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Abstract. Colored Petri Nets (CP-nets or CPNs) are powerful modeling language
for concurrent systems. As for CPNs’ model checking, the mainstream method
is unfolding that transforms a CPN into an equivalent P/T net. However the
equivalent P/T net tends to be too enormous to be handled. As for checking CPN
models without unfolding, we present three practical on-the-fly verification methods
which are all focused on how to make state space generation more efficient. The
first one is a basic one, based on a standard state space generation algorithm, but
its efficiency is low. The second one is an overall improvement of the first. The
third one sacrifices some applicability for higher efficiency. We implemented the
three algorithms and validated great efficiency of latter two algorithms through
experimental results.
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1 INTRODUCTION

CPNs are powerful graphical language for modeling concurrent systems introduced
by Jensen in 1981 [9]. As a kind of high-level Petri nets, CPN is a Petri net that
extends the type of place (token) to describe different data types. Moreover, arcs
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in CPN are labelled with arc expression functions to describe data operations; tran-
sitions in CPN are labelled with guard functions to describe branch conditions. In
this way, CPN combines the capabilities of Petri nets and a high-level program-
ming language. Success stories of CPN can be found in many industrial domains,
such as network protocols [14], systematic softwares [11, 15], embedded systems [3],
e-commerce systems [20], etc.

Explicit-state on-the-fly verification [4, 8, 7] is an universal optimization ap-
proach for model checking. It integrates state space generation, product automaton
construction and counterexample detection (in LTL (Linear Temporal Logic) model
checking, a counterexample is an accepting cycle in product automaton). An advan-
tage of this approach is that the algorithm can give an answer without generating
full state space. Though success stories of on-the-fly in P/T nets clearly demon-
strate its effectiveness and applicability, there are few works dedicated to directly
applying on-the-fly in checking CPN models. As for checking CPN models, the
mainstream approach is unfolding [16, 13, 12, 2], which transforms a CPN into an
equivalent P/T net and implements model checking on the latter. With unfolding,
one can directly apply all successful optimization techniques which are difficult to
extend to CPNs on the equivalent net, like Data Decision Diagram (DDD) [5, 1],
P-invariants [18]. However, a big disadvantage of unfolding is that the equivalent
P/T nets transformed from a CPN tends to be too enormous to be handled, with
much more places and transitions. Also, the transformed P/T nets cannot directly
describe the system to be verified. If a counterexample is detected by verification
process, it is difficult to be directly reflected into the system, which is not friendly
for debugging.

Concerned with checking CPN models without unfolding, we present a basic
on-the-fly method, named full-info algorithm (FullInfo). It is based on the standard
state space generation algorithm [10]. Its core idea is that once a new reachable
state m is generated, it calculates a set of all enabled binding elements (we call the
set Enbe) in m and stores Enbe together with marking. Enbe serves two purposes.
One is to calculate successors ofm. Another one is to help check atomic propositions
carried by a Büchi automaton state during the generation of product automaton
states (or product states for short). For example, some atomic propositions may
check enabling of transitions, and enabling of transitions can be reflected by Enbe
(for a transition t, if there exists an enabled binding element of t in Enbe, t is
enabled. Otherwise, t is not enabled). The algorithm is simple to implement but
may generate much redundant information during on-the-fly. A great characteristic
of on-the-fly is that it terminates exploration upon a counterexample is detected.
Thus, in most cases, the set Enbe of every state m is not fully utilized, cause
many successors of m have not been calculated before termination. Also, for some
special LTL formulas whose atomic propositions are all related to numbers of tokens
(this kind of LTL formulas are called LTLCardinality1 formulas), Enbe can help

1 This terminology originated from MCC (Model Checking Contest) which is an annual
competition for model checking. https://mcc.lip6.fr/.

https://mcc.lip6.fr/
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nothing, because checking these atomic propositions never refers to information in
Enbe. This leads to waste of computing resources and low efficiency.

Besides FullInfo, we introduce two more efficient state space generation meth-
ods integrated into on-the-fly, namely, minimum representative algorithm (MinRep)
and dynamic exploration algorithm (DynExp). MinRep is inspired by canonical rep-
resentative in [17]. Its core idea is that for every enabled transition t in a newly
calculated reachable state m, only a representative of enabled binding element of t
is initially calculated. While in DynExp, none enabled binding element is initially
calculated in every newly generated reachable state m. Every enabled binding ele-
ment in m is calculated on demand when a new successor of m needs generating to
start a new path. However, without complete enabled transitions, DynExp is hard
to check atomic propositions related to enabling of transitions. Thus, it is limited
to LTLCardinality formulas.

In short, the main contributions of this paper are summarized as follows:

1. Concerned with LTL model checking of CPN without unfolding, we present
an efficient on-the-fly verification method, named MinRep. It is an overall im-
provement of FullInfo.

2. For LTLCardinality formulas, we present another more efficient on-the-fly veri-
fication method, named DynExp.

3. We implemented FullInfo,MinRep andDynExp and did a number of experiments
to demonstrate high efficiency of the latter two algorithms.

The rest of this paper is organized as follows: In Section 2, we introduce the
definition of Colored Petri Nets and Linear Temporal Logics. In Section 3, we briefly
introduce standard state space generation and on-the-fly verification. Then in Sec-
tion 4, we specify a binding elements calculation problem from the core part of
state space generation and on-the-fly. In Sections 5, 6, 7, we elaborate on FullInfo,
MinRep and DynExp. Their strengths and weaknesses are discussed as well. Imple-
mentation and experimental results are given in Section 8. Finally, in Section 9, we
present our conclusion.

2 PRELIMINARIES

2.1 Colored Petri Nets

In this section, definitions of multi-set and non-hierarchical CPN are cited [10] and
definitions of LTL are cited [6, 21]. As a matter of convenience, Bool = {false, true}
is the set of Boolean types, where true and false are two predicates respectively.
Type[v] is the data type of variable v. Type[ex] is the type of expression ex. EXPRV

is an expression constituted by elements from set V .

Definition 1 (Multi-set). Let S = {s1, s2, s3, . . . } be a non-empty set. A multi-set
m is a function over S : S → N that maps each element s ∈ S into a non-negative
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integer m(s) ∈ N called the number of appearances (coefficient) of s in m. A multi-
set m can also be written as a sum (the operator ‘++’ is a natural addition ‘+’
when two elements s1, s2 are the same data type, otherwise ‘++’ is just a junction
symbol without real meaning):

++
∑
s∈S

m(s)′s = m(s1)
′s1++m(s2)

′s2++m(s3)
′s3++ . . .

Operators: addition (++), scalar multiplication (∗∗), comparison (≪=), size (|m|)
and subtraction (−−) are defined as follows:

• addition: ∀s ∈ S, (m1++m2)(s) = m1(s) +m2(s),

• scalar multiplication: ∀s ∈ S, (n∗∗m)(s) = n ∗m(s),

• comparison: m1≪=m2 ⇔ ∀s ∈ S, m1(s) ≤ m2(s),

• size: |m| =
∑

s∈S m(s),

• when m1≪=m2, subtraction is defined as: ∀s ∈ S, (m2−−m1)(s) = m2(s) −
m1(s).

Definition 2 (Non-hierarchical CPN). A non-hierarchical CPN is a nine-tupleN =
(P, T,A,Σ, V, C,G,E, I), where P , T , A are finite sets of places, transitions and
arcs such that P ∩ T = ∅, A ⊆ P × T ∪ T × P , Σ is finite set of non-empty color
sets, V is a finite set of typed variables such that Type[v] ∈ Σ for all variables
v ∈ V , C : P → Σ is a color set function that assigns a color set to each place,
G : T → EXPRV is a guard function that assigns a guard to each transition t
such that Type[G(t)] = Bool, E : A → EXPRV is an arc expression function that
assigns an arc expression to each arc a such that Type[E(a)] = C(p)MS where p is
the place connected to the arc a, I : P → EXPR∅ is an initialization function that
assigns an initialization expression to each place p such that Type[I(p)] = C(p)MS.
The variables of a transition t are denoted V ar(t), V ar(t) ⊆ V . V ar(t) includes all
the variables appearing in t’s guard G(t) and arc expressions E(a) for all a ∈ A, a is
connected to t.

Definition 3 (Enabling and firing rules). Let N = (P, T,A,Σ, V, C,G,E, I) be
a non-hierarchical CPN. A marking of N is a function M that maps each place
p ∈ P into a multi-set of tokens M(p) ∈ C(p)MS. A binding of a transition t is
a function b that maps each variable v ∈ V ar(t) into a value b(v) ∈ Type[v]. The set
of all bindings for a transition t is denoted B(t), called t’s binding space. A binding
element is a pair (t, b) such that t ∈ T, b ∈ B(t). The set of all binding elements for
a transition t is denoted BE(t), called t’s binding element space. BE(t) is defined
by BE(t) = {(t, b) | b ∈ B(t)}. The set of all binding elements in a CPN is denoted
BE, called binding element space. A binding element (t, b) ∈ BE is enabled in
a marking M if and only if the following two properties are satisfied (denotation
G(t)⟨b⟩ expresses the evaluation of transition t’s guard in the binding b and it is
either true or false; denotation E(p, t)⟨b⟩ expresses the evaluation of arc a’s arc
expression and it is a multi-set):
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1. G(t)⟨b⟩ = true;

2. ∀p ∈ P,E(p, t)⟨b⟩≪=M(p).

When (t, b) is enabled in M , it may occur and is leading to a marking M ′ (written

M
(t,b)−−→ M ′), such that ∀p ∈ P,M ′(p) = (M(p)−−E(p, t)⟨b⟩)++E(t, p)⟨b⟩. A tran-

sition t is enabled in a marking M if and only if ∃(t, b) ∈ BE(t), (t, b) is enabled
in M .

Definition 4 (State space). For a marking M and a marking M ′, if there ex-

ists an enabled binding element (t, b) such that M
(t,b)−−→ M ′, M ′ is said to be

immediately reachable from M ; if there exists an sequence of binding element

(t1, b1)(t2, b2) . . . (tn, bn) such that M
(t1,b1)−−−→ M1

(t2,b2)−−−→ M2 . . .
(tn,bn)−−−−→ M ′, M ′ is

said to be reachable from M , written M
∗−→M ′. The state space of a CPN consists

of the set R(m0) = {m | m0
∗−→ m} of states reachable from the initial state. Each

state m ∈ R(m0) is called a reachable state2.

2.2 Linear Temporal Logics

Linear Temporal Logic (abbreviated as LTL) is used to describe properties of a sys-
tem execution. It consists of a non-empty finite set of atomic propositions AP ,
Boolean operators ¬ (negation), ∨ (disjunction) and ∧ (conjunction), and tempo-
ral operators X (next), U (until), R (release), F (eventually) and G (always). In
LTL model checking, the negation of a formula will be transformed into a Büchi
automaton. There are many approaches to construct a Büchi automaton from the
LTL formula [6, 19].

Definition 5 (Syntax of LTL). The syntax of LTL is defined as follows:

ϕ ::= p | ¬φ | φ ∨ ψ | φ ∧ ψ | Xφ | φUψ | φRψ | Fφ | Gφ

where p is an atomic proposition and ϕ, φ, ψ are well-formed LTL formulas. Re-
ferring to MCC and Wolf’s [21] provisions for atomic propositions, we make the
following provisions for an atomic proposition p:

p ::=TRUE | FALSE | FIREABLE (t) (t ∈ T ) | DEADLOCK

| k1p1 + · · ·+ knpn ≤ k (ki, k ∈ Z, pi ∈ P )

Let state m be the current state, FIREABLE (t) holds if only if t is enabled in
m, DEADLOCK holds if and only if there are no transitions are enabled in m,
k1p1 + · · ·+ knpn ≤ k holds if and only if k1M(p1) + · · ·+ knM(pn) ≤ k in m.

2 State is a snapshot of a system, marking is a distribution of tokens. Though a state
m can be uniquely identified by a marking M , they are different concepts. Throughout
the paper, we use lower case m (subscripts or superscripts will be used if necessary) to
represent a state, upper case M(subscripts or superscripts will be used if necessary) to
represent the marking of m.
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Definition 6 (Semantics of LTL). Let AP be a non-empty finite set of atomic
propositions, ξ = x0x1x2 . . . be a sequence over alphabet 2AP , ϕ, φ, ψ be LTL
formulas. We write ξi for the suffix of ξ starting at xi. The semantics ξ |= ϕ (ξ
models ϕ) is defined as follows:

• ξ |= p, iff p ∈ x0 for p ∈ AP ,
• ξ |= ¬ϕ, iff ξ ⊭ ϕ,
• ξ |= φ ∨ ψ, iff ξ |= φ or ξ |= ψ,

• ξ |= Xϕ, iff ξ1 |= ϕ,

• ξ |= φUψ, iff ∃i ≥ 0, ξi |= ψ ∧ (∀j < i, ξi |= φ).

Other operators (∧, R, F , G) can be derived from the above operators (X, U , ¬):
φ ∧ ψ ≡ ¬(¬φ ∨ ¬ψ); φRψ ≡ ¬(¬φU¬ψ); Fϕ ≡ (TRUE )Uϕ; Gϕ ≡ ¬(F¬ϕ).

3 STANDARD STATE SPACE GENERATION AND ON-THE-FLY

3.1 Standard State Space Generation

The standard state space generation [10] works on three sets: Node,Unprocessed,
Edges. Node stores reachable states. Unprocessed consists of states whose suc-
cessors have not yet been calculated. Edges stores arcs. As illustrated in Algo-
rithm 1, the algorithm firstly initializes Node, Unprocessed with initial state m0

and Edges with empty set. Then it selects a reachable state m in Unprocessed
and calculates all enabled binding elements in m. Each enabled binding element
that occurs will lead to a reachable state m′ and an arc from m to m′. If m′ has
not yet been encountered, it will be added into Node and Unprocessed. The
algorithm terminates with full state space.

3.2 On-the-Fly

On-the-fly method was first proposed in [4]. The main idea is integrating state space
generation, product automaton construction and detecting counterexamples (in LTL
model checking, a counterexample is an accepting cycle in product automaton). In
more detail, for a given product state p :: (m, b) (a product state is composed by
a reachable statem and an automaton state b), it calculates a successorm′ ofm, and
a successor b′ of b. if all atomic propositions carried by b′ are satisfied in m′, then
a product state p′ :: (m′, b′) is generated. If some conditions are triggered, on-the-
fly will implement counterexample detection, i.e., if on-the-fly finds the successor
p′ of p is an encountered product state where it may form a cycle, then on-the-fly
will check that. This idea can be illustrated by Algorithm 2. Line 1 is state space
generation, lines 3–4 are the product state generation and the line 6 is counterexam-
ple detection. As for counterexample detection, there are several ways to do that.
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Algorithm 1 Standard state space generation

1: Nodes← {m0}
2: Unprocessed← {m0}
3: Edges← ∅
4: while Unprocessed ̸= ∅ do
5: Select a Marking m in Unprocessed
6: Unprocessed← Unprocessed− {m}
7: for all binding elements (t, b) such that (t, b) is enabled in m do

8: Calculate m′ such that m
(t,b)−−→ m′

9: Edges← Edges ∪ {(m, (t, b),m′)}
10: if m′ /∈ Nodes then
11: Nodes← Nodes ∪ {m′}
12: Unprocessed← Unprocessed ∪ {m′}
13: end if
14: end for
15: end while

Like nested depth-first search algorithm [4], TCHECK3 algorithm [7] and DCHECK
algorithm [7].

Algorithm 2 on-the-fly

Input: p :: (m, b): a product state
Output: true or false: checking result
1: for m′ ← NEXTSUCCESSOR(m) ̸= ‘no more’ do
2: for all b′ ∈ SUCCESSOR(b) do
3: if m′ satisfies all atomic propositions carried by b′ then
4: Generate a produce state p′ :: (m′, b′)
5: if p’ has been encountered then
6: Accepting cycle detection
7: if ∃ an accepting cycle then
8: Terminate with false
9: end if

10: else
11: on-the-fly(p′)
12: end if
13: end if
14: end for
15: end for

3 The main procedure of TCHECK and DCHECK are non-recursive functions, and
they work much more efficiently than nested depth-first search. FullInfo, MinRep and
DynExp are integrated into TCHECK algorithm. More details can be referred to [7].
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4 ENABLED BINDING ELEMENTS CALCULATION PROBLEM

Enabled binding elements are vitaly important during state space generation. First-
ly, all successors of a reachable state are controlled by enabled binding elements
(lines 7–8 in Algorithm 1 and line 1 in Algorithm 2). Secondly, enabled binding ele-
ments plays a part in product state generation (line 3 in Algorithm 2), because some
atomic propositions may check enabling of some transitions, i.e., FIREABLE (t)
atomic propositions. The core problem that we encounter is: given a reachable
state m, in which way to explore binding element space BE to find enabled binding
elements in m to calculate successors of m and generate product states. Different
solutions to this problem lead to huge different performances. Intuitively, we may
come up with that upon a new reachable state m is generated, explore BE exhaus-
tively at once to get all enabled binding elements Enbe inm and store Enbe in case
to use. In this way, every time on-the-fly backtracks to m, the process can easily
fetch a next enabled binding element from Enbe to calculate another successor of
m. This is exactly how FullInfo works. We will detail it in the next section.

5 FULLINFO

The core idea of FullInfo is very simple: upon getting a new reachable state m, it
calculates a set of all enabled binding elements in m called Enbe and stores Enbe
together with marking M immediately. Then it uses Enbe to generate different
successors of m and product states. The technical difficulties lie in how to get all
enabled binding elements and how to manage them.

5.1 How to Get All Enabled Binding Elements

Traversing t’s binding space B(t) is essentially a combination problem that assigns
a value b(v) ∈ Type[v] to each variable v ∈ V ar(t). The binding space B(t) can
be depicted as a tree (we name it t’s binding space tree). Assume that t ∈ T is
a transition, |Var(t)| = k such that V ar(t) = {v1, v2, . . . , vk} and for each variable
vi, |Type[vi]| = ni such that Type[vi] = {ci1, ci2, . . . , cini

}, then B(t) can be depicted
as a tree in Figure 1. The depth of this tree is equal to the number of variables in
V ar(t). All direct successors of a node are overall mapping cases of next variable.
For example, the direct successors of node ‘v1 = c11’ list complete mapping cases of
next variable v2, which is from v2 = c21 to v2 = c2n2 (we use horizontal ellipsis to
represent all omitted nodes in its layer and vertical ellipsis to represent all omitted
child nodes of one node). A path from root node to a leaf node is a specific binding
of t, and all paths like this constitute t’s binding space B(t). We use a recursive
function to traverse this tree to get all enabled binding elements. The function is
presented in Algorithm 3. When the depth is lower than |Var(t)|, the function tries
to assign a color to the variable which corresponds to the depth and then recurves
down. If the depth is equal to or greater than |Var(t)| which means the function
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reaches a leaf node and a complete binding b is obtained, then it begins to check
the enabling of (t, b). The specific checking procedure lies in lines 2–9. If (t, b)
is enabled, it will be added into Enbe. After implementing this function on each
transition t ∈ T , the complete Enbe will be obtained.

Figure 1. Binding space tree

Algorithm 3 getENBE(m, t, b, depth)

Input: m: reachable state, t: Transition, b: Binding, depth: int
Output: Enbe: a set stores enabled binding elements
1: if depth ≥ |Var(t)| then
2: if ¬G(t)⟨b⟩ then
3: return
4: end if
5: for all p ∈ •t do
6: if ¬(E(p, t)⟨b⟩ ≤M(p)) then ▷ M is m′s marking
7: return
8: end if
9: end for

10: Enbe.ADD(b)
11: else
12: for all c ∈ Type[vdepth] do
13: b[depth]← c
14: getENBE(m, t, b, depth + 1)
15: end for
16: end if
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5.2 How to Manage All Enabled Binding Elements

In this subsection, we focus on how to take advantage of Enbe to serve for successor
reachable states generation and product states generation. We use a two-level queue
as data structure for Enbe. The first level queue stores enabled transitions, each
enabled transition has a second level queue consisting of its bindings which render
it enabled. Figure 2 is an example of

Enbe = {(t1, b11), (t1, b12), (t2, b21), (t2, b22), (t2, b23), (t3, b31)}.

Figure 2. Data structure for Enbe

In the data structure of Enbe, there are two pointers, tptr and bptr, respectively
pointing to an enabled transition and a binding of it. They are used to represent
an enabled binding element, i.e., in Figure 2 they represent (t1, b11). Each time
an enabled binding element occurs, bptr will move to next binding of the current
queue. If next binding does not exist, i.e., it reaches the tail of the queue, tptr will
move to next transition and bptr will point to the head of its bindingQueue. By this,
the process can obtain different successors of a reachable state and this procedure
is one possible way how line 7 in Algorithm 1 and line 1 in Algorithm 2 work.

Another crucial role of Enbe is to help generate a product state. For example,
let Fα be a LTL formula, where α is an atomic proposition FIREABLE (t2). During
checking process, every state needs to check if t2 is enabled in it. To do this, every
state just needs to check its Enbe. If t2 appears in the first level queue, it is enabled,
otherwise it is not.

With FullInfo, we can basically solve the enabled binding elements calculation
problem. The two core parts, successor reachable states generation and product
states generation, can be done easily with the aid of Enbe. But a conspicuous dis-
advantage is that it may generate much redundant information. Or in other words,
many states’ Enbe may not be fully utilized. For example, if on-the-fly reports
a checking result without generating the whole state space, that means there must
exist some states where some enabled binding elements have not yet occurred and
these enabled binding elements remain to be redundant. Another case is when none
of atomic propositions of the LTL formula is form of FIREABLE (t) or DEADLOCK ,
Enbe can do nothing to help in the product state generation. This disadvantage is
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particularly obvious when a CPN’s binding element space is huge or when on-the-
fly detects a counterexample along a path with few backtrackings. Here, Figure 3
is an example to demonstrate the second case. Figure 3 is a partial state space
of a CPN. We use solid cycles to represent reachable states, arrows marked by
transitions to represent enabled transitions in a reachable state, solid squares to
represent enabled binding elements which have occurred and hollow squares to rep-
resent enabled binding elements which have not yet occurred. If on-the-fly detected
a counterexample S0 → S1 → S2 → S0 after generating S0, S1, S2 and then ter-
minates, then the computing resources allocated for calculating the hollow squares
are wasted because they had never been used during checking process. If on-the-fly
went deeper along this path and detected a counterexample, the waste would be
worse. Therefore, we need another algorithm to solve the enabled binding elements
calculation problem.

Figure 3. Partial state space

6 MINREP

In this section, we develop another solution to the enabled binding elements calcula-
tion problem. According to the definition of enabling of transitions (in Definition 3),
if there exists one enabled binding element of a transition t, t is proven to be en-
abled. Thus, as for checking atomic propositions during product state generation,
it is unnecessary to calculate complete Enbe in each reachable state. The core idea
of MinRep is to specify an order over B(t) such that (B(t),≺) for each transition t.
And for t’s binding element space, this algorithm only initially calculates one en-
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abled representative which is the smallest enabled one in BE(t). Certainly, if t is not
enabled, there will not be such a representative. This idea is inspired by canonical
representative [17].

Before presenting the order (B(t),≺), we firstly specify an order (C,≺) over
each color set C ∈ Σ. Here are the orders:

1. (C,≺): ∀ci, cj ∈ C, ci ≺ cj iff i < j. Here the index i, j can be arbitrarily
defined. Typecially we use the index in data structure storing color set C, i.e.,
sequence table.

2. (B(t),≺): V ar(t) = {v1, v2, . . . , vn}, ∀bi, bj ∈ B(t), bi = ⟨ci1, ci2, . . . , cin⟩, bj =
⟨cj1, cj2, . . . , cjn⟩, bi ≺ bj iff ∃k, 1 ≤ k ≤ n, cik ≺ cjk and ∀m, 1 ≤ m < k, cim =
cjm. (B(t),≺) can be regarded as a lexicographical order induced by the vector
of binding.

Calculating representative is similar to Algorithm 3. The minor difference is
that for MinRep, upon getting an enabled binding element, it terminates. More
specifically, we just need to insert a terminate clause after line 10. All representatives
are organized in a set, and we name it Ent. Here we use a queue to organize Ent.
Figure 4 is an example of

Ent = {(t1, b11), (t2, b21), (t3, b31)}.

Figure 4. Data structure for Ent

In this data structure, tptr is a pointer pointing to a transition occurring last
time and nextb is a binding that is prepared to calculate a successor reachable state
next time (initially it equals to the binding part of the related representative). When
on-the-fly backtracks to a reachable state m, the program uses nextb to calculate
a successor m′ of m and tries to check bindings behind (tptr− > nextb) to update
nextb. If there are no more bindings related to tptr , tptr will move to next representa-
tive, which indicates the binding element space of prior transition has been explored
exhaustively. The successor generation procedure is presented in Algorithm 4 where
(m.tptr− > t) is the transition of corresponding representative which pointed by
tptr . Function UPDATE(m) is to update (tptr− > nextb). It regards the binding
vector as a n-digit number, where n equals to |Var(m.tptr− > t)|, and tries to imple-
ment increment ‘++’ on this number. During the increment operation, it may trigger
carries (lines 7–8) like numbers. Function NEXTSUCCESSOR(m) is to get another
successor of m according to binding element (m.tptr− > t,m.tptr− > nextb).
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As for checking atomic propositions, Ent together with marking is right enough.
As for FIREABLE (t) propositions, MinRep checks Ent of current reachable sta-
te m. If there is a related representative of t, t is enabled, otherwise, it is not.
As for DEADLOCK propositions, MinRep also checks Ent of current reachable
state m. If Ent is empty, the propositions are satisfied, otherwise, it is not. As
for k1p1 + · · · + knpn ≤ k propositions, MinRep checks them by the marking M of
current reachable m. if k1M(p1) + · · · + knM(pn) ≤ k holds, the propositions are
satisfied, otherwise, it is not.

Algorithm 4 MinRep

Input: m: current reachable state
Output: m′: successor of m or ‘no more’
1: function UPDATE(m)
2: while m.tptr ̸= NULL do
3: (t′, b′)← (m.tptr− > t,m.tptr− > nextb)
4: n : int← |Var(t′)| ▷ V ar(t′) = {v1, v2, . . . , vn}
5: for i from n to 1 do
6: c: color← NEXTCOLOR(b[i])
7: if c = ‘no more’ then
8: b′[i]← first color of Type[vi]
9: continue

10: else
11: b′[i]← c
12: if (t′, b′) is enabled in m then
13: m.tptr− > nextb ← b′

14: return
15: end if
16: end if
17: end for
18: tptr ← tptr− > next
19: end while
20: return
21: end function
22:

23: function NEXTSUCCESSOR(m)
24: if tptr = NULL then
25: return ‘no more’
26: else

27: Calculate m′ such that m
(m.tptr−>t,m.tptr−>nextb)−−−−−−−−−−−−−−−−→ m′

28: UPDATE(m)
29: return m′

30: end if
31: end function
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For each reachable statem, MinRep only calculates partial information fromm’s
binding element space which is just enough to handle all kinds of atomic propositions.
Compared with FullInfo, redundant information is much less and efficiency would be
higher. But it has the same disadvantage that if all atomic propositions of the LTL
formula are neither form of DEADLOCK nor FIREABLE (t), i.e., LTLCardinality
formulas, Ent can help nothing and remain to be redundant. So we need another
more efficient algorithm to handle LTLCardinality formulas.

7 DYNEXP

In this section, we develop another algorithm dedicated to handling LTLCardinality
formulas. As for checking atomic propositions of this formula type, it is unnecessary
to calculate any enabled binding elements. The sole function of enabled binding ele-
ments here is to calculate successors. In order to be more efficient, DynExp will not
initially calculate any enabled binding element in each newly calculated reachable
statem. Instead of calculating all enabled binding elements at once, enabled binding
elements are obtained dynamically. Once an enabled binding element is obtained,
the algorithm will let it occur immediately and calculate a successor m′ of m, then
continue on-the-fly on m′. To obtain different successors of a given reachable state
m when on-the-fly backtracks to m, DynExp extends the orders defined in Section 6
to the whole binding element space BE such that (BE,≺), and each reachable state
would record the binding element that occurred last time, called lastbe. In this way,
when on-the-fly backtracks to m, it can check binding elements behind lastbe until
an enabled one is detected or there are no more in BE.

Before presenting the order (BE,≺), we firstly specify an order (T,≺) over
transition set T . They are defined as follows:

1. (T,≺): ∀ti, tj ∈ T , ti ≺ tj iff i < j. Here the index value i, j can be arbitrarily
defined. Typically we use its index value in a specific data structure that stores
the transition set.

2. (BE,≺): ∀(ti, bik), (tj, bjm) ∈ BE, (ti, bik) ≺ (tj, bjm) iff ti ≺ tj or i = j,
bik ≺ bjm.

With the aid of order (BE,≺) and lastbe, the algorithm can iterate over BE ex-
haustively to get different enabled binding elements in each reachable state. We
specify three functions to implement the idea, namely, NEXTBINDING((t, b)),
NEXTTRANSITION((t, b)) and NEXTSUCCESSOR(m). They are illustrated in
Algorithm 5. Function NEXTBINDING((t, b)) is similar to function UPDATE(m)
illustrated in Algorithm 4. It is to fetch (t, b)’s next binding of transition t accord-
ing to order (BE,≺). Where function NEXTCOLOR(c) is to get color c’s next
color in c’s color set C by order (C,≺). Function NEXTTRANSITION((t, b)) is
very simple. Its job is to fetch next transition of t according to order (T,≺), and
initiate the binding (lines 23–25). If there are no more transitions, ‘NULL’ will be
returned.
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Algorithm 5 DynExp

Input: m: current reachable state
Output: m′: successor of m
1: function NEXTBINDING((t, b))
2: (t′, b′)← (t, b)
3: n : int← |Var(t)|
4: for i from n to 1 do
5: c: color← NEXTCOLOR(b[i])
6: if c = ‘no more’ then
7: b′[i]← first color of Type[vi]
8: continue
9: else

10: b′[i]← c
11: return (t′, b′)
12: end if
13: end for
14: return ‘no more’
15: end function
16:

17: function NEXTTRANSITION((t, b))
18: (t′, b′) : binding element
19: t′ ← t.index++
20: if t′ = ‘no more’ then
21: return ‘no more’
22: else
23: for i from 1 to |Var(t′)| do
24: b′[i]← first color of Type[vi]
25: end for
26: end if
27: return ‘no more’
28: end function
29:

30: function NEXTSUCCESSOR(m)
31: repeat
32: repeat
33: (t, b)← NEXTBINDING(m.lastbe)
34: if (t, b) is enabled in m then

35: Calculate m′ such that m
(t,b)−−→ m′

36: return m′

37: end if
38: until (t, b) = ‘no more’
39: (t, b)← NEXTTRANSITION(m.lastbe)
40: until (t, b) = ‘no more’
41: return ‘no more’
42: end function
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Function NEXTSUCCESSOR(m) keeps calling NEXTBINDING(m.lastbe) to
iterate over B(t), trying to find an enabled one. If there are no more or do not exist at
all, it will move to next transition by calling NEXTTRANSITION(m.lastbe). Upon
obtaining an enabled binding element (t, b), (t, b) will occur immediately leading to
a successor m′ of m and terminates this function. Or if there are no more enabled
binding element, NEXTSUCCESSOR(m) will return ‘no more’.

As for generating product states, we have nothing to worry about, because
checking LTLCardinality formulas just need information of markings and markings
are never absent.

Because upon getting a successor, the algorithm terminates exploring binding
element space and continues on-the-fly, any enabled binding element and corre-
sponding successor are calculated on demand during the checking process. Hence,
no redundant information is generated and DynExp would be more efficient than
FullInfo and MinRep. However, it is limited to LTLCardinality formulas. It sacri-
fices applicability for greater efficiency.

8 EXPERIMENT

We implemented all three algorithms in C++, and they are all integrated into the
non-recursive on-the-fly TCHECK. The source code is available from:

• FullInfo: https://github.com/Tj-Cong/EnPAC_CPN,

• MinRep: https://github.com/Tj-Cong/EnPAC_CPN_F,

• DynExp: https://github.com/Tj-Cong/EnPAC_CPN_C.

We get testing data from MCC. There are two kinds of models provided by
MCC:

• Academic models: these were designed in universities by researcher, to bench-
mark some tools, to illustrate a typical situation or within the context of aca-
demic projects and cooperations.

• Industrial models: these where designed within the context of industrial projects.

Both kinds of models have practical meanings and each model is provided with
a file describing it which can be found from https://mcc.lip6.fr/models.php.
Each model can result in several instances due to the scaling parameter (the pa-
rameters are often indicated at the end of its instance name). There are two kinds
of LTL formulas. One is called LTLCardinality formulas whose atomic proposi-
tions are all form of k1p1 + · · · + knpn ≤ k. Another kind is called LTLFireability
formulas whose atomic propositions are all form of FIREABLE (t). Based on this
testing data, we have done two sets of experiments. One is designed to measure the
performance on LTLcardinality formulas. Another one is designed to measure the
performance on LTLfireability formulas. They are both implemented on a Linux PC
with Intel(R) Core(TM) i7-7700HQ CPU@2.80GHz and 16GB RAM. Operating
system is Ubuntu 18.04 LTS.

https://github.com/Tj-Cong/EnPAC_CPN
https://github.com/Tj-Cong/EnPAC_CPN_F
https://github.com/Tj-Cong/EnPAC_CPN_C
https://mcc.lip6.fr/models.php
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As for the first experiment, all three algorithms were tested on four different
instances with different size of binding element space. Each instance is checked by
two formulas. Testing time for each formula is limited to 300 seconds, and if one
algorithm does not finish checking one formula within 300 seconds, the corresponding
table entry will be marked as “?”. Memory for each formula is limited to 16GB and
if one algorithm cannot finish checking one formula within 16GB, the corresponding
table entry will be marked as “Overflow”. Of course, the three algorithms are set
to traverse paths in the same order. The result is presented in Table 1. |States|
represents the number of states explored by on-the-fly before termination. The unit
of time is seconds; the unit of memory is MB; the size of binding element space |BE|
is calculated by:

|BE| =
∑
t∈T

 ∏
v∈V ar(t)

(|Type[v]|)

 .

From Table 1, we can find that DynExp always consumes the least time and
memory. Thus, we can conclude that DynExp is the most efficient algorithm for
LTLcardinality formulas, no matter with respect to memory consumption or time
used. MinRep ranks the second and FullInfo is the least efficient. Beginning from
Formula 2 of DWM-COL-40, memory for FullInfo overflows. And beginning from
Formula 1 of GRA-COL-11, time for MinRep runs out of 300 seconds. When |BE|
goes larger, the advantage of dynamic exploration becomes more salient. By checking
Formula 1 and Formula 2 of every instance, we can also find out that the more states
on-the-fly explores, more obvious the advantage of DynExp is.

Models ALD-COL-101 DWM-COL-402 GRA-COL-113 DVM-COL-164

|Places| 20 11 5 6
|Transitions| 15 8 7 7
|BE| 132 12 800 2 705 087 4 433 952
formulas 1 2 1 2 1 2 1 2
|States| 38 115 43 109 20 936 1 251 201 286 755 545 605 178 433 457 369
Time (FullInfo) 2.510 3.193 36.417 ? ? ? ? ?
Time (DynExp) 0.899 1.644 8.089 28.381 27.462 80.120 10.377 57.256
Time (MinRep) 0.905 2.751 14.4249 151.37 > 300 > 300 > 300 > 300
Memory (FullInfo) 506.367 529.363 2 766.367 Overflow Overflow Overflow Overflow Overflow
Memory (DynExp) 433.348 449.348 504.344 8 080.348 871.244 1387.344 1181.348 2,518.352
Memory (MinRep) 433.348 449.348 508.348 8 252.348 ? ? ? ?

1The full name is AirplaneLD-COL-0010.
2The full name is DatabaseWithMutex-COL-40.
3The full name is GlobalResAllocation-COL-11.
4The full name is DrinkVendingMachine-COL-16.

Table 1. Comparison on LTLCardinality formulas

As for the second experiment, FullInfo and MinRep were implemented on four
different instances with different size of binding element space. Same as the first
experiment, each instance is checked by two formulas and each formula is limited
to 300 seconds and 16 GB. The result is presented in Table 2. Obviously, MinRep
works more efficiently than FullInfo. Comparing Formula 2 of FR-COL-G005 with



212 C. He, Z. Ding

Formula 1 of GRA-COL-9, we can find that for MinRep, the memory consumption
is much lower in GRA-COL-09, while for FullInfo, the memory consumption is much
higher in GRA-COL-9, because the size of binding element space is much bigger.
We can also conclude that when |BE| goes larger, the advantage of MinRep becomes
more obvious. Also, the more states on-the-fly explores, more salient the advantage
of MinRep is.

Models ALD-COL-501 DWM-COL-402 FR-COL-G0053 GRA-COL-94

|Places| 20 11 104 5
|Transitions| 15 8 66 7
|BE| 612 12 800 134 480 1 003 437
formulas 1 2 1 2 1 2 1 2
|States| 7 209 2 077 9 596 115 121 31 812 36424 ?
Time (FullInfo) 0.104 0.121 3.054 13.600 22.739 57.739 ? ?
Time (MinRep) 0.091 0.105 1.628 5.092 3.609 7.097 113.148 >300
Memory (FullInfo) 327.359 334.357 630.359 2 222.359 1 791.363 3 894.363 Overflow Overflow
Memory (MinRep) 327.351 327.351 347.355 405.355 712.351 1 553.348 400.348 ?
1The full name is AirplaneLD-COL-0050.
2The full name is DatabaseWithMutex-COL-40.
3The full name is FamilyReunion-COL-L00200M0020C010P010G005.
4The full name is GlobalResAllocation-COL-09.

Table 2. Comparison on LTLFireability formulas

From the two experiments, we can conclude that no matter what kind of LTL
formulas is, MinRep is always more efficient that FullInfo. While for LTLCardinality
formulas, DynExp works best.

9 CONCLUSIONS

We have presented a basic state exploration method and two more efficient ones
under the framework of on-the-fly. The basic one, FullInfo, simply calculates all
enabled binding elements for every newly generated reachable state. It is easy to
implement but efficiency is low. MinRep is ‘semi-dynamic’. It calculates all enabled
transitions for every newly generated reachable state, but for each enabled transition,
only a minimum representative of enabled binding elements is initially calculated,
others are calculated dynamically on demand. While DynExp is ‘fully-dynamic’.
Every enabled binding element is calculated on demand by on-the-fly. As for appli-
cability, FullInfo=MinRep>DynExp. As for efficiency, DynExp>MinRep>FullInfo.
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