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Abstract. High-dimensional with limited-sample size (HDLSS) datasets exhibit
two critical problems: (1) Due to the insufficiently small-sample size, there is
a lack of enough samples to build classification models. Classification models with
a limited-sample may lead to overfitting and produce erroneous or meaningless
results. (2) The ’curse of dimensionality’ phenomena is often an obstacle to the
use of many methods for solving the high-dimensional with limited-sample size
problem and reduces classification accuracy. This study proposes an unsupervised
framework for high-dimensional limited-sample size data classification using dimen-
sion reduction based on variational autoencoder (VAE). First, the deep learning
method variational autoencoder is applied to project high-dimensional data onto
lower-dimensional space. Then, clustering is applied to the obtained latent-space of
VAE to find the data groups and classify input data. The method is validated by
comparing the clustering results with actual labels using purity, rand index, and nor-
malized mutual information. Moreover, to evaluate the proposed model strength,
we analyzed 14 datasets from the Arizona State University Digital Repository. Also,
an empirical comparison of dimensionality reduction techniques shown to conclude
their applicability in the high-dimensional with limited-sample size data settings.
Experimental results demonstrate that variational autoencoder can achieve more
accuracy than traditional dimensionality reduction techniques in high-dimensional
with limited-sample-size data analysis.
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1 INTRODUCTION

By essence, in many domains, including computational biology, bioinformatics, ecol-
ogy, geology, neuroscience datasets are characterized by a small number of samples
N (records), but a large number of features p (dimensions). These datasets are called
the high-dimensional limited-sample size (HDLSS) dataset (aka ‘fat’ dataset), of-
ten written as p ≫ N . HDLSS data classification and clustering both are cru-
cial and challenging tasks in data mining and machine learning. High variance
and bias are the main concern for HDLSS data analysis. As a result, simple and
highly-regularized classification and regression techniques often become the method
of choice [1].

The caution of insufficiently small-sample size has been flagged, especially dan-
gerous to draw conclusions from the limited-sample dataset [2, 3, 4]. In HDLSS
datasets, typically sample size is too small to allow for the split into train-test test-
ing or k-fold cross-validation. However, data miners train a classifier model and
estimate the classification accuracy. It can be challenging to build a stable and
reliable classifier and draw a conclusion from such limited-samples.

The difficulty occurs when dealing with high-dimensional data, where the accu-
racy of classifiers or clustering algorithms tends to deteriorate are often referred to
as the curse of dimensionality [5, 6]. Consequently, dimensionality reduction (DR)
is an innovative and important tool in the fields of data analysis, data mining, and
machine learning. Several techniques have been proposed for DR such as principal
components analysis (PCA) [7, 8, 9], independent components analysis (ICA) [10],
factor analysis (FA) [11], multidimensional scaling (MDS) [12], and non-negative
matrix factorization (NMF) [13]. Traditional methods like PCA, ICA, FA, and
classical MDS suffer from being based on linear models.

However, recently, some nonlinear dimensionality reduction (NLDR) (aka ‘man-
ifold learning’) methods have been developed and have become a popular topic.
Traditional DR methods PCA, ICA, FA, and TSVD usually require sufficient data,
otherwise, they might be less effective. In the context of N > p, there is a relatively
large application of PCA, ICA, FA, and TSVD. In the case of p ≫ N , transformed
lower-dimension (d) is lower than or equal to sample size (d ≤ N), there is difficulty
to preserved information about the original data in such too lower-dimensional space.
Therefore, for the HDLSS problem (p ≫ N), it is clear that the basic formulation
of PCA, ICA, FA, and TSVD does not work.

Over the decades, deep learning (DL) has succeeded in a variety of fields to
extract information from high-dimensional data such as image, speech, text, and
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vision [14, 15]. The limitation of DL is getting a large number of training data to
ensure learning accuracy. Different types of deep learning architecture have been
proposed to solve the problem of insufficient samples [16, 17]. Recently, unsupervised
deep learning models such as generative adversarial net (GAN) and variational au-
toencoder (VAE) have shown the modeling power without the labels. VAEs harness
to generate ‘blurry’ data compared with other generative models, also more stable
to train [18]. Moreover, unlike many existing techniques (e.g., PCA, ICA, FA),
VAE also capable of reducing the dimension as necessary from the high-dimensional
space.

Recently, we examined that VAE based dimensionality reduction outperforms
PCA, fastICA, FA, NMF, and LDA in HDLSS data classification in a supervised
model [48]. It is also addressed that classifiers and obtained reduced dimensions
show inconsistent behavior w.r.t classification accuracy and vary considerably. This
discrepancy raises the supervised framework applicability to HDLSS data analysis,
yet critical. Although there are varieties of classification algorithms, the challenge
is an appropriate selection in the application of the limited-sample domain. Hence,
it is more advantageous to use an unsupervised framework. We favored an idea of
the unsupervised model, in [19]. It is noteworthy to mention that this paper is an
extension of our work reported at the 4th International Conference on Advanced
Robotics and Mechatronics [19].

This study manifests an extensive empirical analysis of traditional DR tech-
niques and the effectiveness of the approach we proposed in [19]. The proposed
DR approach can maintain a reasonable size of dimensions even after the reduction,
unlike many existing methods that often reduce the dimensions too heavily. The
problem with a huge number of dimensions is known as the curse of dimensionality,
but we argue that there is a blessing of dimensions as well in the sense that we
often need a reasonable size of dimensions for useful data analysis. The proposed
DR approach can maintain a reasonable-size of dimensions and utilize the blessing
of dimensions in the HDLSS setting.

The contribution of this study is to present an unsupervised framework for
HDLSS data classification. In particular, we employed the deep learning technique
variational autoencoder for dimensionality reduction, and the clustering is applied
on the obtained latent variables (low-dimensional space) to group data, and then
validated clustering results with the original class labels. We tested the effective-
ness of the proposed framework in varieties types of fourteen HDLSS datasets, such
as biology, image, mass, and spectrometry, and comparisons with various reduced
dimensions in classification are also shown. Moreover, we provided an empirical com-
parison of different dimensionality reduction methods, compare their performances
on a wide range of challenging HDLSS datasets, and conclude their applicability to
HDLSS application.

The paper is organized as follows. Section 2 surveyed related works on dimen-
sionality reduction of HDLSS data analysis. In Section 3, the idea of the proposed
method is described. Empirical comparisons and concluding remarks are in Sec-
tions 4 and 5, respectively.
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2 RELATED WORK

2.1 State-of-the-Art Data Dimensionality Reduction Techniques

HDLSS data analysis is vital for scientific discoveries in many areas. When dealing
with HDLSS data, the overfitting and high-variance gradients are the main chal-
lenges in majority models. In the past, significant work has been done on HDLSS
asymptotic theory, where the sample size N is fixed or N/p → 0 as the data di-
mension p → ∞ [20, 6]. In the HDLSS context, Jung and Marron explored several
types of geometric representations and showed inconsistent properties of the sample
eigenvalues and eigenvectors [21].

In past decades, numerous dimensionality reduction (DR) techniques, including
PCA [7, 8, 9], ICA [10], FA [11], MDS [12], NMF [13] proposed. PCA is perhaps one
of the oldest and best-known DR methods in high-dimensional data processing and
mining. Traditional methods like PCA, ICA, FA, and classical MDS suffer from be-
ing (based on) linear models. Recently, to discover the intrinsic manifold structure
of the data, nonlinear DR algorithms are developed, such as locally linear embed-
ding (LLE) [22], kernel PCA (KPCA) [23], sparse PCA (SPCA) [24], and spectral
embedding (SE) [25]. DR methods can be roughly categorized into supervised and
unsupervised. Semi-supervised DR is recognized as a new issue in semi-supervised
learning, which learns from a combination of both labeled and unlabeled data. Ta-
ble 1 presents a summary of canonical DR methods to clarify their characteristic in
HDLSS (p ≫ N) settings.

Supervised or classification methods are often used for HDLSS data analysis.
Most achievements in the supervised model show that more samples and lower-
dimension can improve the performance of classifiers. However, sufficient large-
samples are essential to building a classification model with good generalization
ability, expected that perform equally well on the training and independent testing
dataset. Consequently, the classification technique does not suit with small-sample
size dataset, to avoid overfitting (training and validation data), the unsupervised
(that is, clustering) methods also applied for HDLSS analysis.

Many researchers considered PCA in the classification and clustering of bio-
logical data in the context of HDLSS, among them are [26, 27, 28, 29]. In fact,
PCA reduces the dimensionality of the data linearly, and it may not extract some
nonlinear relationships of the data. In the same vein, [30, 31] pointed that though
many researchers considered PCA as a DR method, it is even more useful for data
visualization in high-dimensional contexts. NMF is another widely used tool for
high-dimensional data analysis. NMF has also been applied for gene clustering,
microarray and protein sequence data analysis, and recognition [32, 33]. PCA is de-
terministic while NMF is stochastic, so NMF appears to be more suitable for HDLSS
data analysis than PCA. In [48], explored that PCA, ICA, FA, LDA, MBDL, and
NMF are not efficient for dimensionality reduction in HDLSS data classification.

For decades, deep learning (DL) techniques have achieved state-of-the-art perfor-
mance with large-sample sizes in many domains. Nevertheless, recently, few efforts
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have been devoted to applying DL to the HDLSS settings by [34, 53, 15]. DLs also
suffer overfitting on HDLSS problems. The ‘Dropout’ method was proposed to pre-
vent overfitting by reducing the parameters of the full-connection layer, for detail see
[35, 16]. Also, a transfer learning-based deep convolutional neural network (CNN)
has been developed to solve the problem of the small-sample dataset [17]. In the
last few years, a variety of supervised and semi-supervised deep learning models has
blossomed in the context of natural language processing (NLP). Recently, there have
few efforts to develop unsupervised learning techniques by building upon variational
autoencoders [36, 37, 38].

Algorithm Method Degrees of Freedom

Principal components analysis (PCA) [7, 8, 9] LDR d ≤ N
Independent components analysis (fastICA) [10] LDR d ≤ N
Factor analysis (FA) [11] LDR d ≤ N
Truncated SVD (aks LSA) [39] LDR d ≤ N
Latent Dirichlet allocation (LDA) [40, 41] NLDR d < p ⋆
Mini-batch dictionary learning (MBDL) [42] NLDR d < p ⋆
Non-negative matrix factorization (NMF) [13] NLDR d < p ⋆
Kernel PCA (KPCA) [23] NLDR d ≤ N
Sparse PCA (SPCA) [24] NLDR d < p ⋆
Locally linear embedding (LLE) [22] NLDR d < N
Spectral embedding (SE) [25] NLDR d < N
Multidimensional scaling (MDS) [12] NLDR/LDR d < p ⋆
Autoencoder (AE) [43, 45] NLDR/LDR d < p ⋆

Degrees of freedom is possible computed number of latent variables

⋆ indicates succeed at most are desired to keep dimension

Table 1. A summary of most known and used dimensionality reduction techniques in the
HDLSS setting. N : number of the samples, d: dimensionality of the latent space, p: di-
mensionality of the data space, LDR: linear dimensionality reduction; NLDR: nonlinear
dimensionality reduction.

2.2 Variational Autoencoder (VAE) Model

Kingma and Welling [43] introduced the VAE, which is based on the autoencoding
framework as a latent variable generative model (see Figure 1). VAE can discover
nonlinear explanatory features through data compression and nonlinear activation
functions. A traditional autoencoder (AE) consists of an encoding and a decoding
phase where input data is projected into lower-dimensions and then reconstructed.
AE is deterministic and trained by minimizing reconstruction error. In contrast,
VAE is stochastic and learns the distribution of explanatory features over sam-
ples. VAE achieves these properties by learning two distinct latent representations:
a mean (µ) and standard deviation (σ) vector encoding. The model adds a Kullback-
Leibler (KL) divergence term to the reconstruction error, which also regularizes
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weights by constraining the latent vectors to match a Gaussian distribution [44].
In a VAE, these two representations are learned concurrently through the use of
a reparameterization trick that permits a backpropagated gradient. Importantly,
projected data onto an existing VAE feature space enabling new data to be as-
sessed. In this, we aim to build a VAE that compresses high-dimensional features
and reveals a relevant latent space.

A VAE performs density estimation on p(x, z) where z are latent variables, to
maximize the likelihood of the observed data x, where xi ∈ X ⊂ Rm is the ith

observation: log p(X) =
∑N

i=1 log p(xi).

Figure 1. Variational autoencoder (VAE) framework [43, 45]

A VAE consists of an encoder, a decoder, and a loss function unit.
The encoder is a neural network, compresses data x into a latent space z. En-

coder’s transformed representation is d-dimensional, which is much small than the
original p-dimensions. The lower-dimensional space is stochastic; encoder output
parameter is pθ(z|x), which is a Gaussian probability density. Encoder weight and
bias parameter is θ.

The decoder is another neural network, gets input as latent representation z and
output the parameters of a probability distribution of the data. Its weight and bias
parameter is ϕ. Decoder reconstructs the data is denoted by qϕ(x|z). It goes from
a smaller to a larger dimension. Information loss computed using the reconstruction
log-likelihood log qϕ(x|z). This measure states how effectively decodes the z into
N real-valued numbers. VAE uses a decoder-based generative model as

p(x, z) = p(x|z)p(z),

p(z) = N (z; 0, 1).
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The loss function of the VAE is the negative log-likelihood with a regularizer.
Since the marginal likelihood is difficult to work with directly for non-trivial models,
instead a parametric inference model p(x|z) is used to optimize the variational lower-
bound on the marginal log-likelihood

L(x, θ, ϕ) = −Eq(z|xi)[log qθ(xi|z)] +KL(pθ(z|xi)∥p((z)). (1)

In Equation (1), the first term of L is reconstruction error or expected negative
log-likelihood of the ith data point of the decoder. The second term KL(.∥.) is a
regularizer, the KL-divergence between the encoder and decoder distribution, to
minimize the KL-divergence from a chosen prior distribution.

3 METHOD

This study proposes an unsupervised adaptation for HDLSS data classification,
which aims to exclusively apply a generative model variational autoencoder (VAE)
to investigate dimensionality reduction ability on the HDLSS dataset. In this frame-
work, we divided an unlabeled HDLSS dataset into groups based on the hidden prop-
erties of the data. However, conventional classification techniques cannot cope with
this HDLSS dataset due to insufficient sample size to build and test a classifier or
cross-validation. The proposed unsupervised scheme for HDLSS data classification
is illustrated in Figure 2.

Figure 2. Proposed framework

Consider D = [X, Y ] = [(x1, y1), (x2, y2), . . . , (xk, yk), . . . , (xN , yN)] be a N × p
data matrix, where p ≫ N ; where p and N are the number of features and samples,
respectively. xi ∈ X is the ith observation and the class label is yi ∈ Y belonging
to C classes. X is mapped a choice of p-dimensional onto a d-dimensional repre-
sentations Z, zi = (z1, z2, . . . , zd), where d < p, such that the transformed lower-
dimensional representations zi = ZTxi can preserve the information of the original
data. The key aspects of the framework are as follows:

Dimensionality reduction: The first step of the proposed framework is the di-
mensionality reduction, which receives the HDLSS dataset as input, and then
class labels are removed from the dataset. Consequently, the deep learning model
VAE is applied to the unlabeled data to project desirable high-dimensional data
onto lower-dimensional space. The deep learning technique VAE empowers the
method to avoid overfitting.
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Clustering: Then, the clustering technique is applied to the obtained transformed
low-dimensional space to find the data groups. The exploratory and unsuper-
vised learning nature of the clustering demands efficient to use that would benefit
from the combination in the strength of the framework. A clustering technique
groups similar data in a cluster, whereas dissimilar data in different clusters.
K-means is widely used and one of the prominent data mining techniques for
its simplicity. In this study, simple K-means clustering is used. Determining
the number of clusters in a dataset is fundamental in K-means clustering, which
requires the user to specify the number of clusters K to be generated. There are
different methods for identifying the optimal number of clusters in a dataset,
including DBSCAN, Xmeans, I-Nice, Elbow, Silhouette, Gap statistic.

Decision making: The last step of the proposed framework is decision making,
which validated the clustering results with the original class labels. Assume
that sample points from one class form clustered in the same group.

4 EXPERIMENT AND DISCUSSIONS

4.1 Datasets for Experiments

The experiments were conducted on 14 high-dimensional limited-sample size p ≫ N
datasets obtained from the Arizona State University repository1. Table 2 presents
the detail of the datasets.

4.2 Experiment Settings

Experiments were designed for the empirical study of DR techniques on the HDLSS
dataset. We applied two types of experiments:

1. without dimensionality reduction (WDR), which ensures that all the original
features were used for classification, and

2. with dimensionality reduction (DR), where original data space mapped into
a new space with a much smaller number of dimensions were used for classifica-
tion.

In this study, different choices of latent-space were investigated (i.e., 2, 10, 20, 50,
100, 150, 200, 250, . . . , 500) to see how the dimensionality of the projected space
affects the performance. To evaluate the effectiveness of dimensionality reduction
various DR methods were applied, such as VAE, AE, PCA, Kernel PCA, LLE, MDS,
Sparse PCA, NMF, Truncated SVD, SE.

Computations were performed using machines with x64-based processor Intel(R)
core i7-7700, CPU 3.60Hz, and 8.0GB memory. VAE code implementation using
the CPU based on Tensorflow and Keras libraries.

1 http://featureselection.asu.edu/

http://featureselection.asu.edu/
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ID Dataset Abbrev. N p c Type

1 ALLAML ALL 72 7 129 2 continuous, binary
2 CARCINOM CAR 174 9 182 11 continuous, multi-class
3 CLL SUB 111 CLL 111 11 340 3 continuous, multi-class
4 GLI 85 GLI 85 22 283 2 continuous, binary
5 GLIOMA GMA 50 4 434 4 continuous, multi-class
6 NCI9 NCI 60 9 712 9 discrete, multi-class
7 PROSTATE GE PROS 102 5 966 2 continuous, binary
8 SMK CAN 187 SMK 187 19 993 2 continuous, binary
9 TOX 171 TOX 171 5 748 4 continuous, binary
10 ORLRAWS10P ORL 100 10 304 10 continuous, multi-class
11 PIXRAW10P PIX 100 10 000 10 continuous, multi-class
12 WARPAR10P WPAR 130 2 400 10 continuous, multi-class
13 WARPPIE10P WPIE 210 2 420 10 continuous, multi-class
14 ARCENE ARC 200 10 000 2 continuous, binary

Table 2. Characteristics of the datasets. ID 1–9 are biological, 10–13 are face image,
and 14 is mass-spectrometry dataset (N : number of samples, p: number of features, and
c: number of classes).

4.3 VAE Design

For the structure of the VAE, we exhaustedly investigated the best setting, such as
the number of intermediate layers, the size of each intermediate layer, batch size,
and learning rates. It is found that the network structure of VAE also affects the
performance of the feature extraction. In the experiment, VAE is performed on the
single intermediate layer (encode) with the following architecture: input encoded
onto d-dimensional latent space (d = z = 2, 10, 20, 50, 100, 200, . . . , 500) and recon-
structed back to the original dimension. We kept the intermediate dimension as
10% of the original data space. The network parameter optimized with an ‘adam’
optimizer, included ‘rectified linear units’ and batch normalization in the encoding
stage, and ‘sigmoid’ activation in the decoding stage. A parameter scope is per-
formed on batch size 50, 100, 150, and 200; epochs 100, 200, and 300; learning rates
0.005, 0.001, 0.0015, and 0.0025; and warmups (k) 0.01, 0.05, 0.001, and 0.0005.
k controls how much the KL-divergence loss contributes to learning. In general,
training was relatively stable for many parameter combinations. Ultimately, the
best parameter combination based on validation was batch size 100, learning rate
0.0005, and epochs 200. Training stabilized after about 120 epochs.

4.4 Determining Number of Clusters in Dataset

A large variety of clustering methods has been proposed to discover the inherent
cluster structure in data. DBSCAN [46], Xmeans [47], and I-nice [49] are popular
methods for determining the number of clusters, K. We use these three methods to
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determine the K-value for the clustering of this study. Table 3 presents the obtained
number of clusters of the algorithms. Results showed that the DBSCAN is inefficient
when applied to large-dimensional data. To determine the K value for K-means, we
assumed that the number of classes is equal to the number of clusters.

4.5 Evaluation Criteria

The attained results were analyzed in terms of three external cluster evaluation
measures: purity [50], rand index (RI) [51], and normalized mutual information
(NMI)[52]. Purity is the percent of the total number of objects classified correctly,
it is calculated as follows:

Purity =
1

N

K∑
1

maxj|Ci ∩ Yj| (2)

where N is number of objects in the dataset, K is number of clusters, Ci is a cluster
in C, and Yj is the classification which has the max count for cluster Ci.

Rand index (RI) is another popular cluster validation index, measures the per-
centage of correct decisions, it can be defined as Equation (3).

RI =
TP + TN

TP + FP + FN + TN
(3)

where TP and FP are the numbers of true positive and false positive, whereas TN
and FN are the numbers of true and false negative, respectively.

Normalized mutual information (NMI) is the mutual information between the
clustering and the classification on the shared object membership, with a scaling
factor corresponding to the number of object in the respective clusters, can define
by Equation (4).

NMI =
I(Ci, Yi)

[H(Yj) +H(Ci)]/2
(4)

where I(Ci, Yi) denotes the mutual information between true assigned class and
obtained cluster label, and H(Ci) is the entropy of cluster Ci while information
about Yj classes is available. The range of NMI is between [0, 1]. A higher value
indicates a better quality of clustering.

4.6 Analysis and Discussions

The attained results were analyzed in terms of the average on different used dimen-
sions. The results of each selected dimension were obtained by the best of 5 runs.
Tables 4, 5, and 6 show the summarized achieved averaged values of different di-
mensionality reduction (DR) techniques for each experimental dataset’s purity, RI,
and NMI, respectively.
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Table 4 shows the achieved average purity of different DR techniques for each
experimental dataset; it is observable that VAE outperformed others. Considering
all the experiments, VAE (1.4), AE (3.2), and SPCA (3.6) were ranked from first
to third, respectively. KPCA (5.1) and TSVD (5.3) were ranked as fourth and fifth
ranks subsequently. It reveals the strength of VAE, preserve more information in
lower-dimensional space in the context of HDLSS.

Besides, the average RI of each algorithm over all experiments is listed in Table 5.
Among the techniques, VAE (1.3), AE (2.6), and SPCA (3.9) were ranked from first
to third in terms of the correct decision. Nonetheless, the superior RI of VAE
shows that not only it copes with the HDLSS but also outperforms traditional
DR techniques such as LLE, MDS, PCA, KPCA, NMF, SE, TSVD. Based on the
reported results in Table 6, VAE (2.3) is ranked as the most normalized mutual
information measure. AE (3.1) is ranked second, and the third rank is assigned to
SPCA (3.9).

Based on the observations from Tables 4, 5, and 6, it can be seen VAE is robust
against the HDLSS dataset. AE, SPCA, and KPCA also perform well, while tradi-
tional DR techniques PCA, NMF, LLF, MDS, TSVD, and SE provide quite poor
performance.

To assess the importance of the projected space size in the HDLSS problem,
we can examine in a little more detail the performances of the 14 datasets with
different numbers of dimensions, as shown in Appendix A (Tables A1, A2, A3,
A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14). From observation, it is
therefore of interest to note that the performance gained with the raise of di-
mension size. It is impressive that VAE almost always achieved the highest ac-
curacy in used different reduced dimensions. Moreover, it seems that SPCA and
MDS are affected by the size of dimensionality and stable for a wide range of
dimensions, while other methods (i.e., PCA, KPCA, LLE, SE) typically require
relatively more dimensions to obtain good accuracy. It is worthwhile to men-
tion that the use of VAE, AE, SPCA, and KPCA is advantageous compared to
other techniques, they can preserve more information in possible higher-dimensional
space. Though, analyzing in lower-dimensional space is much easier than in a
higher-dimensional space. Noted that 7 out of 14 datasets (i.e., 1, 2, 4, 5, 9,
10, and 11) were provided the best results where respective dimensions d > N .
So, it is reasonable to try to more latent space concerning the preservation of
information that increases the chances of obtaining useful results. Thus, it can
be concluded that VAE is providing the best DR for the unsupervised HDLSS
data classification in this study; also, AE, SPCA, KPCA can be a competitive
choice.

One major limitation of this framework is that when the data has a complex
distribution (each class has different distribution). For instance, we assumed the
number of clusters is equal to the number of classes, the assumption is not valid
when distinctive mini-clusters exist.
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Dataset WDR AE KPCA LLE MDS SE SPCA TSVD NMF PCA VAE

ALL 70.8 73.4 (3) 72.6 (4) 64.2 (9) 67.4 (8) 56.3 (10) 73.6 (2) 70.8 (5) 68.1 (7) 69.8 (6) 86.1 (1)

CAR 66.7 56.7 (3) 55.1 (5) 47.8 (8) 50.9 (7) 43.6 (9) 57.2 (2) 54.6 (6) 37.2 (10) 56.6 (4) 71.4 (1)

CLL 53.2 55.2 (4) 55.1 (5) 54.1 (8) 53.0 (9) 55.3 (3) 55.7 (2) 54.4 (7) 50.5 (10) 54.6 (6) 61.0 (1)

GLI 64.7 69.8 (5) 69.7 (6) 67.1 (7) 70.5 (4) 65.9 (9) 71.0 (2) 70.9 (3) 61.6 (10) 66.8 (8) 71.4 (1)

GMA 60.0 62.6 (2) 57.0 (6) 46.0 (10) 55.6 (7) 48.0 (9) 60.7 (4) 62.0 (3) 52.7 (8) 58.5 (5) 65.6 (1)

NCI 43.3 50.1 (2) 42.1 (4.5) 42.1 (4.5) 40.0 (8) 37.1 (9) 44.6 (3) 41.7 (6) 35.2 (10) 40.8 (7) 50.9 (1)

PROS 57.8 58.5 (4) 58.4 (6.5) 57.8 (8) 58.5 (4) 57.1 (9) 58.5 (4) 58.4 (6.5) 55.8 (10) 58.6 (2) 59.7 (1)

SMK 51.9 55.1 (8) 55.7 (3) 58.2 (1) 56.4 (2) 52.6 (10) 55.6 (4) 55.4 (5.5) 54.3 (9) 55.4 (5.5) 55.3 (7)

TOX 44.4 51.3 (2) 45.1 (5.5) 39.8 (9) 43.8 (7) 40.5 (8) 46.3 (4) 48.2 (3) 36.4 (10) 45.1 (5.5) 56.9 (1)

ORL 76.0 76.1 (2) 72.4 (4.5) 60.5 (8) 72.4 (4.5) 59.5 (9) 73.7 (3) 72.0 (6) 47.0 (10) 68.2 (7) 78.7 (1)

PIX 81.0 86.4 (3) 77.4 (7) 57.3 (9) 81.4 (6) 59.8 (8) 86.8 (2) 81.8 (4.5) 54.3 (10) 81.8 (4.5) 88.0 (1)

WPAR 32.3 37.4 (2) 27.5 (6) 31.2 (4) 27.2 (7) 27.1 (8.5) 27.8 (5) 23.8 (10) 31.6 (3) 27.1 (8.5) 39.1 (1)

WPIE 31.0 58.8 (2) 30.1 (7) 36.7 (4) 29.8 (9) 27.4 (10) 29.9 (8) 30.6 (5) 38.9 (3) 30.2 (6) 62.2 (1)

ARC 34.0 64.8 (3) 64.9 (2) 55.3 (9) 62.9 (7) 55.0 (10) 63.2 (6) 63.8 (4) 59.6 (8) 63.6 (5) 66.3 (1)

Table 4. Average purity (in %) of different dimensions of different techniques on datasets.
Higher value is better and values in parentheses indicate the rank of algorithm.

Dataset WDR AE KPCA LLE MDS SE SPCA TSVD NMF PCA VAE

ALL 58.1 63.9 (2) 59.7 (4) 56.3 (7) 55.9 (9) 50.5 (10) 60.6 (3) 58.4 (5) 56.1 (8) 57.7 (6) 76.8 (1)

CAR 91.2 89.3 (3) 87.7 (6) 80.3 (8) 87.0 (7) 76.5 (10) 89.4 (2) 88.0 (5) 78.4 (9) 89.0 (4) 93.3 (1)

CLL 55.3 57.6 (3.5) 57.2 (5.5) 52.2 (9) 56.6 (7) 52.4 (8) 57.6 (3.5) 57.2 (5.5) 47.5 (10) 57.7 (2) 58.7 (1)

GLI 53.8 68.2 (1) 57.3 (7) 56.1 (8) 58.7 (3) 54.6 (10) 58.5 (4) 58.3 (5) 57.4 (6) 55.7 (9) 58.8 (2)

GMA 73.1 74.6 (3.5) 73.7 (6) 57.8 (10) 70.1 (7) 59.5 (9) 74.6 (3.5) 73.8 (5) 64.8 (8) 74.7 (2) 75.4 (1)

NCI 80.7 82.9 (2) 80.9 (6) 79.8 (8) 81.0 (5) 76.6 (9) 82.7 (3) 82.6 (4) 56.4 (10) 80.0 (7) 85.1 (1)

PROS 50.7 51.0 (5) 51.0 (5) 51.2 (2) 51.0 (5) 50.9 (8.5) 51.0 (5) 50.9 (8.5) 50.4 (10) 51.0 (5) 51.6 (1)

SMK 49.8 50.7 (2) 50.4 (6.5) 51.5 (1) 50.6 (3) 50.0 (10) 50.4 (6.5) 50.3 (8.5) 50.5 (4.5) 50.3 (8.5) 50.5 (4.5)

TOX 67.9 69.1 (2) 68.2 (3) 57.8 (9) 66.0 (7) 59.1 (8) 68.1 (4) 67.8 (5) 46.2 (10) 67.7 (6) 72.2 (1)

ORL 93.6 93.4 (3.5) 93.4 (3.3) 85.9 (9) 92.7 (6) 86.5 (8) 93.5 (2) 92.8 (5) 80.7 (10) 91.9 (7) 94.3 (1)

PIX 95.1 96.4 (3) 94.2 (7) 83.0 (10) 95.2 (6) 85.6 (8) 96.5 (2) 95.4 (5) 84.7 (9) 95.5 (4) 96.8 (1)

WPAR 83.9 83.3 (2) 82.6 (4) 72.0 (10) 82.7 (3) 78.0 (8) 82.1 (6.5) 82.1 (6.5) 74.3 (9) 82.3 (5) 85.2 (1)

WPIE 82.3 87.3 (2) 83.2 (3.5) 78.2 (8) 83.2 (3.5) 76.6 (9) 82.8 (5) 82.4 (7) 74.6 (10) 82.6 (6) 90.1 (1)

ARC 54.9 53.8 (3) 54.2 (2) 50.5 (9) 53.3 (7) 50.3 (10) 53.4 (6) 53.7 (4) 51.9 (8) 53.6 (5) 55.1 (1)

Table 5. Average RI (in %) of different dimensions of different techniques on datasets.
Higher value is better and values in parentheses indicate the rank of algorithm.

4.7 Run-Time

The average run-time of different applied dimensions of each dimensionality reduc-
tion method on each dataset is provided in Table 7. It clearly illustrates that AE
and VAE are slower and computationally expensive than the corresponding methods
for training the network, which lasted more than 2× to 3×. It can be seen that VAE
is faster than AE to achieve selected (suitable) dimensionality reduction. Besides,
KPCA, LLE, MDS, SE, SPCA, TSVD, NMF, and PCA were not much different in
running time. Furthermore, VAE and AE consumed more run-time compared to
other methods but was provided the best performance.
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Dataset WDR AE KPCA LLE MDS SE SPCA TSVD NMF PCA VAE

ALL .090 .148 (3) .139 (4) .118 (6) .078 (9) .052 (10) .149 (2) .114 (7) .081 (8) .119 (5) .446 (1)

CAR .322 .590 (3.5) .574 (6) .504 (8) .523 (7) .457 (9) .593 (2) .576 (5) .341 (10) .590 (3.5) .723 (1)

CLL .187 .258 (3) .253 (5) .145 (9) .231 (7) .181 (8) .260 (2) .245 (6) .132 (10) .272 (1) .256 (4)

GLI .197 .147 (5) .205 (2) .090 (7) .129 (6) .033 (10) .174 (3) .217 (1) .074 (8) .049 (9) .159 (4)

GMA .491 .525 (2) .540 (1) .287 (10) .456 (7) .332 (9) .517 (4) .506 (5) .378 (8) .520 (3) .487 (6)

NCI .435 .492 (2) .419 (6) .424 (5) .396 (9) .404 (8) .459 (3) .457 (4) .359 (10) .417 (7) .520 (1)

PROS .019 .040 (5) .023 (8.5) .041 (4) .023 (8.5) .060 (1) .023 (8.5) .023 (8.5) .043 (3) .024 (6) .049 (2)

SMK .001 .010 (5.5) .009 (7) .033 (1) .012 (3) .010 (5.5) .008 (9) .008 (9) .019 (2) .008 (9) .011 (4)

TOX .164 .318 (2) .239 (6) .195 (8) .242 (5) .152 (9) .259 (4) .272 (3) .133 (10) .235 (7) .355 (1)

ORL .849 .820 (4) .822 (2.5) .708 (8) .803 (5) .645 (9) .829 (1) .798 (6) .544 (10) .781 (7) .822 (2)

PIX .902 .904 (2) .863 (7) .696 (9) .871 (5) .709 (8) .910 (1) .870 (6) .637 (10) .877 (4) .901 (3)

WPAR .288 .372 (2) .230 (9) .302 (4) .241 (6) .231 (8) .246 (5) .206 (10) .306 (3) .236 (7) .415 (1)

WPIE .328 .514 (2) .316 (5.5) .405 (3) .310 (8) .245 (10) .316 (5.5) .308 (9) .386 (4) .314 (7) .659 (1)

ARC .091 .073 (3) .080 (2) .022 (9) .059 (7) .011 (10) .063 (5.5) .069 (4) 0.038 (8) .063 (5.5) .090 (1)

WDR: without dimensionality reduction; AE: autoencoder; KPCA: kernel PCA; LLE: locally linear
embedding; MDS: multi-dimensional scaling; SE: spectral embedding; SPCA: sparse PCA; TSVD:
truncated singular value decomposition; NMF: non-negative matrix factorization; PCA: principal com-
ponent analysis; VAE: variational autoencoder

Table 6. Average NMI of different dimensions of different techniques on datasets. Higher
value is better and values in parentheses indicate the rank of algorithm.

4.8 Statistical Analysis

In this section, we examined two statistical significance tests deemed most appro-
priate for the multiple-methods evaluation. We carried the nonparametric sign test
and Friedman test for hypothesis testing.

Dataset AE KPCA LLE MDS SE SPCA TSVD NMF PCA VAE

ALL 66.1 11.4 11.0 10.5 11.5 13.0 11.7 11.8 12.6 32.0
CAR 71.4 14.6 12.4 12.3 13.6 15.1 12.4 12.3 13.6 38.4
CLL 75.0 18.3 16.1 22.8 22.4 22.5 18.5 18.1 18.4 42.0
GLI 77.9 25.4 25.1 24.6 24.7 24.4 26.8 25.7 24.7 44.9
GMA 56.7 8.4 9.6 11.3 10.9 10.6 9.2 8.5 10.4 27.7
NCI 62.4 13.4 13.2 13.4 13.5 13.9 14.0 14.5 13.3 33.4
PROS 58.5 11.7 10.3 10.8 11.6 12.6 11.6 11.5 12.6 27.5
SMK 76.4 24.5 23.2 24.4 24.3 24.3 25.1 23.3 23.3 45.4
TOX 57.4 11.1 10.1 10.2 11.9 12.3 11.2 11.6 12.4 29.4
ORL 64.2 19.9 17.7 21.8 21.4 20.7 18.5 17.5 17.7 40.6
PIX 61.1 18.9 14.4 17.8 16.5 19.6 14.6 14.7 14.9 40.1
WPAR 45.3 9.0 10.6 10.4 12.7 12.1 12.9 8.5 9.1 28.3
WPIE 49.4 9.3 11.3 11.3 13.6 13.3 12.3 9.5 9.4 30.4
ARC 71.4 22.6 23.0 23.5 21.9 22.8 21.3 21.8 21.6 47.4

Table 7. Average run-time of different reduced dimensions of different methods for each
dataset (in seconds). The values shown in the table are the average of applied different
dimensions, i.e., 2, 10, 20, 50, 100, 200, 300, 400, and 500.
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4.8.1 Sign Test

Figure 3 illustrates a statistical comparison of VAE over state-of-the-art techniques.
The nonparametric test, right-tailed sign test is carried out in the significance level
α = 0.05 (i.e., 95% significance level). In the figure, for each metric, the first ten
bars exhibit the z-value (test statistic value) for VAE against other techniques,
whereas the eleventh bar presents the z-ref value. If the calculated z-value is
greater than the z-ref value, then it indicates that the observed performance of
VAE against the corresponding technique is statistically significant. From Figure 3,
it is clear that the results obtained by VAE are significantly better than without
DR and traditional DR techniques, although NMI seems quite poor for WDR and
SPCA.

Sign test on Purity Sign test on RI Sign test on NMI
0
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2

3

4

5
T1 = vs WDR
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T3 = vs KPCA
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Figure 3. Sign test of VAE on the used 14 experimental datasets

4.8.2 Friedman Test

The Friedman test is used to assess there are any statistically significant differences
between the distributions of methods. The p-values (.000 < .05) for this test are
very small. Therefore, it is plausible that the eleven methods are significantly differ-
ent. From Table 8, we have sufficient evidence to conclude a statistically significant
difference between VAE and methods. For pairwise comparisons, we observed there
were no significant differences between VAE and AE, SPCA.

5 CONCLUSION

This paper motivates the necessity of adopting moderate-dimensionality reduction
and an unsupervised framework for high-dimension limited-sample size (HDLSS)
data analysis. It proposes an unsupervised framework to deal with the classification
of HDLSS data. The proposed method attempts to project the high-dimensional



16 M.S. Mahmud, J. Z. Huang, X. Fu, R. Ruby, K. Wu

Hypothesis Test Summary Pairwise comparisons
Friedman
test on

Null Hypothesis
Test

Statistic
Kendall’s

W
Sig. Decision

Sample
Pair

Test
Statistic

Std. Test
Statistic

Sig. Adj. Sig.

Purity

The distributions of
WDR, AE, KPCA,
LLE, MDS, SE,
SPCA, TSVD, NMF,
PCA, and VAE
are the same.

74.995 0.536 .000
Reject the

Null hypothesis

T1 5.071 4.046 .000 .003
T2 1.857 1.994 .046 1.000
T3 4.214 3.362 .001 .043
T4 6.214 4.957 .000 .000
T5 5.607 4.473 .000 .000
T6 7.964 6.353 .000 .000
T7 2.500 1.994 .046 1.000
T8 4.286 3.149 .001 .035
T9 7.786 6.211 .000 .000
T10 4.786 3.818 .000 .007

RI

The distributions of
WDR, AE, KPCA,
LLE, MDS, SE,
SPCA, TSVD, NMF,
PCA, and VAE
are the same.

86.706 0.619 .000
Reject the

Null hypothesis

T1 4.964 3.960 .000 .004
T2 1.643 1.311 .190 1.000
T3 3.964 3.162 .002 .086
T4 7.179 5.727 .000 .000
T5 4.786 3.818 .000 .007
T6 8.429 6.724 .000 .000
T7 2.964 2.365 .018 .993
T8 4.679 0.541 .000 .012
T9 8.214 6.553 .000 .000
T10 4.643 3.704 .000 .012

NMI

The distributions of
WDR, AE, KPCA,
LLE, MDS, SE,
SPCA, TSVD, NMF,
PCA, and VAE are
the same.

47.282 0.338 .000
Reject the

Null hypothesis

T1 3.536 2.821 .005 .264
T2 0.679 0.541 .588 1.000
T3 2.857 2.279 .023 1.000
T4 4.321 3.447 .001 .031
T5 4.571 3.647 .000 .015
T6 6.286 5.014 .000 .000
T7 1.643 1.311 .190 1.000
T8 3.643 2.906 .004 .201
T9 5.393 4.302 .000 .001
T10 3.607 2.878 .004 .220

Asymptotic significances (2-sided tests) are displayed. The significance level is 0.05.

Table 8. Friedman test results for different methods. T1 = VAE vs. WDR; T2 = VAE vs.
AE; T3 = VAE vs. KPCA; T4 = VAE vs. LLE; T5 = VAE vs. MDS; T6 = VAE vs. SE;
T7 = VAE vs. SPCA; T8 = VAE vs. TSVD; T9 = VAE vs. NMF; T10 = VAE vs. PCA.

data onto lower-dimensional space using variational autoencoder (VAE), then clus-
tering is applied to the obtained lower-dimensional latent-space to find the groups
and classify input data. The deep learning approach VAE enables the framework to
avoid overfitting. To evaluate the method fourteen HDLSS datasets and three eval-
uation criteria were applied. Also, an empirical comparison is shown between VAE
and state-of-the-art DR techniques. The results of the experiment demonstrated
the effectiveness of the approach. In particular, experimentally investigated that
dimension reduction of VAE is better than traditional techniques in the context of
HDLSS data classification.

An effective and efficient DR method is essential for HDLSS data analysis.
HDLSS data classification severe overfitting and high-variance gradients, whereas
an unsupervised framework proved to be a good alternative. In contrast to the
traditional DR method while use VAE can reduce the dimension as suitable from
the HDLSS data that enhances the performance. This study combines the advan-
tages of both unsupervised DR and unsupervised classification. A future line of
this research is to study what kind of encoders and decoders are best suited for the
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HDLSS problem. Another interesting future line of research will be finding an ef-
ficient dimension selection method (determining moderate d from p). Also, we are
interested in designing a general framework that works on both unsupervised and
semi-supervised settings. Finally, the reliability of the HDLSS data classification
can increase in the meta or ensemble model.
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APPENDIX

Detail performances of the 14 datasets with different numbers of dimensions in
Tables A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14.
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[3] Kuncheva, L. I.—Rodŕıguez, J. J.: On Feature Selection Protocols for Very
Low-Sample-Size Data. Pattern Recognition, Vol. 81, 2018, pp. 660–673, doi:
10.1016/j.patcog.2018.03.012.

[4] Kuncheva, L. I.—Matthews, C. E.—Arnaiz-González, Á.—Rodŕıguez,
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