observed there
were no significant differences between VAE and AE, SPCA.

5 CONCLUSION

This paper motivates the necessity of adopting moderate-dimensionality reduction
and an unsupervised framework for high-dimension limited-sample size (HDLSS)
data analysis. It proposes an unsupervised framework to deal with the classification
of HDLSS data. The proposed method attempts to project the high-dimensional
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Hypothesis Test Summary Pairwise comparisons
Friedman . Test Kendall’s . .. Sample Test Std. Test . P,
test on Null Hypothesis Statistic w Sig.  Decision PaiI:‘ Statistic Statistic Sig. Adj. Sig.
T1 5.071 4.046 .000 .003
T2 1.857 1.994 .046 1.000
The distributions of T3 4.214 3.362  .001 .043
WDR, AE, KPCA, T4 6.214 4.957 .000 .000
. LLE, MDS, SE, on Reject the T5 5.607 4.473 .000 .000
Pwity  gpoa, TsvD, Nvp, (199 0586000 o bothesis TG 7.964 6.353  .000 .000
PCA, and VAE T7 2.500 1.994  .046 1.000
are the same. T8 4.286 3.149  .001 .035
T9 7.786 6.211 .000 .000
T10 4.786 3.818 .000 .007
T1 4.964 3.960 .000 .004
T2 1.643 1.311 .190 1.000
The distributions of T3 3.964 3.162  .002 .086
WDR, AE, KPCA, T4 7.179 5.727  .000 .000
LLE, MDS, SE, . Reject the T5 4.786 3.818 .000 .007
RI SPCA, TSVD, NMF, 86.706 0.619 000 Null hypothesis T6 8.429 6.724  .000 .000
PCA, and VAE T7 2.964 2.365 .018 993
are the same. T8 4.679 0.541 .000 .012
T9 8.214 6.553 .000 .000
T10 4.643 3.704 .000 .012
T1 3.536 2.821 .005 .264
T2 0.679 0.541 588 1.000
The distributions of T3 2.857 2279  .023 1.000
WDR, AE, KPCA, T4 4.321 3.447 .001 .031
, LLE, MDS, SE, . Reject the T5 4571 3.647 000 015
NMI SPCA, TSVD, NMF, 47282 0-338 000 Null hypothesis T6 6.286 5.014 .000 .000
PCA, and VAE are T7 1.643 1.311 .190 1.000
the same. T8 3.643 2.906 .004 .201
T9 5.393 4.302 .000 .001
T10 3.607 2.878 .004 220

Asymptotic significances (2-sided tests) are displayed. The significance level is 0.05.

Table 8. Friedman test results for different methods. T1 = VAE vs. WDR;; T2 = VAE vs.
AE; T3 = VAE vs. KPCA; T4 = VAE vs. LLE; T5 = VAE vs. MDS; T6 = VAE vs. SE;
T7 = VAE vs. SPCA; T8 = VAE vs. TSVD; T9 = VAE vs. NMF; T10 = VAE vs. PCA.

data onto lower-dimensional space using variational autoencoder (VAE), then clus-
tering is applied to the obtained lower-dimensional latent-space to find the groups
and classify input data. The deep learning approach VAE enables the framework to
avoid overfitting. To evaluate the method fourteen HDLSS datasets and three eval-
uation criteria were applied. Also, an empirical comparison is shown between VAE
and state-of-the-art DR techniques. The results of the experiment demonstrated
the effectiveness of the approach. In particular, experimentally investigated that
dimension reduction of VAE is better than traditional techniques in the context of
HDLSS data classification.

An effective and efficient DR method is essential for HDLSS data analysis.
HDLSS data classification severe overfitting and high-variance gradients, whereas
an unsupervised framework proved to be a good alternative. In contrast to the
traditional DR method while use VAE can reduce the dimension as suitable from
the HDLSS data that enhances the performance. This study combines the advan-
tages of both unsupervised DR and unsupervised classification. A future line of
this research is to study what kind of encoders and decoders are best suited for the
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HDLSS problem. Another interesting future line of research will be finding an ef-
ficient dimension selection method (determining moderate d from p). Also, we are
interested in designing a general framework that works on both unsupervised and
semi-supervised settings. Finally, the reliability of the HDLSS data classification
can increase in the meta or ensemble model.
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APPENDIX

Detail performances of the 14 datasets with different numbers of dimensions in

Tables [AT] [A2] [A3] [AZ] [AF] [A] [A7] [A8] [A9] [AT0, [ATT] [AT2] [AT3] [AT4]
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o0
—

Purity (%) RI(%) NMI (rate0-1)
Algorithm 50 100 200 300 400 500 20 100 200 300 400 500 2 20 50 100 200 300 400 500
AE 722 736 748 764 75.0 736 57.0 63.4 620 T73.7 73.7  60.6 | .135 130 142 135 131 212 204 121
KPCA 70.8 x x x x x x X x X x 155 139 125 X x x X X
LLE 56.9 X b b b X 51.2 b X X b X .020 .018  .087 b X X b X
MDS 70.8 639 653 66.7  65.3 58.1 53.2  54.0 620 549 540 | .017 125 125 125 .027 .039 .162 .001 .079
SE 50.0 X x x X 51.2 x x X x X 016 .055 .002 .138 x X X x b
SPCA 73.6 750 73.6 7.0 722 60.6  60.6 62.0 60.6 60.6 62.0 59.3 | .130 145 155 155 171 155 145 171 115
TSVD 66.7 X X X X X 634 559 X X X X x 139 190 .059  .068 X X X X X
NMF 66.7 66.7 694 66.7 65.3  63.9 549 620 549 570 549 540 532 | 139 .068 .163 .068 .068 .067 .068 .039 .047
PCA 65.3 X X X b b 54.0  62.0 X X X X X 55 079 162 .079 b b X b X
VAE 917 91.7 88.9 931 93.1 86.1 700 63.4 84.5 80.0 86.9 86.9 75.7 | 151 299 .190 .564 .573 .554 .675 .615 .388
Table A1l. Results of different dimensions of different techniques for the ALLAML dataset (72 observations, 7129 features, 2 classes)
Purity (%) RI(%) NMT (rate0-1)
Algorithm 2 10 50 100 200 300 400 500 2 10 20 50 100 200 300 400 500 10 20 50 100 200 400 500
AE 43.1  50.6 534 64 62.1 621 621 609 | 8.1 8.1 894 90.7 90.3 90.1 90.1 91.2 89.1 448 633 574 .T12 623 711
KPCA 32.8  55.7 58.0  60.3 X X X X 84.0 89 891 879 836 b X X X .658 .609  .610 X X X b
LLE 44.8 70.1 379 310 b X X X 85.1 920 81.6 69.7 729 X X X b 611 400 290 X b X
MDS 51.7 494 506 494 540 51.7 609 | 862 8.6 879 8.0 87.9 829 8.1 86.7 89.0 532 498 570 519 567 595
SE 57.5 39.7 328 x x x x 85.2 903 785 729 555 x X x X 467 409 273 x X X X
SPCA 4. 57.5 60.3 621 638 621 638 575 | 843 902 87.8 90.7 913 91.1 90.6 89.7 889 653 .662 .649 .631 .595
TSVD 29.9 575 57.5  59.2 x X x X 80.8 89.4 915 895 89.0 x X x X .296 x X X X
NMF 28.7 649 534 276 224 230 259 241|829 923 912 837 583 724 701 764 785 | .279 .685 1220 156 167 176
PCA 66.7 6 62.1 X X X X 833 91.8 88 904 90.6 X b X X 372 676 631 X b X X
VAE 64.4 74.1 80.5 81.0 759 77.0 74.1|86.3 90.0 93.5 93.9 959 958 94.6 954 94.4 | 486 .630 .826 .792 .769 .785 .776
Table A2. Results of different dimensions of different techniques for the CARCINOM dataset (174 observations, 9182 features,
11 classes)
Purity (%) RI(%) NMI (rate0-1)
Algorithm 2 10 20 100 200 300 400 500 2 10 20 50 100 200 300 400 500 2 10 20 50 100 200 300 400 500
AE 52.3  50.1 514 56.8 60.4 604 559 54.1 582 57.7 57.6 582 582 569 552 594 | 265 .298 216 .289 298 .159 .287 216 .292
PCA 523 613 541 55.0 x x x X 588 575 569 55.6 X x x X 213 319 248 192 .296 X X x x
LLE 57.7 514 559 54.1 b X X b 52.6  51.1 523 479 X X X b 255 250 118  .046  .054 b X X X
MDS 40.5 495 514 56.8 559 604 550 55.0 55.8 56.7 55.2 582 585 573 576 572 | .020 146 .149 .379 277 .378 268 .250 215
SE 58.6 67.6 49.5 45.9 b X X b 60.6 449 576 414 X X b b 272 254 082 250  .046 b X X b
SPCA 56.8 559 55.0 58.6  55.0 55.0 55.0 55.0 580 576 576 569 576 578 576 57.6 | .272 267 .250 .250 .285 250 .263 .250 .250
TSVDAE | 56.8 514 55.0 55.0 b X X X 55.3  57.6 57.7 57.7 X X b X 248 184 250 260  .281 X X X b
NMF 56.8 55.0 52.3 45.9 459 505 47.7 495 56.7  55.2 443 416 432 433 441 | 248 267 .328 .068 .046 .046 .067 .046 .077
PCA 56.8 55.0 54.1 . 55.9 b X X X 57.6 574 57.1 589 X b X 248 250 222 196 443 X X b
VAE 55.0 61.3 62.2 62.2 63.1 595 61.3 60.4 64.0 59.4 60.4 59.7 59.8 58.9 58.1 60.7 | .275 .322 220 .260 .319 285 311

Table A3. Results of different dimensions of different techniques for the CLL_SUB dataset (111 observations, 11 340 features, 3 classes)

Bold, shade, and x indicate best result of individual reduced dimensions, best among the applied reduced dimensions, and algorithms failed to provide reduced
dimensions, respectively.
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Purity(%) RI(%) NMI (rate0-1)
Algorithm 2 10 20 50 100 200 300 400 500 2 10 20 50 100 200 300 400 500 2 10 20 50 100 200 300 400 500
AE 71.8 72,9 580 694 70.6 706 729 729 694 | 624 68.6 76.2 60.1 68.2 789 69.8 63.6 66.2 | .181 216 219 140 109 123 .083 105 .148
KPCA 69.4 694 682 718 X X X X X 57.0 570 56.1  59.0 X X X X X 239 239 228 112 X X X X X
LLE 70.6 57.6 659 T4.1 x x X x x 58.0 50.6 54.5 61.2 x X x x x 101 .089  .000 .171 x x X x x
MDS 75.3 541 729 694 70.6 788 694 718 718 | 624 497 60.1 570 580 662 57.0 59.0 59.0 302 004 145 061 .251 .217 .008 .095 .076
SE 68.2 63.5 635 682 x x X x x 56.1 53.1 53.1 56.1 x x x x x 066  .001 .060 .003 X x X x x
SPCA 682 729 682 682 694 765 706 682 76.5| 561 60.1 56.1 56.1 57.0 63.6 580 56.1 636 | .047 173 .047 228 239 316 .059 .228 .231
TSVD 69.4 706 706 729 X x X X x 57.0 58.0 58.0 60.1 X x x x x 239 .251 101 .275 X x X X X
NMF 729 671 729 56.1 580 56.1 56.1 57.0 580 | 60.1 553 60.1 56.1 580 56.1 56.1 57.0 580 | .213 .183 .083 .022 .033 .033 .022 .008 .071
PCA 57.6 682 70.6 70.6 X b b X X 50.6  56.1 58.0 58.0 X X X X X 020 .047 .059 .071 X b b X X
VAE 76.5 70.6 706 671 70.6 706 729 70.6 729 |63.6 580 58.0 3 580 580 60.1 580 60.1 213 .251 .251 .217 .035 .071 .107 .071 .213
Table A4. Results of different dimensions of different techniques for the GLI_85 dataset (85 observations, 22 283 features, 2 classes)
Purity (%) RI(%) NMI (rate0-1)
Algorithm 2 10 20 50 100 200 300 400 500 2 10 20 50 100 200 300 400 500 2 10 20 50 100 200 300 400 500
AE 60.0 620 600 640 620 64.0 66.0 66.0 60.0 | 73.6 742 731 772 743 756 727 756 749 |.556 .564 495 517 508 .584 499 511  .490
KPCA 58.0 52.0 54.0 X x x X X 75.6 715 733 742 X X x x X 501 .76 .573 512 X x x X X
LLE 540 400 440 X X X X x X 717 549 468 X x X X X X 476 213 172 X X X X x X
MDS 46.0 54.0 42.0 56.0 600 620 580 680 54.0 | 71.3 723 487 711 731 73.6 727 755 723 | .397 467 255 479 485 494 .524 490 .518
SE 56.0 46.0 42.0 X X X X X X 73.2 525 528 X X X X X x 497 277 221 X X X X X X
SPCA 60.0 56.0 56.0 58.0 64.0 66.0 66.0 540 66.0| 73.1 749 727 756 744 754 758 743 7T5.4 | .500 489 568 .501 524 511 .544 509
TSVD 60.0 60.0 66.0 62.0 b b X X X 73.6 736 T4.5 736 X b b X X 491 484 539 508 X b X b
NMF 56.0 60.0 50.0 340 520 540 540 540 60.0 | 649 704 638 31.5 65.1 714 711 718 731 | 245 537 271 125 482 414 429 464
PCA 56.0 62.0 580 58.0 3 b X X X 749 736 T42 759 X b b X X 489 538 538 514 b X X b
VAE 62.0 68.0 600 72.0 620 66.0 68.0 70.0 620 | 741 75.0 736 80.1 74.8 76.7 736 77.2 738 | 508 493 458 .545 469 424 535 486

Table A5. Results of different dimensions of different

techniques for the GLIOMA dataset (50 observations, 4434 features,

4 classes)

RI(% NMI (rate0-1)

Algorithm 2 10 200 300 400 500 2 10 20 50 100 200 300 400 500 50 100 200 300 400

AE 41.7  46.7 53.3 55.0 53.3 50.0 483 | 81.7 843 81.3 843 829 819 827 829 843 523 486 553 481 .542
KPCA 36.7  41.7 x x x x x 824 80.5 819 789 x x X X X 404 x x x x x
LLE 41.7  51.7 X X X X X 82.7 840 829 694 x x X X X 343 X X X X
MDS 28.3 317 46.7 40.0 41.7 46.7 450 | 81.7 79.7 817 808 843 819 804 80.7 783 353 427 398 441 404
SE 38.3 383 x X x X x 82.0 819 764 66.1 x X x X X 291 X x X X X
SPCA 350 41.7 433 483 53.3 483 450 | 814 843 80.7 81.3 821 824 840 844 837 412 440 449 512 523 476
TSVD 38.3 433 x x x x x 82.8 831 815 828 x x x x x 451 x x x x x
NMF 43.3 51.7 8 26.7 267 300 267 250|822 815 833 375 330 347 476 580 499 303 267 243 285 266  .255
PCA 35.0 483 450 35.0 x x b b b 81.9 812 79.0 777 X X x x x 379 476 447 366 x b b x x
VAE 43.3 483 483 51.7 55.0 56.7 53.3 51.7 50.0 | 80.9 85.5 85.0 859 855 86.9 855 857 853 | 448 519 514 .543 .532 .588 .523 .533 .479
Table A6. Results of different dimensions of different techniques for the NCI9 dataset (60 observations, 9 712 features, 9 classes)

Bold, shade, and x indicate best result of individual reduced dimensions, best among the applied reduced dimensions, and algorithms failed to provide reduced
dimensions, respectively.



RI(%) NMI (rate0-1)
Algorithm 2 10 20 200 300 400 2 10 20 50 100 200 300 400 500 2 10 20 50 100 200 300 400 500
AE 55.9 578 588 598  6L7 50.7  49.6 511 514 505 50.7 514 52.8 511 | .007 019 .010 .060 .034 .097 .055 .059 .018
KPCA 58.8 X X X X 51.1 511 505 51.1 511 X X X X 026 .026 .014 .026  .026 X X X X
LLE 66.7 58.8 X X X X 50.2  55.1 51.1 498 498 X X X X .010 .114 .026 .047 .007 X X X X
MDS 57.8 588 588 588 578 | 50.7 50.7 51.1 51.1 511 511 51.1 511 50.7 | .018 .018 .026 .026 .026 .027 .026 .027 .019
SE 64.7 X X X X 51.1 539 502 498 496 X X X X .055  .169  .029 .009 .036 X X X X
SPCA 57.8 57.8 588 588 588 |51.1 507 50.7 51.1 51.1  50.7 51.1 51.1 51.1 | .026 .018 .018 .026 .026 .019 .026 .026 .026
TSVD 58.8 X X X X 51.1 511 50.7 51.1  50.7 X X X X 026 .026 019 .026 .019 X X X X
NMF 57.8 53.9 588 588 59.8|51.1 507 496 495 496 498 51.1 51.1 51.4|.027 057 .036 .034 .036 .004 .056 .056 .078
PCA 58.8 58.8 X X X X 51.1 511 51.1 51.1  50.7 X X X X 026 .026  .026 .026 .019 X X X X
VAE 55.9  56.9 59.8 61.8 62.7 588 | 502 50.5 502 52.8 52.8 51.4 52.3 52.8 511 | 010 .013 .010 .076 .051 .113 .067 .076 .026

Table A7. Results of different dimensions of different techniques for the PROSTATE_GE dataset (102 observations, 5966 features,

2 classes)
Purity (%) RI(%) NMI (rate0-1)
Algorithm 2 10 20 50 100 200 300 400 500 2 10 20 50 100 200 300 400 500 2 10 20 50 100 200 300 400 500
AE 56.7 588 55.6 56.7 56.7 56.1 524 51.9 50.8 | 50.6 51.1 50.6 51.3 50.6 50.6 50.0 50.5 50.5 .008 .019 .010 .008 .012 .010 .002 .008 .010
KPCA 56.1 529 56.7 56.1 56.7 X X b x 50.5 499 506 505 50.6 b X X X .010 .002 .012 .010 .012 X X X X
LLE 65.2 524 540 60.4 58.8 X X b X 54.4 498 50.1 51.9 51.3 X X b X .076 015 .010 .037 .029 b X X b
MDS 58.3  56.7 56.7 56.7 540 56.7 56.1 56.1 56.7| 51.1 50.6 50.6 50.6 50.1 50.6 50.5 50.5 50.6| .019 .012 .012 .012 .007 .012 .010 .010 .012
SE 50.3 529 50.8 524 56.7 X b X X 49.7 499 497 498 50.6 X X b X .000  .020 .005 .005 .018 b X X b
SPCA 55.6 535 556 55.6 55.6 56.1 56.1 56.1 556 | 50.4 50.0 504 504 504 505 50.5 50.5 504 .008 .003 .008 .008 .008 .010 .010 .010 .008
TSVD 56.1  56.1 55.6 529 56.1 X b X X 50.5  50.5 504 49.9 50.5 X X b X .010  .010 .008 .002 .010 b X X b
NMF 56.7 56.7 64.7 519 524 513 513 524 513 | 50.6 50.6 54.1 49.8 498 49.8 498 498 498 .012 .012 .066 .023 .026 .023 .003 .005 .000
PCA 53.5 56.1 55.6 55.6 56.1 X b X X 50.0 50.5 504 504 505 X X b X .003  .010 .008 .008 .010 b X X b
VAE 58.8 61.0 572 578 540 524 529 519 519 | 51.3 52.1 50.8 509 50.1 49.8 499 498 498 022 .034 015 .012 .004 .001 .002 .006 .000

M. S. Mahmud, J. Z. Huang, X. Fu, R. Ruby, K. Wu

Table A8. Results of different dimensions of different techniques for the SMK_CAN _187 dataset (187 observations, 19993 features,

2 classes)
Purity (%) RI(%) NMI (rate0-1)

Algorithm 10 20 50 100 200 300 400 500 2 10 20 100 200 300 400 500 2 10 20 100 200 300 400 500
AE 573 526 526 485 48.0 573 573 444 | 663 680 727 70.1  69.2 709 680 674 212 418 361 290 294 449 252
KPCA 421 468 462 48.0 X x X X 66.4 66.2 70.1 69.2 X x X x 216 .261 53 . X X X x
LLE 45.6  41.5 30.4 X X X X 65.7 689 652 518 37.5 X X X X .346 324 187 .064 X X X X
MDS 421 439 427 439 444 450 474 450 | 646 685 674 604 662 663 632 69.7 676 .081 .212 228 295 296 .280 254 241
SE 415 404 374 351 x X X X 68.4 620 612 54 49.7 x X x X 283 141 161  .100 X X X X
SPCA 44. 46.2 456 474 462 468 485 485 | 679 670 669 672 694 68.0 694 692 67.7 | 287 277 274 231 267 232 259 255
TSVD 45.0 46.2 485  52.6 X X X X 69.9 66.9 656 683 68.3 X X X X 246 241 298 297 X X X X
NMF 474 49.7 339 304 304 287 298 327 | 663 68.1 654 327 322 327 27.7 411 49.8 241 259 164 114 102 .055  .036  .037
PCA 46.2 468 439 450 X X x X 66.3 692 678 67.7 678 x X x x.234 | 228 232 241 X X X x

VAE 60.8 59.6 57.3 57.9 57.3 64.3 63.2 456 | 672 759 74.2 72.0 727 709 747 77.2 649 196 .459 .310 .313 .312 .396 .552 .264

Table A9. Results of different dimensions of different techniques for the TOX_171 dataset (171 observations, 5748 features, 4 classes)

Bold, shade, and x indicate best result of individual reduced dimensions, best among the applied reduced dimensions, and algorithms failed to provide reduced
% dimensions, respectively.
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) RI(%) NMI (rate0-1)
Algorithm 20 200 300 400 500 2 100 200 300 400 500 2 10 20 50 100 200 400 500
AE 77.0 82.0 780 770 84.0 | 878 950 952 937 935 940 | 754 870 820 847 790 .800 795 867
KPCA 69.0 X X X X 92.8 3 94.3 X X X X 825 797 782 .855 .853 X X X X
LLE 61.0 x x x x 86.7  95.5 X X X X X .832 .893 681 426 x x x x x
MDS 7.0 70.0 75.0 720 91.8 93.0 89.7 935 91.1 95.0 | .742 761 829 .782 836 .800 .797 .805 .87l
SE 62.0 X X X 87.8 X X X X X .660 X X X X X
SPCA 72.0 73.0 82.0 73.0 93.1 92.8 952 93.6 94.7 939 932 795 .880 .829 845 .820
TSVD 80.0 X X X 90.2 917 93.7 X X x X .846 830 X X X
NMF 73.0 30.0 43.0 40.0 89.8 9238 3.1 59.7 727 767 811 778 .844 252 332 525 408
PCA 72.0 X X X X 912 90.1 94.6 916 X X X x 795 754 X X X X
VAE 80.0 84.0 82.0 78.0 87.0| 894 94.9 93.5 954 959 946 94.8 96.3 | .635 .822 793 .866 .853 .853 .895
Table A10. Results of different dimensions of different techniques for the ORLRAWS10P dataset (100 observations, 10304 features,

10 classes)

RI(%) NI (ratc0-1)
Algorithm 2 10 20 50 200 300 400 500 2 10 20 50 100 200 300 400 500 2 10 20 50 100 200 300 400 500
AE 82.0 84.0 89.0 84.0 94.0 82.0 91.0 89.0 95. 9956 96.6 95.6 96.6 98.1 948 97.1 969 | .902 887 .896 .905 .890 911 .915 890 .938
KPCA 82.0 86.0 72.0 80.0 by X X b 95.5 96.1 949 91.2 b by b by 877 891  .836 .867 .845 X X X X
LLE 56.0 72.0 61.0 40.0 X X X X 88.1 90.9 69.3 X X X X X 763 .855  .7T07 457 X X X X X
MDS 71.0 79.0 850 81.0 89.0 84.0 82.0 84.0 | 93.0 94.8 95.0 94.0 96.5 96.4 954 952 | .790 851 901 .867 .858 912 902 896  .863
SE 56.0 82.0 57.0 44.0 X X X 87.6 95.9 73.4 X e X X X 731 909 724 AT5 X X X X X
SPCA 79.0 86.0 91.0 94.0 84.0 91.0 81.0 93.7 98.1 96.9 97.1 95.6  95.7 98.1 | .839 891 .922 .950 .938 922 876 .905 .950
TSVD 74.0 84.0 82.0 87.0 X X 93.4 95.3 96.8 X X X X .802 .893 887  .854 914 X X X X
NMF 75.0 81.0 72.0 45.0 40.0 37.0 94.0 86.1  79.7 77.0 75.8 829 80.1 | .825 .890 .780 .653  .638 507 495 536 410
PCA 82.0 84.0 89.0 81.0 X X 95.3 95.5 'S X X X 864 .920 913  .824  .864 X X X X
VAE 83.0 86.0 90.0 87.0 98.0 81.0 96.2 96.5 99.3 952 98.1 96.7 .899 878 897 912 897 972 844 891 915
Table A11. Results of different dimensions of different techniques for the PIXRAW10P dataset (100 observations, 10000 features,

10 classes)

Purity (%) RI(%) NMI (rate0-1)
Algorithm 20 50 100 200 300 400 500 2 10 20 50 100 200 400 2 10 20 50 100 200 300 400 500
AE 392 46.2 385 40.8 40.0 30.8 346 | 80.7 826 835 8.5 833 831 83.5 141 352 379 453 395 483 296 .384
KPCA 30.8 315 X X X 823 81.8 838 832 819 X X X X 180 174 .269 239 X X X X
LLE 33.8 X X X 793 84.0 685 752 529 X X X X 174419 354 248 b X X X
MDS 24.6 292 262 269 | 831 832 818 80.7 833 829 829 833 826 | 216 .276 .246 236269  .263 230 .243
SE 28.5 x x x 82.3 5 8L7 766 66.0 x x x x 182 248 294 207 x x x x
SPCA 26.2 292 292 269 | 8.7 837 816 819 819 809 832 819 826 | .160 .247 .252 294 230 240 268  .265
TSVD 254 262 b b b 82.6 80.3 829 829 818 x x x x 194 131 232 251 x b b X
NMF 54.6  40.0 26.9 3.8 254 | 82.0 8.5 873 758 539 70.1 70.5 783 |.226 .399 .571 263 227 238 194 213
PCA 277 29.2 X X X 823 831 823 830 80.6 X X X X 195 208 234 262 X X X X
VAE 40.0  50.0 40.8 33.8 37.7| 815 86.5 85.7 87.5 84.4 85.6 86.5 84.2 84.6 | .150 .463 .388 446 .478 .502 .370 .419

Table A12. Results of different dimensions of different techniques for the WARPAR_10P dataset (130 observations, 2400 features,
10 classes)

Bold, shade, and x indicate best result of individual reduced dimensions, best among the applied reduced dimensions, and algorithms failed to provide reduced
dimensions, respectively.



=

S

>

=

S Purity(%) RI(%) NMI (rate0-1)

A Algorithm [ 31090 50 100 900 300 400 500 | 2 10 20 50 100 200 300 500 [ 2 10 20 50 100 200 300 400 500

;AR 313 586 547 569 9L 634 457 428 428 | 831 953 874 856 084 886 541 §39 [ 302 610 506 739 825 501 365 307 330

R KPCA 224 295 30,5 357 32.4 30.0 X X X 824 831 84.0 827 83.4 83.7 X b X 148 342 337 382 355 329 X e X

S LLE 267 514 543 348 205 238 x  x x| SL8 867 879 669 776 682 x  x  x | 344 616 .698 329 267 75 x  x  x

SV 243 200 314 205 329 319 310 200 205 | 823 838 S35 828 836 839 834 837 21| 209 321 332 308 347 333 320 345 272

. SE 219 205 305 329 286 210 x  x x| 809 827 801 804 756 598 x  x  x |.182 285 350 291 220 141 x  x  x

> sPoA 243 281 295 300 314 300 329 324 | 825 829 826 834 809 833 835 823 826 | 226 286 300 329 356 337 341 320 352

g} TSVD 219 343 333 310 32.4 31.0 b'e X 825 829 829 826 82.0 81.3 X X X 1560 380 .360 318 329 304 X be X

S NMF 252 486 67.1 548 429 314 295 262 | 824 869 886 SLT 647 591 739 633 7L2 | 238 556 689 570 A6d 307 235 213 204

S pca 233 305 333 314 305 324 x  x x| 824 823 842 808 834 824 x  x  x | 205 300 372 335 335 335 x  x  x

Hu VAE 34.8 638 556 91.0 100.0 70.5 514 467 43.3 | 843 91.0 89.4 97.4 100.0 92.5 87.3 841 847 |.369 .719 621 .918 1.000 .782 .582 474 .465

N Table Al13. Result of different dimensions of different techniques for the WARPPIE dataset (210 observations, 2420 features,

=10 classes)

~

3

g Purity (%) RI(%) NMI (rate0-1)

S Algorithm [ 2 50 100 200 300 400 500 | 2 10 20 50 100 200 0 500 | 2 10 20 50 100 200 300 400 500

= AE 615 6.0 670 645 660 640 650 | 537 531 540 540 543 540 531 540 | 053 067 081 073 090 075 073 081 08l
KPCA | 645 650 650 650 x x x| 540 543 543 543 543 543 x  x x| 077 081 081 081 977 081 x  x  x

@ LLE 59.0 535 50 x  x 514 509 498 500 505 x  x  x x| .016 006 057 021 008 x x  x X

. MDS 56.5 63.0 645 506 540 543 531 540 540 540 514 543 | 000 077 081 039 077 .077 .077 016 081

= 59.0 55.0 x 514 50 501 503 500 x  x  x x| .016 007 001 008 .02 x x x  x
SPCA 64.0 645 59.0 53.7 540 540 540 514 540 514 | 073 077 077 077 077 077 016 077 016
TSVD 5 65.0 x 540 514 543 540 x  x x| 077 016 081 081 081 077 x  x  x
NMF 65.0 585 56.5 543 54.9 50.6 504 50.6 512 50.6 | .081 .090 039 015 028 020 028 013 028
PCA 63.0 5.0 650 x ox x| 531 514 543 543 540 x  x  x |.039 016 081 082 082 078 x x  x
VAE 65.0 66.0 655 66.0 66.5 66.0 67.0 | 54.3 549 546 57.0 549 55.2 549 55.6 | .081 .090 .102 .091 .102 .091 076 .091 .100
Table A14. Results of different dimensions of different techniques for the ARCENE dataset (200 observations, 10000 features,

2 classes)

Bold, shade, and x indicate best result of individual reduced dimensions, best among the applied reduced dimensions, and algorithms failed to provide reduced
dimensions, respectively.
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