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Abstract. Automatic speech recognition (ASR) technologies enable humans to
communicate with computers. Isolated word recognition (IWR) is an important
part of many known ASR systems. Minimizing the word error rate in cases of
incremental learning is a unique challenge for developing an on-line ASR system.
This paper focuses on on-line IWR using a recursive hidden Markov model (HMM)
multivariate parameter estimation algorithm. The maximum likelihood method was
used to estimate the unknown parameters of the model, and an algorithm for the
adapted recursive EM algorithm for HMMs parameter estimation was derived. The
resulting recursive EM algorithm is unique among its counterparts because of state
transition probabilities calculation. It obtains more accurate parameter estimates
compared to other algorithms of this type. In our experiment, the algorithm was
implemented and adapted to several datasets for IWR. Thus, the recognition rate
and algorithm convergence results are discussed in this work.
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1 INTRODUCTION

Automatic speech recognition (ASR) is a pattern recognition task with the objec-
tive of classifying input data into classes based on certain features. It is a complex,
multistep task in computer-aided speech processing and recognition. In other words,
speech recognition can be defined as speech transcription using a computer [1]. ASR
can be applied to numerous practical areas, such as controlling software [2, 3], dialing
numbers [4], internet searches [5, 6], etc. It is a difficult problem, so several recog-
nition techniques have been proposed, including linear-time-scaled word-template
matching [7], hidden Markov models (HMMs) [8, 9, 10], deep neural networks [11],
etc. HMM is widely applied to speech recognition systems because it provides ac-
curate speech modeling.

Traditional speech modeling and learning methods such as deep neural net-
works, linear-time-scaled word-template matching and HMM require static training
dataset to accurately learn speech model parameters. However, the complexity of
these learning methods is at least of the second order, since the required number of
calculations at each learning iteration depends on the size of the dataset.

The quality and quantity of speech training and testing material play an im-
portant role in correctly representing modeled language and its recognition rate. In
contrast to the traditional learning methods, recursive learning could be the solu-
tion in cases when the number of speech samples for training is too small to be
practically used in recognition systems. Recursive learning methods could provide
practical real-time collection of speech data.

Recently, much attention has been paid to recursive model parameter learning
methods [12, 13, 14, 15, 16, 17, 18, 19, 20]. However, there has not been enough
exploration of recursive learning algorithms applied to real-time speech recognition
systems which are based on HMM. Most on-line speech recognition systems use
a static trained model, which is then used to identify words in the speech signal. If
new speech data is provided for training, these systems cannot apply a new dataset
to the speech model without being retrained with the aggregated data. This dis-
advantage would be avoided if training and model parameter adaptation were per-
formed incrementally while processing and recognizing spoken words occurs. Such
algorithms would lead to the creation of a speech recognition system that constantly
adapts to new speech signals without decreasing recognition accuracy.

In this work, isolated word recognition (IWR), which is a subclass of ASR, has
been performed using a recursive EM algorithm for HMM parameter estimation.
In an IWR system, the input data are considered as words that are processed in-
dividually, and previously uttered words do not affect the recognition. The input
data is a raw speech file that is converted into an acoustic feature vector and is
processed over time. A HMM with a fixed number of states is used to model each
word. The recursive EM algorithm for HMM parameter estimation is presented in
this work. It consists of two main parts – model training, and recognition with re-
estimation. In the training part, the feature vectors are extracted from input files,
and HMM parameter estimation is performed for each word. In the recognition and
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re-estimation part, each input is recognized and the model parameters of the word
are updated according to the recognized word, which allows the algorithm to contin-
uously estimate model parameters and perform recognition at the same time. The
experimental results for the created algorithm are discussed in this work as well.

2 RELATED WORK

HMM parameter estimation algorithms can be classified in two main categories:
batch [8] and recursive (on-line) [21]. Batch learning is a standard procedure for
learning model parameters, and is known to be very robust. Batch learning algo-
rithms process blocks of observations after they are stored in the computer’s memory
and they execute as many iterations on the training set as necessary for tuning such
parameters. Generally, batch algorithms apply an offline Baum-Welch (EM) al-
gorithm, which locally maximizes the likelihood objective function and applies an
HMM forward-backward procedure [8, 22]. In cases of sequential data processing,
the complexity of the batch EM algorithm is quadratic. This approach means that
the number of calculations required to obtain the parameter estimates is propor-
tional to the observation set size.

Recursive HMM parameter estimation algorithms calculate model parameter
estimates incrementally with each new observation. Calculations are performed
sequentially in time so that the algorithm does not need to store all observations in
the computer’s memory.

The Baum-Welch algorithm is successfully implemented in numerous offline
speech recognition systems which are based on HMM parameter estimation. The
popularity of Baum-Welch algorithm urged others to develop on-line (recursive) EM
algorithms for real-time HMM parameter estimation. The recursive EM contains
a maximum likelihood estimator (MLE) which is iteratively maximized.

The main difficulty in implementing recursive expectation-maximization algo-
rithms has been calculating the required data statistics without the backwards re-
cursion of the HMM Forward-Backward procedure. As a result, in [23], the authors
proposed the on-line HMM parameter estimation algorithm with implemented for-
ward recursion (only forward recursion can be efficiently implemented in on-line
mode). However, as the backwards recursion is hard to apply in on-line mode, it
was ignored. The authors of [24] presented an on-line HMM parameter estimation
algorithm with an adapted Forward-Backward procedure and applied it to back-
ground modeling.

In [25], the authors proposed recursive HMM parameter estimator with on-
line finite memory approximation to the forward-backward procedure. Also, various
recursive MLE method modifications based on different optimization techniques can
be identified in the literature: a numerical smoothing method (which replaces the
forward-backward procedure) [26, 27], fixed-interval smoothing with an exponential
forgetting factor [12], and HMM parameter estimation based on stochastic gradient
methods [28, 29].
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Whilst all of these methods closely resemble the offline Baum-Welch algorithm,
their convergence properties are poorly understood. And it is difficult to find exper-
iments that demonstrate the effectiveness of these algorithms when they are applied
to solving real tasks.

3 SPEECH RECOGNITION AND HMMS

An ASR system (see Figure 1) gets a speech signal input, processes it and outputs
the text equivalent to the input. ASR usually consists of two stages – primary
processing and final processing. Primary processing involves extracting features from
the speech signal, and the final processing consists of a speech recognition engine
that has an acoustic model, language model and grammar. A grammar contains sets
of predefined combinations of words. A language model contains the probabilities
of sequences of words. If the system is applied to IWR only, then it does not require
a language model and grammar. In this case IWR systems recognize single words
separated by silence [10, 30]. Thus, the probabilities of sequence of words or the
combination of words do not matter because the system analyse separate words.
These systems have “listening/not listening” states through which the user has to
wait (usually processing is performed during these pauses). Such systems are useful
when the user has to pronounce single words or commands.

If all these parts – acoustic model, language model and grammar – are cor-
rect, the engine of speech recognition identifies the most likely match for the inputs
that are received and returns the recognized words to the text (the decoding is per-
formed). The selection for proper feature extraction and speech recognition methods
has a significant impact on the accuracy of the recognition system.

We will only discuss the acoustic model (leaving out the language model and
grammar) because we are applying the recursive EM algorithm to IWR. The task
of the acoustic model is to evaluate the probability of the sequence of words. The
distribution of the feature vector O is usually modeled on smaller phonetic units,
such as phonemes, contextual phonemes or syllables. HMMs are used to model this
distribution. The HMM can be pictured as a random process that travels through
a set of state S and generates a feature vector O. It is a stochastic Markov process
with unknown parameters that are unraveled based on observation [31]. In other
words, there are two stochastic processes (see Figure 2). The first one is a Markov
chain characterized by states S that are “hidden” and transition probabilities A. The
second process produces observations depending on a state-dependent probability
distribution B.

HMM is used to classify each feature vector sequence with a specific class, which
is given as a sequence of objects (such as letters, words, etc.). A probability distri-
bution over possible sequences of classes is calculated, and the best class sequence
is chosen. HMM defines observed events (such as utterances in the input) and hid-
den events (such as utterance recognition and transcription). Each acoustic unit
is modeled with one HMM, which is composed of several states. The HMM of the
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Figure 1. Structure of an ASR system

Figure 2. Hidden Markov model

three states (sound start, middle and end) are most commonly used. In the case of
a large vocabulary, a static or dynamic network of words composed of many HMMs
is formed, and the network is searched for a state sequence S that generates the
feature vector O with the highest probability. The Viterbi algorithm is often used
to find the best sequence.

Left-to-right HMM (see Figure 3) is mostly used in speech recognition. In this
case, the state transition probability matrix has non-zero values for diagonal and
neighboring states, and the values of other states in the matrix are set to zero:
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a1,1 a1,2 0 0 0 0 . . . 0 0
a2,1 a2,2 a2,3 0 0 0 . . . 0 0
0 a3,2 a3,3 a3,4 0 0 . . . 0 0
0 0 a4,3 a4,4 a4,5 0 . . . 0 0
0 0 0 a5,4 a5,5 a5,6 . . . 0 0
0 0 0 0 a6,5 a6,6 . . . 0 0
...

...
...

...
...

... . . .
...

...
0 0 0 0 0 0 . . . aN−1,N−1 aN−1,N

0 0 0 0 0 0 . . . 0 1


,

N is a number of states and the sum of each matrix row elements is equal to one.

Figure 3. Left-to-right HMM

When constructing HMM, the three main problems that need to be addressed
are:

1. Given the model parameters, compute the probability that the HMM generates
a particular sequence of observations, solved by the Forward-Backward algo-
rithm;

2. Given a sequence of observations, find the most likely set of model parameters,
solved by statistical inference through the Baum-Welch algorithm, which uses
the Forward-Backward algorithm;

3. Find the path of hidden states that is most likely to generate a sequence of
observations, solved using a posteriori statistical inference in the Viterbi algo-
rithm.

In this paper, we propose the recursive EM algorithm for HMM parameter estima-
tion. This way, the incoming data can be processed recursively and HMM parame-
ters can be updated as soon as new data becomes available.
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4 RECURSIVE EM ALGORITHM

The recursive EM algorithm allows us to perform estimation in a sequential way and
to re-estimate model parameters in real-time. The main idea of this algorithm is
to continuously update model parameters as the observation vectors are given and
processed. HMM parameters then are updated according to each new observation
without storing the previous observations. The recursive EM algorithm uses the
Expectation-Maximization algorithm and maximum likelihood estimator to learn
HMM parameters sequentially in real time. We should note that the EM algorithm
is often used to learn HMM parameters with the observation sequence and the set of
possible states in HMM [32, 33]. The MLE for HMM has proved to be a consistent
and asymptotically normal estimator that converges on a stationary point of the
sample likelihood.

HMM for the recursive EM algorithm is specified by the following compo-
nents [34, 35]:

• length (T ) of the observation sequence,

• number of states (N) in HMM,

• the state transition probability matrix (A)

A =

a11 . . . a1N
... . . .

...
aN1 . . . aNN

 , (1)

• the initial state distribution vector (π)

π =

π1
...
πN


T

, (2)

• the probability density function B at state s (which expresses the probability of
an observation o being generated from state s):

B(o, µs, σs) =
1√

(2π)n|σs|
e−

1
2
(o−µs)T σ−1

s (o−µs). (3)

Observations are defined by a normal distribution with M -dimensional mean µs

and covariance σs, 1 ≤ s ≤ N :

µs =


µ1

µ2

. . .
µM

 , σs =

 σ11 . . . σ1M
... . . .

...
σM1 . . . σMM

 .
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Then, the logarithmic likelihood function describes the observation in a state
as:

l(o, µ, σ) = −n

2
ln(2π)− 1

2
ln(|σ|)− 1

2
(o− µ)Tσ−1(o− µ). (4)

The maximum-likelihood estimation problem is to find

ΘML = argmaxΘ∈Ω(l(Θ))

where

• Θ is a vector of parameters. It contains three parameters: π, A, B(o, µs, σs).

• Ω is a parameter space specifying the set of allowable parameter settings. In the
HMM, Ω would enforce the restrictions that all parameter values were ≥ 0:

–
∑N

i=1 πi = 1;

– for all i = 1 . . . (N − 1),
∑N

k=1 ai,k = 1;

– for all i = 1 . . . (N − 1),
∑

o∈Σ B(o, µi, σi) = 1.

The log-likelihood function (4) in this case gives us a formal measure of how well
a particular parameter setting Θ fits the observed sample.

EM algorithm then should consist of these steps:

• Choose the starting values to the parameters to be estimated.

• E-step: Compute the conditional expectations of those functions of the missing
data appear in the full log-likelihood.

• M-step: Maximization of the log-likelihood with respect to the set of parameters
to be estimated (the missing data are substituted by their conditional expecta-
tion).

• Assess convergence (with respect to some criterion) and repeat the E and M-
steps until convergence is reached.

Since the full likelihood of each observation sequence is based on the summa-
tion of all possible state sequences, each observation is assigned to every state in
proportion to the probability of the model being in that state when the vector was
observed. Thus, the probability density function (3) parameters of the HMM can
be re-estimated through recursive summations of these weighted averages.

Thus, state transition probabilities are defined as

ρit =
1

t

t∑
i=1

ϕi
t

where coefficient

ϕi
t =

e−l(ot,µ̂i,σ̂i)+ln(πi)

θt
,
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and

θt =
N∑
i=1

e−l(ot,µ̂i,σ̂i)+ln(πi).

Then, the re-estimation of the mean vector and covariance matrix is performed
with recursive formulas:

µi
t = µi

t−1 +
(ot − µi

t−1)

t
· ϕ

i
t

ρt
, (5)

σi
t =

(
ρit−1 · (t− 1)

ρit · t

)(
σi
t−1 +

(ot − µi
t−1)(ot − µi

t−1)
T

t
· ϕ

i
t

ρt

)
, (6)

ρit = ρit−1 +
1

t
(ϕi

t − ρit−1). (7)

Usually, the Forward-Backward procedure is applied in classical HMM param-
eter estimation methods to calculate transition probabilities [35]. The goal of the
Forward-Backward procedure is to find the conditional distribution over hidden
states given the data.

The Forward-Backward procedure (see Figure 4) is an algorithm for HMM
which computes the posterior marginals of all hidden state variables given a se-
quence of observations o1, . . . , oT , i.e. it computes, for all hidden state variables
St ∈ {S1, . . . , ST}, the distribution P (St | o1:T ). The algorithm uses the principle of
dynamic programming to efficiently compute the values that are required to obtain
the posterior marginal distributions in two passes. The first pass goes forward in
time while the second pass goes backward in time.

The Forward pass is a recursive algorithm for calculating αt(i) for the observa-
tion sequence of increasing length t. First, the probabilities for the single-symbol
sequence are calculated as a product of initial ith state probability and emission
probability of the given symbol o1 in the ith state. Then the recursive formula is
applied. Assume we have calculated αt(i) for some t. To calculate αt+1(j), we mul-
tiply every αt(i) by the corresponding transition probability from the ith state to
the jth state, sum the products over all states, and then multiply the result by the
emission probability of the symbol ot+1. Iterating the process, we can eventually
calculate αT (i), and then summing them over all states, we can obtain the required
probability.

In a similar manner, there is a symmetrical backward variable βt(i) as the con-
ditional probability of the partial observation sequence from ot+1 to the end to be
produced by all state sequences that start at ith state. The Backward pass calculates
recursively backward variables going backward along the observation sequence.

However, Forward-Backward procedure is not fully implemented in recursive al-
gorithms as the Backward part of this procedure is often skipped because of the
complexity to implement it in real-time systems. We calculate the transition prob-
abilities by adapting the Chapman-Kolmogorov equation into the recursive EM al-
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Figure 4. The Forward-Backward procedure in HMM parameter learning

gorithm. It calculates the transition probability to be in a state at time t if at the
time moment t− 1 it was in state i [36]:

πt = A · πt−1. (8)

The significance of this proposition is explored in Section 5.

Our proposed recursive EM algorithm for HMM parameter estimation (Algo-
rithm 1) consists of two parts.

• The first part is for initial parameter estimation given the small fixed-size ob-
servation set using formulas (5)–(7). At the initial estimation phase, µ̂ and σ̂
denotes fixed parameter values during estimation. Initial parameter estimation
ensures the stability of the algorithm because without it, the algorithm might
converge to distorted local extremes of the likelihood function. However, the
initial dataset can become the main drawback of the recursive algorithm, so it
is very important to have a dataset with a sufficient size to initialize parameter
values that would allow us to identify and correctly classify the observations.

• The second part is for parameter re-estimation according to identified obser-
vations using formulas (5)–(7)). In the re-estimation phase, µ̂ and σ̂ denotes
values of the previous steps µi

t−1 and σi
t−1. Classification of the observation is

performed with a Bayes classifier. The likelihood of each HMM generating the
word is calculated and the most likely model identifies the word. However, when
dealing with speech recognition, this classifier can be replaced with Viterbi or
another classification procedure.
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Algorithm 1: Recursive EM algorithm for HMM parameter estimation
consisting of two parts: a) initial HMM parameter estimation with fixed
observation dataset and b) recursive HMM parameter re-estimation when
the observation data is given sequentially in real time.

1 Initial HMM parameter approximation;
2 Set: t = 0;
3 Initialize: µt, σt, ρt, ϵ, π1, A;
4 while Input observation Ot, 1 ≤ t ≤ T1 do
5 Calculate πt, θt;
6 Calculate ϕi

t, 1 ≤ i ≤ N ;
7 Calculate µi

t, σ
i
t, ρ

i
t, 1 ≤ i ≤ N ;

8 if |µt − µt−1| ≤ ϵ AND |σt − σt−1| ≤ ϵ then
Result: Output: µt, σt, ρt;

9 else

10 end

11 end
12 HMM parameter re-estimation;
13 while Input observation Ot, 1 ≤ t ≤ T1 do
14 Input: µt, σt, ρt;
15 Calculate πt, θt;
16 Calculate ϕi

t, 1 ≤ i ≤ N ;

17 Bayes classification of observation Ot: argmax value of el(Ot,µ̂i,σ̂i)+ln(πi);
18 Calculate µi

t, σ
i
t, ρ

i
t, 1 ≤ i ≤ N ;

Result: µt, σt, ρt
19 end

5 ADAPTATION OF THE RECURSIVE EM ALGORITHM
TO ISOLATED WORD RECOGNITION

To apply the recursive EM algorithm to IWR, we must consider the data processing
procedure. Isolated words can be processed in two ways – at the symbol/phoneme
level or in blocks of information. To adapt the recursive EM algorithm for IWR,
the data will be processed in blocks/words.

The first part of the recursive EM algorithm performs an initial approximation
to HMM parameters using training data.

In the second part of the algorithm, a recognition procedure was implemented to
identify observations. The identification can be performed with a Viterbi algorithm
that forms a trellis for computing the best hidden state sequence for the observation
sequence [1]. Given an observation sequence and HMM, the algorithm returns the
state path through the HMM that assigns the maximum likelihood to the observation
sequence. HMM parameters are then updated according to the identified word. The
scheme for the adapted recursive EM algorithm is presented in Figure 5.
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Figure 5. The concept model of an implemented algorithm for isolated word recognition
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5.1 Results for Isolated Word Recognition

5.1.1 TIDIGITS Dataset

The recursive EM algorithm was adapted to perform recognition and parameter esti-
mation for isolated speech data. Training and testing were performed with a subset
of the TIDIGITS dataset [37]. The TIDIGITS corpus is used to train the algorithms
for speaker-independent recognition of connected digit sequences. The subset con-
sists of 208 speakers (94 men, 114 women) each pronouncing 22 digit sequences (from
zero to nine). Each speaker group is partitioned into test and training subsets.

The feature vector consists of 39 features in MFCC format. Each word (digit)
was modeled as a ten-state HMM. Each state is modeled with a 39-dimensional
mean vector and covariance matrix.

The experiments were conducted in the following manner. First, fixed initial
training datasets of various sizes (100 ≤ t ≤ 2 000 words) were chosen to perform
the calculations. Second, further training and recognition were performed with
1 500 word dataset. The word recognition rate (WRR, recognition accuracy) was
calculated during the second part of the algorithm.

Word recognition rate can be computed as:

WRR =
N − S −D − I

N

where

• S is the number of substitutions,

• D is the number of deletions,

• I is the number of insertions,

• C is the number of correct words,

• N is the number of words in the reference (N = S +D + C).

Values of the state transition probability matrix and the initial state distribution
vector were chosen according to [38]. The state transition probability matrix was
set to: 

0 0.8 0.2 0 0 0 0 0 0 0
0 0.6 0.3 0.1 0 0 0 0 0 0
0 0 0.6 0.3 0.1 0 0 0 0 0
0 0 0 0.6 0.3 0.1 0 0 0 0
0 0 0 0 0.6 0.3 0.1 0 0 0
0 0 0 0 0 0.6 0.3 0.1 0 0
0 0 0 0 0 0 0.6 0.3 0.1 0
0 0 0 0 0 0 0 0.6 0.3 0.1
0 0 0 0 0 0 0 0 0.67 0.33
0 0 0 0 0 0 0 0 0 1
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The initial state distribution vector was set to:
[
0 0.8 0.2 0 0 0 0 0 0 0

]T
.

The value of the stopping criterion was set to ϵ = 0.01.

The main focus of the experiment was to explore the influence of initial training
(approximation) dataset size on the word recognition rate. The results of experiment
are presented in Table 1. The first column of the recognition rate has the results
of recursive EM algorithm, and the second one has the recognition of traditional
Rabiner’s isolated word algorithm [8] based on HMM parameter estimation where
different sizes of initial training dataset were used. The traditional algorithm was
trained with the same parameters as the recursive EM algorithm. The results of
both algorithms reveal a similar trend of recognition rate – the word recognition rate
increases as the initial training dataset size gets bigger. For an initial dataset size
of 100 words, the word recognition rate of the recursive EM algorithm was 92.53%,
and that of the traditional algorithm was 89.15%. Likewise, for an initial dataset
size of 2 000 words, the word recognition rate of the recursive EM algorithm was
97.27%, and that of the traditional algorithm was 96.03%. These results show the
recursive EM algorithm performs better than the traditional one. This is due to the
fact that during the words recognition phase, the recursive EM algorithm updates
its model parameters according to the newly received data characteristics.

Recognition Rate (%)
Recursive EM Traditional Algorithm

Size (in words)
of the initial

training dataset

100 92.53 89.15
500 94.33 93.45

1 000 95.87 96.73
1 500 97.60 96.96
2 000 97.27 96.03

Table 1. Word recognition rate of recursive EM algorithm

It is equally significant to determine an appropriate size for the initial param-
eter estimation dataset. The experiments show that the increase of initial training
dataset results in the higher recognition rate. We see this in both recursive EM and
traditional algorithms. The size of the dataset you choose depends on the recognition
accuracy you want to achieve. However, in this case of isolated word recognition, it
should not be less than a hundred words because a larger training dataset typically
prevents the algorithm from converging to a local extreme of the objective function.

5.1.2 Spoken Arabic Digits Dataset

Additional experiments were performed with the Spoken Arabic Digits dataset [39],
which consists of two parts: training and testing. The training dataset consists
of 8 143 observations, which were used for initial HMM parameter learning. The
testing dataset consists of 2 665 observations, which were used for re-estimation and
recognition in real-time.
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For modeling, we used a multivariate Gaussian HMM with multivariate param-
eters. The dataset consists of a feature vector with 12 features. Thus, HMM states
are modeled with a 12-dimensional mean vector and covariance matrix. Each word
(digit) was modeled as a 10-state HMM.

The state transition probability matrix was set to:

0 0.8 0.2 0 0 0 0 0 0 0
0 0.6 0.3 0.1 0 0 0 0 0 0
0 0 0.6 0.3 0.1 0 0 0 0 0
0 0 0 0.6 0.3 0.1 0 0 0 0
0 0 0 0 0.6 0.3 0.1 0 0 0
0 0 0 0 0 0.6 0.3 0.1 0 0
0 0 0 0 0 0 0.6 0.3 0.1 0
0 0 0 0 0 0 0 0.6 0.3 0.1
0 0 0 0 0 0 0 0 0.67 0.33
0 0 0 0 0 0 0 0 0 1


.

The initial state distribution vector was set to:
[
0 0.8 0.2 0 0 0 0 0 0 0

]T
.

The value of the stopping criterion was set to ϵ = 0.01.

The recognition rate was calculated during the re-estimation phase.

The results show that the recognition rate of isolated words recognition was
91.86%. Out of 2 200 words, the algorithm correctly classified 2 021 words.

5.2 Results of Experiments with Synthetic Data

The following experiment was performed to explore the convergence of the HMM
parameters to the original parameter values. The implemented recursive EM algo-
rithm for estimating HMM parameters was compared to the algorithm described
in [24]. The main focus of this experiment was to show the impact of a transi-
tion probability calculation incorporating the Chapman-Kolmogorov equation. The
algorithm from [24] was chosen for comparison because it implements the classic
forward-backward procedure skipping the backward part.

To examine the convergence property of the implemented recursive EM algo-
rithm, we calculated the standard error of the estimated HMM model parameters
as the difference between the parameter values used to generate the dataset and the
estimated model parameters.

The experiments were performed as a simulation of the signal of a single isolated
word. Three datasets for 800 multivariate feature vectors consisting of three, five,
and twelve features were generated (see Algorithm 2). For data generation each
HMM was defined by transition matrix, initial state distribution vector, and mean
vector and covariance matrix of each state. Three, five, and twelve dimensional
mean vectors and covariance matrices of each state were taken as the excerpts from
HMM pre-trained with TIDIGITS dataset.
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Algorithm 2: Generation of random observation sequences from a Hidden
Markov Model

20 Set length T of the observation sequence;
21 Set HMM parameters: µ, σ, A and π;
22 Set state s according to initial state distribution vector;
23 Set t = 1;
24 while t ≤ T do
25 Generate ot random numbers according to probability density function

with mean µs and covariance σs at state s;
26 Transition to a new state s according to transition probability matrix A;
27 t = t+ 1;

28 end

For training and recognition each HMM state was modeled with three, five, and
twelve dimensional mean vector and a covariance matrix. Each word was modeled
as a 5-state HMM in which the state transition probability matrix was set to:

0 0.8 0.2 0 0
0 0.6 0.3 0.1 0
0 0 0.6 0.3 0.1
0 0 0 0.6 0.4
0 0 0 0 1

 .

The initial state distribution vector was set to:
[
0 0.8 0.2 0 0

]T
.

The value of the stopping criterion was set to ϵ = 0.01.

All experiments were repeated one hundred times.

The results are presented in Table 2. They show that the difference between
the estimated parameter values and original parameter values does not increase
significantly when the number of dimensions increases in cases of both recursive
EM and the algorithm from [24]. The average standard error of the recursive EM
algorithm is smaller than the algorithm from [24] for all three simulated datasets
(see Figure 6).

This experiment shows the importance of the proposed state transition proba-
bility calculation when estimating HMM parameters in a recursive way. The state
transition probability calculation with the Chapman-Kolmogorov equation improves
the overall parameter estimation compared to an algorithm with only the forward
procedure.

The results in Table 2 show that the standard error of the recursive EM algorithm
is significantly small. Thus, we can assert that the recursive EM algorithm converges
to the original parameter values of the HMM.
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Algorithm Parameters N = 3 N = 5 N = 12

Recursive EM µ 0.008333 0.007392 0.007792
σ 0.016833 0.011575 0.004817

Stenger [24] µ 0.198033 0.171083 0.721975
σ 0.281967 0.100667 0.109167

Table 2. Standard error of mean and covariance matrices

Figure 6. The average standard error of mean vector µ and covariance matrix σ for Re-
cursive EM and Stenger [24] algorithms when the number of dimensions for feature vectors
are set to N = 3, N = 5, and N = 12

6 CONCLUSIONS

This paper describes a recursive hidden Markov model multivariate parameter es-
timation algorithm and its application to on-line isolated word recognition. The
recursive EM algorithm presents a novel approach to solving this problem compared
to other on-line algorithms. In contrast to the recursive methods where state tran-
sition probabilities are obtained with a modified classical Forward-Backward proce-
dure, we calculate the state transition probability by incorporating the Chapman-
Kolmogorov equation into the algorithm. The significance of this proposition is
shown by a computer simulation comparing it to another recursive algorithm. The
results of the experiments showed that our proposed method leads to more accurate
parameter estimates. The recursive EM algorithm was also used in three different
multivariate datasets, which demonstrated its classification capabilities. The influ-
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ence of the initial training dataset size on recognition rate was also explored. The
experimental results showed that having a sufficient dataset for initial HMM pa-
rameter estimation leads to a word recognition rate higher than 90%. According to
the experiments performed, we can conclude that the recursive EM algorithm can
be efficiently applied to real-time speech recognition tasks based on a multivariate
HMM model.
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