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Abstract. Many information systems have a possibility to record their execution,
and, in this way, to generate a trace about events describing the real system be-
haviour. From behaviour example records in traces of the event log, the α-algorithm
automatically generates a process model that belongs to a subclass of Petri nets,
known as workflow nets. One of the basic limiting assumptions of α-algorithm is
that the event log needs to be complete. As a result of attempting to overcome
the problem of completeness of the event log, we introduced the notion of weakly
complete event logs, from which our modified technique and algorithm can pro-
duce the same result as the α-algorithm from complete logs on parallel processes.
Thereby weakly complete logs can be significantly smaller than complete logs, con-
sidering the number of traces they consist of. Weakly complete logs were used for
the realization of our idea of interactive parallel business process model generation.
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1 INTRODUCTION

Extraction of knowledge from traces recorded in event logs which are available in
today’s information systems, and use of that knowledge for discovering, monitoring
and improvement of bussiness proces models, are basis for occurrence of different
techniques of process mining (PM) areas [1, 2, 3]. α-algorithm is able to discover
a large class of workflow (WF) nets [4] based on the behaviour recorded in event
logs, with the main limiting assumption that the event log is complete. The property
of completeness of the log often implies the necessity of having a large number of
traces in the log on which the “representative” model for the behaviour seen in the
log has to be constructed. Therefore, our challenge was to find logs with potentially
much lower number of traces, which may not be complete, but are sufficiently valid
so that, using the appropriate algorithm based on the evidences recorded in such
logs, a “representative” model can be obtained.

To achieve this, we have partially modified the technique of process model dis-
covering, and also the α-algorithm itself [1, 2, 3] by introducing the relation of
indirect precedence as another basic relation between the activities recorded in the
event log [5, 6]. Within that goal we firstly defined the so called causally complete
event logs, which do not fulfil conditions of completeness, and yet using our mod-
ified algorithm α||-algorithm) we can reconstruct the original network of a parallel
bussiness process. Obtaining block-structured parallel business process model with
our modified method based on the event logs which fulfil the requirements of casual
completeness is presented in [5].

The discovery of the parallel bussiness process model from event logs with as
few recorded traces as possible was a part of our research, and the ultimate goal was
finding ways for those models to be created interactively. With defining of causally
complete event logs that goal was not achieved in full. Namely, even though par-
allel bussiness process models could be successfully discovered from causally com-
plete event logs based on significantly smaller number of traces than from complete
event logs, still we could not achieve the interactive model creation. Further re-
search in that direction leads to defining of the so called weakly complete event
log by which our goals could be achieved. Weakly complete event logs may con-
tain a significantly smaller number of traces needed for obtaining the appropriate
parallel business process model than in case with complete or causally complete
logs.

The property of α||-algorithm, where its application on the weakly complete
event logs may lead to the model discovery, was succesfully used for the creation
of the parallel business process models by demonstration. For this purpose, its
own demonstration graphical user interface has been created, which enables user
to perform different scenarios of activity execution process using direct manipula-
tion. The graphical user interface we created is a tool that visually shows steps of
α||-algorithm. Such tool could serve as a learning tool and playground for those
who want to learn more about the general α-algorithm, which is based on the same
principles like its modified version α||-algorithm, and how it works. This has been
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achieved through the idea in which a user enters log entries (scenario) step by step
and observes a current model which is shown and obtained based on the log entries
entered.

The created demonstration user interface contains the components of artificial
inteligence which are reflected in the fact that the system itself suggests the order
of process activitiy performance (in order to discover the process model as soon as
possible) and “infers” some relations between the actvities which were not performed
during the demonstration procedure. In order to find and infer relations which were
not performed (inferred relations), the system uses the event log footprint1 and
certain rules described later in this paper. The results and ways of realization of
this idea are presented in our paper [7].

Besides defining weakly complete event logs, this paper will present the results
of experimental analysis carried out on examples of real business processes with
the goal to discover the size of weakly complete event logs for observed processes
expressed in the number of traces. The obtained results will be compared to the
results of the experimental analysis carried out for the same processes on complete
and causally complete event logs, which is presented in detail in [5]. In that way
we will be able to show the improvement we made on weakly complete event logs
in comparison to causally complete event logs [5] in regard of obtaining the valid
model of parallel business processes based on the least possible number of traces
from the event logs.

Our assumptions and preconditions for process models (that have to be block-
structured parallel models), to which our algorithm is applicable, may look as a se-
rious restriction. It really is for real-world process models in general. However, our
solution still covers a respectably wide subclass of process models and represents
a first step in a more ambitious attempt to solve the very serious problem of log
completeness. Although having a strong limitation, we still deem that even a partial
solution to such a serious problem can be beneficial for future research and is worth
reporting. In our future research, we will try to expand our work to other categories
of processes.

The paper is organized as follows. The next section provides an overview of the
existing literature from the area of interest for our work and this paper. Section 3
gives some preliminaries about modified PM technique, modified α||-algorithm and
weakly complete event logs necessary for someone to further follow the content of
this paper. The problem with dangling nods in WF-net that is encountered during
the discovery of the business process model from weakly complete event logs as well
as the way of resolving that problem are presented. An example of the α||-algorithm
application on the weakly complete event log is presented at the end of this section.
Section 4 describes the ProM framework for applying the α||-algorithm on weakly
complete event logs, within which the plug-ins we have developed for the needs of the

1 Footprint of the event log is a matrix in which the defined relations between any two
activities can be represented [2, 3, 5].
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experimental analysis are presented. The results of the application of α-algorithm
and α||-algorithm on weakly complete log which is used as a running example in the
paper are also shown at the end of the section. In Section 5 we present the results
of the performed experimental analysis. Section 6 contains some conclusions and
guidelines for the future work and research.

2 RELATED WORK

The process mining idea is not a new one. One of the earliest examples of us-
age of PM in the context of workflow management, based on workflow graphs, was
presented in [8]. Cook and Wolf have investigated similar issues in the context of
software engineering, looking in particular sequential [9] and parallel behaviour of
the process [10]. Dealing with sequential processes, in [9] they describe three meth-
ods for detection, one of which uses a neural network, while the other one is entirely
based on the algorithmic approach, and the third one uses a Markovian approach.
In [10], the same authors extended their work to concurrent processes, where they
propose specific metrics to discover models out of event streams, but they do not
provide an approach to generate explicit process models. Herbst also dealt with
the No. of PM in the context of workflow management [11, 12] using an inductive
approach, observing sequential [12] and parallel models [11] separately. A notable
difference between his work and other approaches is that the same task can ap-
pear multiple times in the workflow model, i.e., the approach allows for duplicate
tasks. Schimm [13] has developed a mining tool suitable for discovering hierarchi-
cally structured workflow processes.

Although many researchers have dealt with the ideas of process mining, the most
comprehensive study is presented in the works of W.M.P. van der Aalst and his col-
laborators [1, 2, 3, 14, 15, 16, 17]. In [2, 3] a detailed description and formalization of
techniques for discovering processes from workflow logs is presented, the α-algorithm
for extracting process models from such logs is defined, and a representation of the
model obtained in the form of a sound2 WF-net is shown. An introduction to PM
and an overview of existing techniques for discovering processes, and the problems
which have been encountered in the application of the α-algorithm have been most
fully presented in [1]. An overview of best practices and challenges is presented
in [18], which is the work of a group of experts that was created in order to promote
research, development and understanding of process mining as well as its implemen-
tation and evolution.

To discover process models from traces recorded in workflow logs, many tech-
niques have been proposed [2, 3, 8, 9, 16, 19]. Many of these techniques use Petri nets
in the process of discovering and presenting the discovered process model. However,
other very different approaches are also used for the same purpose.

2 Soundness corresponds to liveness and safeness of the corresponding short-circuited
net [2, 3]. The set of all sound WF-nets (SWF) is denoted with W.
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Although the original α-algorithm is able to discover a large class of WF-nets,
there are problems it cannot cope with: incompleteness of the event log, rare be-
haviours, complex routing constructions and others [1]. As a consequence, there
is a large number of algorithms that overcome lacks of the basic α-algorithm [20].
Some of them are variants of the original α-algorithm, such as, for example, the α+

algorithm [15] and α++ algorithm [17], while others use a completely different ap-
proach, such as: heuristic mining [9], genetic mining [16], fuzzy mining [21], process
mining from a basis of regions [19] or flexible heuristics miner [22]. The inductive
miner (IM) [23], aims to discover block-structured process models that are sound
and fitting to the behavior represented in the event log.

The above mentioned algorithms and techniques have overcome some of prob-
lems, but the problem of incompleteness of logs, to the best of our knowledge, has
not been overcome. This fact still remains a challenge for future research.

The subject of our research presented in this paper is the problem of complete-
ness of event logs [1]. Part of this research was preliminarily announced in our
previous paper [24], and has been presented in [5], where we also dealt with logs
that do not meet the requirement of completeness. In this paper, the more detailed
description of weakly complete log is given than in [24], based on the definitions and
rules. Moreover, the comparison of results obtained by applying our algorithm [5]
with the results of other process mining algorithms on weakly complete logs was
done. Finally, another big difference from the paper [24] is that this paper brings an
extensive experimental analysis and its results are presented here. Unlike [5] where
we dealt with causally complete event logs, this paper focuses on weakly complete
event logs, that we obtained in the attempt to improve the characteristics of causally
complete event logs. One of those improved characteristics is a smaller size of event
logs, which was a basic parameter for the experimental analysis that was performed.
In this analysis, values of the minimal sizes of complete logs, causaly complete logs
and weakly complete logs are compared for 100 real examples of parallel business
processes. In this paper, plug-ins are also presented in the existing ProM framework
designed for the needs of the experimental analysis.

Another improvement that we have achieved with weakly complete event logs
compared to causally complete event logs is the property of weakly complete event
logs that based on them, the models of parallel business processes can be inter-
actively (using demonstration) generated, which is presented in detail in our pa-
per [7].

3 PRELIMINARIES

In this section, we give some definitions of concepts used throughout this paper. We
must note that the detailed description of the concepts that will be mentioned, as
well as how they were obtained, is shown in our paper [5], therefore we will here
provide only the short review necessary for someone to further follow the content of
this paper.
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3.1 Modified Technique and Algorithm for Discovering Process Models

For the purposes of this paper, we will show only the basic characteristics of our
modified PM technique and modified α-algorithm.

The log-based relations that are used to indicate the relevant patterns in the
log in our modified technique of discovering process models are defined by Defini-
tion 1.

Definition 1. (Log-based ordering relations, in the modified PM technique of dis-
covering process models). Let L be an event log over A3, i.e., L ∈ P (A∗)4. Let
a, b ∈ A be two activities. Then, by definition:

• a >L b if and only if there is a trace σ = {t1, t2, t3, . . . , tn} and i ∈ {1, . . . , n−1}
such that σ ∈ L and ti = a and ti+1 = b,

• a ≫L b if and only if there is a trace σ = {t1, t2, t3, . . . , tn} and there are
i, j ∈ {1, . . . , n} such that i + 2 ≤ j, where σ ∈ L and ti = a, tj = b, and it is
not that a >L b,

• a→L b if and only if a >L b, and it is not b >L a, and it is not b≫L a,

• a⇒L b if and only if a≫L b, and it is not b >L a, and it is not b≫L a,

• a♯Lb if and only if it is not a >L b, and it is not b >L a, and it is not a ≫L b,
and it is not b≫L a,

• a||Lb if and only if a >L b and b >L a, or a >L b and b ≫L a, or a ≫L b and
b >L a, or a≫L b and b≫L a.

The defined relations can be represented with a matrix, which represents a foot-
print of the event log.

The α||-algorithm, where “||” reflects the fact that the algorithm targets parallel
business processes, can be described by Definition 2.

Definition 2. (α||-algorithm). Let L be an event log over T ⊆ A. α||(L) is defined
as follows:

1. TL = {t ∈ T | (∃σ ∈ L) t ∈ σ},
2. TI = {t ∈ T | (∃σ ∈ L) t = first(σ)},
3. TO = {t ∈ T | (∃σ ∈ L) t = last(σ)},
4. XL = {(A,B) | A ⊆ TL∧A ̸= ∅∧B ⊆ TL∧B ̸= ∅∧(∀a ∈ A)(∀b ∈ B)(a→L b)},
5. PL = {p(A,B) | (A,B) ∈ XL} ∪ {iL, oL},

3 A is the set of business process activities.
4 A∗ is the set of all finite sequences (traces) of the elements of A, and P(A∗) is the

powerset of A∗.
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6. FL = {(a, p(A,B)) | (A,B) ∈ XL ∧ a ∈ A} ∪ {(p(A,B), b) | (A,B) ∈ XL ∧ b ∈
B} ∪ {(iL, t) | t ∈ TI} ∪ {(t, oL) | t ∈ TO},

7. α||(L) = (PL, TL, FL).

A necessary condition for discovering the original network by the α-algorithm
is that the log on which the algorithm is applied needs to be complete, where the
condition of completeness is based on the relation >L [1, 2, 3]. The condition of
completeness in our modified PM technique for model discovering is related to the
causality relation →L.

For a particular process model to be discovered, there may be a large (in general,
an unlimited) number of different complete logs. However, all these complete logs
have the same footprint, i.e., the same causality relation. We call this relation the
basic causality relation.

Definition 3. (The basic causality relation). Let N = (P, T, F )5 be a sound WF-
net, i.e., N ∈ W , and let L be a complete workflow log of N . →B

N is the basic
causality relation of network N iff →B

N =→L.

On the other hand, there may exist other logs for the same process model that
are not complete or causally complete [5], but which have the same causality relation
obtained from those logs. We are focused on investigating such logs, which we refer
to as weakly complete logs. Obviously, the idea is to find weakly complete logs that
may be, in general, significantly smaller than fully complete logs (in the terminology
of the original α-algorithm) and causally complete logs (in the terminology of the
modified α||-algorithm).

3.2 Weakly Complete Event Logs

As it has already been shown in [5], by using the modified PM technique on parallel
processes we can obtain the original network from any event log in which→L=→B

N .
Therefore, the main task is to find a log with the causality relation that is equal
to the basic causality relation, and then apply the α|| algorithm, which leads to
the original network of the parallel processes. There are event logs in which the
causality relation is not equal to →B

N , but from the footprint of that log we can
subsequently conclude the elements of the causality relation on whose joining the
causality relation of the log becomes equal to→B

N . The log with such property has
been named weakly complete event log – Lw.

Examples we have analyzed show that the original network can be discovered
from an incomplete log L for which the following holds: →B

N ⊂ (→L ∪ ⇒L), and
→L⊂→B

N ; if the causality relation of that log is joined by the elements of causality
relation which can be inferred from the footprint of the log. Such a log we call
a weakly complete log (Lw) [24].

5 Tuple (P, T, F ) originates from the Place/Transition net [2, 3] definition.
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Definition 4. (Weakly complete event log). Let N = (P, T, F ) be a sound WF-
net, i.e., N ∈ W , and let →B

N be the basic causality relation of N . Lw is a weakly
complete workflow log of N iff:

1. →B
N ⊂ (→Lw ∪ ⇒Lw), and →Lw⊂→B

N , and

2. for any t ∈ T 6 there is σ ∈ Lw so that t ∈ σ.

Even though in weakly complete event logs it cannot be inferred based on log
traces that →Lw=→B

N (but →Lw⊂→B
N), the elements of the causality relation

which are not in →Lw , but are in →B
N , may be subsequently inferred from the

log footprint. Those elements create causality relation called the inferred causality
relation, denoted with→i. The causality relation that inserted the final appearance
of the log footprint (denoted with →Lf ), and on which the α||-algorithm is applied,
becomes: →Lf=→Lw ∪ →i by which we get that →Lf=→B

N . Finding of the
footprint causality relation →Lf which equals to basic causal relation →B

N is the
condition enough for discovering the original network based on →Lf , using the α||-
algorithm in a manner shown in [24].

3.3 The Dangling Nodes Problem

A network obtained from a weakly complete log often contains dangling nodes, i.e.,
activities (node in Petri net) without predecessors and/or successors. The occur-
rence of dangling nods in the network obtained based on the traces recorded in
the weakly complete event log is due to a large number of activities that can be
performed simultaneously and due to the rapid detection of parallelism by modified
PM technique. Besides that, the occurrence of dangling nods in the network is also
due to the property of weakly complete logs that all the causality relation elements
cannot be discovered from the record written in the log traces, alone.

Definition 5. (Dangling node). Let N = (P, T, F ) be a network with initial place i
and ending place o, and let a be such an activity that a ∈ T and a /∈ {i, o}. Activity
a ∈ T is a dangling node in network N if there is no activity b ∈ T such that a• 7

∩ • b ̸= Ø or there is no activity b ∈ T such that b • ∩ • a ̸= Ø.

If activity a ∈ T is a dangling node in network N and if there is no activity
b ∈ T , such that a • ∩ • b ̸= Ø, then it can be said that activity a does not have
its successor in network N . If activity a ∈ T is a dangling node in network N and
there is no activity b ∈ T such that b • ∩ • a ̸= Ø, than it can be said that activity
a does not have its predecessor in network N .

6 T ⊆ A, A is a set of activities, T is a finite set of transitions in the Petri net [4], σ is
a trace such that σ ∈ L [2, 3].

7 The concepts of marking and tokens • are well known for Petri nets and precise
definitions can be found in [2, 3].
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The definition of a WF-net [4], includes an assumption of network connectivity,
which means connectivity of all nodes in the network, and which prohibits the
existence of dangling nodes. Therefore, the network obtained based only on the
records written in weakly complete event log which contains dangling nods in itself
is not a proper SWF-net, and it is not equal to the original network. To overcome
the problem of dangling nodes, we observed the relations in footprints, and based on
those we have defined the rules of inference of the direct successors and predecessors
from the indirect ones. Thus, for each activity that is a dangling node, a successor
and/or predecessor can be found.

Network obtained based on weakly complete event log which contains dangling
nods has in the event log footprint at least one activity that in its table row does
not have relation → (if the activity has no successor) or relation ← (if the activity
has no predecessor) [24].

Rule 1 (Determining the inferred causality relation →i when activity has no suc-
cessor). Let a be activity which in its log footprint row has no relation → then
by definition: a→i c iff in footprint a⇒ c, and there is b such that b→ c, where
a||b.

Rule 2 (Determining the inferred causality relation ←i when activity has no pre-
decessor). Let a be activity which in its log footprint row has no relation ←,
then by definition: a←i c iff in footprint a⇐ c and there is b such that b← c,
where a||b.

Using Rule 1 and Rule 2, the elements of the inferred causality relation →i

(←i) can be determined based on the footprint of the event log. This contributes
to the discovery of those causality relations which cannot be discovered from the
weakly complete event log traces alone. The causality relation which enters the final
log footprint appearance and on which α||-algorithm applies becomes: →Lf

=→Lw

∪ →i. In that way →Lf
becomes equal to the basic causality relation, i.e. →Lf

=
→B

N , which allows the discovery of the original network. The larger the number
of elements →i in relation →Lf

, the poorer the weakly complete event log on basis
of which the model can be constructed, i.e., with a smaller number of the traces
recorded.

3.4 An Example of the α||-Algorithm Application
on the Weakly Complete Event Log

Let us consider a parallel process model shown in Figure 1, and a log L with records
obtained after several executions of the process.

L = [⟨a, d, b, e, c, f, h, g, k⟩4, ⟨d, e, a, c, b, f, g, h, k⟩3].

The basic causality relation for this example is:

→B
N = {(a, b), (a, c), (d, e), (b, f), (c, f), (e, f), (f, g), (f, h), (g, k), (h, k)}.
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Figure 1. Example of a block-structured parallel process model

The log-based ordering relations for this example are:

>L = {(a, b), (b, c), (c, d), (d, e), (e, f), (f, g), (g, h), (h, k), (d, e), (e, a), (a, c),

(c, b), (b, f), (f, h), (h, g), (g, k)},

<L = {(b, a), (c, b), (d, c), (e, d), (f, e), (g, f), (h, g), (k, h), (e, d), (a, e), (c, a),

(b, c), (f, b), (h, f), (g, h), (k, g)},

≫L = {(a, d), (a, e), (a, f), (a, g), (a, h), (a, k), (b, d), (b, e), (b, g), (b, h), (b, k),

(c, e), (c, f), (c, g), (c, h), (c, k), (d, f), (d, g), (d, h), (d, k), (e, g), (e, h),

(e, k), (f, k), (d, b), (d, f), (d, h), (d, g), (d, k), (e, c), (e, b), (e, h), (e, g),

(e, k), (a, f), (a, h), (a, g), (a, k), (d, a), (d, c), (c, f), (c, h), (c, g), (c, k),

(b, h), (b, g), (b, k), (f, k)},

≪L = {(d, a), (e, a), (f, a), (g, a), (h, a), (k, a), (d, b), (e, b), (g, b), (h, b), (k, b),

(e, c), (f, c), (g, c), (h, c), (k, c), (f, d), (g, d), (h, d), (k, d), (g, e), (h, e),

(k, e), (k, f), (a, d), (c, d), (b, d), (f, d), (h, d), (g, d), (k, d), (c, e), (b, e),

(h, e), (g, e), (k, e), (f, a), (h, a), (g, a), (k, a), (f, c), (h, c), (g, c), (k, c),

(h, b), (g, b), (k, b), (k, f)},

||L = {(b, c), (c, b), (c, d), (d, c), (g, h), (h, g), (e, a), (a, e), (a, d), (d, a), (b, d),

(d, b), (b, e), (e, b), (c, e), (e, c)},

→L = {(a, b), (d, e), (e, f), (f, g), (h, k), (a, c), (b, f), (f, h), (g, k)},
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←L = {(b, a), (e, d), (f, e), (g, f), (k, h), (c, a), (f, b), (h, f), (k, g)},

⇒L = {(a, f), (a, g), (a, h), (a, k), (b, g), (b, h), (b, k), (c, f), (c, g), (c, h), (c, k),

(d, f), (d, g), (d, h), (d, k), (e, g), (e, h), (e, k), (f, k)},

⇐L = {(f, a), (g, a), (h, a), (k, a), (g, b), (h, b), (k, b), (f, c), (g, c), (h, c), (k, c),

(f, d), (g, d), (h, d), (k, d), (g, e), (h, e), (k, e), (k, f)},

♯L = {(a, a), (b, b), (c, c), (d, d), (e, e), (f, f), (g, g), (h, h), (k, k)}.

The footprint of the event log L is given in Table 1.

a b c d e f g h k

a ♯ → → || || ⇒ ⇒ ⇒ ⇒
b ← ♯ || || || → ⇒ ⇒ ⇒
c ← || ♯ || || ⇒ ⇒ ⇒ ⇒
d || || || ♯ → ⇒ ⇒ ⇒ ⇒
e || || || ← ♯ → ⇒ ⇒ ⇒
f ⇐ ← ⇐ ⇐ ← ♯ → → ⇒
g ⇐ ⇐ ⇐ ⇐ ⇐ ← ♯ || →
h ⇐ ⇐ ⇐ ⇐ ⇐ ← || ♯ →
k ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ← ← ♯

Table 1. Footprint of the log L

It can be noted that the causality relation of log L is not equal to the basic
causality relation, i.e., →L ̸=→B

N , but it holds: →B
N ⊂ (→L ∪ ⇒L),→L ∪ →B

N ,
which makes L a weakly complete log. It can also be seen from the footprints that
the activity c does not have its direct successors (the rows c do not have→), which
means that there will be dangling nodes in the network.

According to the Rule 1, i.e., the rule of inference of direct from indirect succes-
sors in networks with dangling nodes, we obtain:

c⇒Lf, b→Lf, c|| Lb

then
c→i

Lf,

or
c→Lf, e→Lf, c|| Le

then
c→i

Lf

i.e.,
f←i

Lc.
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Thus: ←i
L = (c, f), i.e.:

→Lf
=→L ∪ →i

L = {(a, b), (a, c), (d, e), (b, f), (c, f), (e, f), (f, g), (f, h),

(g, k), (h, k)}.

It can be noted that now it holds⇒Lf=→B
N . By applying the α||-algorithm to

the given log L, we obtain the following:

1. TL = {a, b, c, d, e, f, g, h, k},
2. TI = {a, d},
3. TO = k,

4. XL = {({a}, {b}), ({a}, {c}), ({d}, {e}), ({b}, {f}), ({c}, {f}), ({e}, {f}), ({f},
{g}), ({f}, {h}), ({g}, {k}), ({h}, {k})},

5. PL = {p({a}, {b}), p({a}, {c}), p({d}, {e), p({b}, {f}), p({c}, {f}), p({e}, {f}),
p({f}, {g}), p({f}, {h}), p({g}, {k}), p({h}, {k}), iL1, iL2, oL},

6. FL = {(a, p({a},{b})), (p({a},{b}), b), (a, p({a},{c})), (p({a},{c}), c), (d, p({d},{e})),
(p({d},{e}), e), (b, p({b},{f})), (p({b},{f}), f), (c, p({c},{f})), (p({c},{f}), f), (e, p({e},{f})),
(p({e},{f}), f), (f, p({f},{g})), (p({f},{g}), g), (f, p({f},{h})), (p({f},{h}), h), (g, p({g},{k})),
(p({g},{k}), k), (h, p({h},{k})), (p({h},{k}), k), (iL1, a), (iL2, d), (k, oL)},

7. α||(L) = (PL, TL, FL).

4 PROM FRAMEWORK FOR APPLYING THE α||-ALGORITHM

For the need of discovering original networks of block-structured parallel business
processes by the modified PM method and the α||-algorithm based on causally com-
plete [5] and weakly complete logs, we have developed a plug-in Alpha||-algorithm
(Figure 5) for the existing ProM framework [26]. The program code of the plug-
in is located in a separate, new package, alpha parallel algorithm and is located at
address [27].

At the same address there is a program code of the Alpha||-algorithm – helper
plug-in (Figure 5), which is given in a separate package alpha parallel algorithm basic
causal relation. The mentioned plug-in is created for the purpose of extraction of
basic causal relations from a complete event log.

It should be noted that this utility of extracting the basic causality relation is not
used by the α||-algorithm. As it has been explained, the point is that our algorithm
is guaranteed to discover the original process model if the input log is causally
or weakly complete, just as the original α-algorithm is guaranteed to restore the
original model if the log is fully complete; on the opposite, none of these algorithms
can guarantee that the obtained model is the original one if the log is not causally,
weakly or fully complete, respectively. The plug-in is just an independent, helper
utility that can be used during experimentation to check whether the given log
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is weakly complete or not, for the given known process model. Of course, in the
procedure of process discovery, the model is unknown.

In the procedure of discovering original networks from weakly complete event
logs performance of additional operations by Rules 1 and 2 is needed, which al-
lows inferring of direct successors based on indirect ones or predecessors respec-
tively, in network with dangling nods. For each indirect relation a check is being
made to determine if there is such an event in the set of events which meets any
of the conditions from the above mentioned rules. If any such event is found the
newly discovered causality relation is added to the inferred causal relations collec-
tion.

Inferring direct successors based on indirect successors is implemented in the
weakly completed logs find casual from indirect succesor function, as shown in Ap-
pendix 1, which is located at address [27]. In addition, inferring of direct predecessors
based on indirect predecessors is implemented in the weakly completed logs find ca-
sual from indirect predecessor function as shown in [27, Appendix 1].

Figure 2 shows an example of a block-structured model of a parallel business pro-
cess [5, 25], presented in a form of a Petri net, which represents our running example
in this paper (as well as in [5] and [24]). Discovering the original model from Figure 2
from a weakly complete event log Lw = [⟨a, b, c, d, e, f, g, h⟩3, ⟨a, f, g, c, e, d, b, h⟩2] is
presented in detail in [24].

Figure 2. Example of a block-structured parallel process model

Figure 3 shows the N || 8 network obtained by applying the α||-algorithm over
log Lw = [⟨a, b, c, d, e, f, g, h⟩3, ⟨a, f, g, c, e, d, b, h⟩2] and using the plug-in Alpha∥-
algorithm.

It can be noticed that the network N || = α||(Lw) in Figure 3 is equal to the
original network in Figure 2, although it is obtained from a weakly complete log
which is not complete and which is smaller than the complete log and causaly
complete log, as it will be shown later in this paper.

8 N || = (P, T, F ) denotes a parallel process network [5].
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Figure 3. WF-net N∥ = α||(Lw)

4.1 Comparison of Application of the α∥-Algorithm and Other Algorithms
on Weakly Complete Event Logs

It can be seen from the above said that we deal with the problem of completeness
which originates from the original α-algorithm and is present in all other its mod-
ifications or other algorithms for discovering process models. As other algorithms
resulted mainly in the attempt to overcome some other problems, but not the prob-
lem of completeness, and as our algorithm was created by a modification of the basic
α-algorithm, it would be most appropriate to compare it with the α-algorithm in
the first place.

In order to evaluate the potential and effectiveness of our algorithm, we have
applied several other algorithms to the same sample log Lw = [⟨a, b, c, d, e, f, g, h⟩3,
⟨a, f, g, c, e, d, b, h⟩2] and checked their ability to rediscover the original model. The
sample log Lw is not complete, because there are missing elements in the relation
>L: a > c, b > d, b > e, b > g, c > b, c > f, c > g, d > b, d > f, d > g, d > h, e >
b, e > g, e > h, f > b, f > c, f > d, f > e, g > d and g > e, which could be
potentially performed on the basis of the process model given in Figure 2, and the
resulting WF-net N∥.

When the original α-algorithm is applied on this weakly complete log Lw, the
model shown in Figure 4 is obtained.

Due to the lack of elements of relations: b > d, b > e, b > g, c > b, d > b,
e > b and f > b, Alpha Miner was unable to detect that the activity b is parallel
to the activities c, d, e, f and g. Due to the lack of elements of relations: f > b,
f > c, f > d, f > e, c > f and d > f , Alpha Miner was unable to detect that the
activity f is parallel to the activities b, c, d and e. Due to the lack of elements of
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Figure 4. The result of the application of Alpha Miner to the weakly complete log Lw

relations: c > b, c > f , c > g and f > c, Alpha Miner was unable to detect that
the activity c is parallel to the activities b, f and g. Due to the lack of elements of
relations: b > g, c > g, d > g, e > g, g > d and g > e, Alpha Miner was unable to
detect that the activity g is parallel to the activities b, c, d and e. For these reasons,
the model obtained by Alpha Miner is so complex and different from the original
network.

The Appendix 2 which is located at address [27] presents the results of the
application of the available plug-ins for several other algorithms on the same given
weakly complete log Lw: Alpha++ Miner, Heuristics Miner, Fuzzy Miner, Genetic
Miner, ILP Miner, Mine transition system and Inductive Miner. As it can be seen
from [27, Appendix 2], neither of the selected algorithms have succeeded to rediscover
the original model from the given weakly complete log Lw. On the contrary, in most
cases, the rediscovered models were rather complex and very far from the original
model. We also give our opinion about the reasons of the inability to rediscover the
original model for these algorithms.

5 EXPERIMENTAL ANALYSIS

Our experimental analysis was performed on real examples, where the size of min-
imal complete, minimal causaly complete and minimal weakly complete logs were
compared. In order to achieve this within the existing ProM framework [21], an-
other plug-in has been developed Alpha∥-algorithm – minimal logs from complete
log which, from the given complete log extracts complete, causally complete and
weakly complete logs with minimal possible number of traces, comparing their size
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(Figure 5). The program code of the plug-in is located in a separate, new pack-
age, alpha parallel algorithm minimal logs from complete log, and is located at ad-
dress [27].

Figure 5. View of the ProM framework with an active plug-in Alpha∥-algorithm – minimal
logs from complete log

5.1 Procedure for Carrying Out Experimental Analysis

We will show the procedure that has been done in the experimental analysis in the
example which model is shown in Figure 2. Let us observe the L event log with
records obtained after several executions of the process in Figure 2.

L = [⟨a, b, c, d, e, f, g, h⟩, ⟨a, f, g, b, c, e, d, h⟩, ⟨a, c, d, e, f, g, b, h⟩,

⟨a, b, f, g, c, d, e, h⟩, ⟨a, c, b, d, e, f, g, h⟩, ⟨a, c, b, e, d, f, g, h⟩,

⟨a, f, b, g, c, d, e, h⟩, ⟨a, c, f, b, g, e, d, h⟩, ⟨a, f, c, g, b, e, d, h⟩,

⟨a, f, g, c, d, b, e, h⟩, ⟨a, b, f, c, d, g, e, h⟩, ⟨a, c, e, b, d, f, g, h⟩,

⟨a, b, c, f, e, g, d, h⟩, ⟨a, c, f, d, g, e, b, h⟩].

Only a variety of traces are displayed in the log, with no indication of the number
of their occurrences, since the frequency of their occurrence is not relevant to this
research. The log L has 14 traces and fulfils the conditions of completeness [2, 3]
for the model in Figure 2.

When an active plug-in: Alpha||-algorithm – minimal logs from complete log
(Figure 5), is started on the imported log L, we get the size and the appearance
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of the minimal complete event log (has 14 traces), minimal causaly complete event
log (has 6 traces) and minimal weakly complete event log (has two traces). The
procedure shown is applied to all selected examples used in experimental analy-
sis.

The experimental analysis was performed on a sample of 100 real examples
obtained by arbitrary manual search of the Internet and selecting publicly avail-
able models of business processes, which fulfill our conditions of block-structured
models of parallel processes9. The considered examples with their .xes files com-
plete, causaly complete and weakly complete logs can be found at the address given
in [27].

Some characteristics that reflect the network structure and size of the analysed
examples are given in Tables 2 and 3 in [5]. These characteristics are expressed
by the total number of activities in the network and a number of branches in the
network. As with block-structured parallel processes there is one input and one
output [5, 25] and it can be presented by the structure of the tree, by “branch” we
meant a direct route from the entrance to the exit of the network.

5.2 Analysis Results

Table 2 presents results of the performed comparative analysis of the minimal size
of complete, causaly complete and weakly complete logs, needed for discovering
original networks of the considered examples.

For easier understanding of Tables 2 and 3 as well as Figures 6, 7 and 8, the
following notations are used:

• Nmcl denotes the number of traces in minimal complete logs,

• Nmccl denotes the number of traces in minimal causaly complete logs,

• Nmwcl denotes the number of traces in minimal weakly complete logs,

• Na denotes the total number of activities in parallel branches,

• Nb denotes the number of parallel branches in the network.

The performed experimental analysis has shown that the size of weakly complete
logs from which the original networks of the observed parallel business processes
can be discovered are lower, or (in the worst case) equal to the size of complete and
causaly complete logs.

From Table 2 it can be seen that in 99 examples (from the examined 100 exam-
ples), the size of the minimal weakly complete logs is less than the size of minimal
complete logs is lower than the size of minimal complete by an average of 52.74%,
while in one example only their values are equal. Besides that, Table 2 also shows
that the size of the minimal weakly complete logs in the observed examples is only
2 or 3 traces.

9 The models were found by searching the Web for the keywords: block-structured
parallel process, parallel business process, activity diagram, BPMN diagrams etc.
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N Number of Traces Nmwcl Less Nmwcl Less
in Logs Than Nmcl Than Nmccl

Nmcl Nmccl Nmwcl % %

1 2 2 2 0.00 0.00
12 3 2 2 33.33 0.00
13 4 2 2 50.00 0.00
39 4 3 2 50.00 33.33
1 4 3 3 25.00 0.00
5 5 2 2 60.00 0.00
6 5 3 2 60.00 33.33
3 5 4 2 60.00 50.00
4 6 2 2 66.67 0.00
3 6 3 2 66.67 33.33
1 6 5 2 66.67 60.00
3 7 3 2 71.43 33.33
3 8 4 2 75.00 50.00
1 9 4 2 77.78 50.00
1 9 4 3 66.67 25.00
2 10 3 3 70.00 0.00
1 10 5 3 70.00 40.00
1 11 3 2 81.82 33.33

Total On average less by
100 52.742% 22.08%

Table 2. Results of the comparative analysis of the minimal size of complete, causaly
complete and weakly complete logs

It can also be seen from Table 2 that the minimal weakly complete event logs
are in average smaller than the minimal causaly complete logs by 22.08%, observed
in a sample of 100 examples. In none of the observed examples the number of traces
in the minimal causally complete event log is lower than the number of traces in the
minimal weakly complete log.

In order to confirm that the hypothesis that the size of weakly complete logs is
lower than the size of complete logs and causaly complete logs is statistically relevant,
we have applied the Wilcoxon-Mann-Whitney rank-sum nonparametric test [28] on
the results from Table 2.

5.2.1 Proof of the Hypothesis That the Minimal Weakly Complete Event
Logs Are Smaller Than the Minimal Complete Event Logs

If we denote: X = size of minimal weakly complete logs, and Y1 = size of min-
imal complete logs, it is needed to test the null hypothesis that distributions of
these two marks (labels) are equal, i.e., H0 : FX = FY 1, against the alternative
hypothesis H1: “The size of minimal weakly complete logs X is lower than the size
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of minimal complete logs Y1”. The corresponding critical area C in this case is in
Table 3.

H0 H1 C

FX = FY 1 X is lower than Y1 z0 ≤ −z0.5−α

Table 3.

Applying the Wilcoxon-Mann-Whitney test on the obtained experimental ana-
lysis results, the following values are obtained:

n1 = 100; n2 = 100; n = n1 + n2 = 200;

V = 0; E(V ) = n1n2/2 = 4 900.5;

D(V ) = E(V )(n+ 1)/6 = 162 533.2;

z0 = (V − E(V ))/[D(V )]
1
2 = −12.125.

For the level of significance α = 0.05, the critical area of this test is C =
(−∞,−1.645]. Since the realized value of the test statistic z0 belongs to the critical
area C, the null hypothesis H0 is rejected in favour of alternative hypothesis H1.
In other words, for the level of significance α = 0.05, it can be concluded that the
assertion that the size of minimal weakly complete logs is lower than the size of
minimal complete logs is statistically significant.

5.2.2 Proof of the Hypothesis That the Minimal Weakly Complete Event
Logs Are Smaller Than the Minimal Causally Complete Event Logs

If we denote: X = size of minimal weakly complete logs, and Y2 = size of minimal
causaly complete logs, it is needed to test the null hypothesis that distributions of
these two marks (labels) are equal, i.e., H0 : FX = FY 2, against the alternative
hypothesis H1: “The size of minimal weakly complete logs X is lower than the size
of minimal causaly complete logs Y2”. The corresponding critical area C in this case
is in Table 4.

H0 H1 C

FX = FY 2 X is lower than Y2 z0 ≤ −z0.5−α

Table 4.

Applying the Wilcoxon-Mann-Whitney test on the obtained experimental ana-
lysis results, the following values are obtained:

n1 = 100; n2 = 100; n = n1 + n2 = 200;

V = 35 + 35 + 35 + 35 + 35 = 175; E(V ) = n1n2/2 = 5 000;
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D(V ) = E(V )(n+ 1)/6 = 167 500;

z0 = (V − E(V ))/[D(V )]
1
2 = −11.789.

For the level of significance α = 0.05, the critical area of this test is C =
(−∞,−1.645]. Since the realized value of the test statistic z0 belongs to the critical
area C, the null hypothesis H0 is rejected in favour of alternative hypothesis H1.
In other words, for the level of significance α = 0.05, it can be concluded that the
assertion that the size of minimal weakly complete logs is lower than the size of
minimal causaly complete logs is statistically significant.

5.2.3 Influence of the Structure of Networks on the Event Log Size

Observing the structure of networks in the considered examples, the experimental
analysis has shown that the size of the event log, from which the original networks
can be discovered, can depend on the number of parallel branches in the network,
as well as on the total number of activities in mutually parallel branches.

In Table 3 the results of the performed experimental analysis are presented, in
which considered examples are grouped according to the total number of activities in
parallel branches and the number of parallel branches in the network. Considering
such groups of examples, sizes minimal complete, minimal causaly complete and
minimal weakly complete logs are presented, as well as the difference between them,
and the difference between the total number of activities in parallel branches and
the number of parallel branches in the network.

From Figure 6 (and from Table 3) it can be seen that the size of minimal
complete logs is proportional to the total number of activities in mutually parallel
branches. It can also be seen that the number of activities in parallel branches
does not affect the size of minimal causaly complete and minimal weakly complete
logs.

From Figure 7 (and from Table 3) it can be seen that the number of parallel
branches in the network does not affect the size of minimal complete and minimal
weakly complete event logs. It can also be seen that the size of minimal causaly
complete logs is proportional (nearly equal) to the total number of parallel branches
in the network.

From Figure 8 (and from Table 3) it can be seen that the difference between the
size of the minimal complete logs and the size of the minimal weakly complete logs,
expressed in the number of traces, is proportional to the difference between the total
number of activities in parallel branches and the number of parallel branches in the
network. The difference between the total number of activities in parallel branches
and the number of parallel branches in the network does not affect the relationship
between the sizes of the minimal causaly complete and minimal weakly complete
event logs.



Weakly Complete Event Logs in Process Mining 361

N Na Nb Na −Nb Nmcl Nmccl Nmwcl Nmcl −Nmwcl Nmccl −Nmwcl

1 2 2 0 2 2 2 0 0
12 3 2 1 3 2 2 1 0
39 3 3 0 4 3 2 2 1
13 4 2 2 4 2 2 2 0
1 4 3 1 4 3 2 2 1
3 4 3 1 5 3 2 3 1
1 4 3 1 6 3 2 4 1
2 4 4 0 5 4 2 3 2
4 5 2 3 5 2 2 3 0
1 5 3 2 5 2 2 3 0
3 5 3 2 5 3 2 3 1
1 5 3 2 5 4 2 3 2
1 5 5 0 6 5 2 4 3
4 6 2 4 6 2 2 4 0
2 6 3 3 6 3 2 4 1
1 6 3 3 7 3 2 5 1
1 6 4 2 8 4 2 6 2
2 7 3 4 7 3 2 5 1
2 7 4 3 8 4 2 6 2
1 8 4 4 9 4 2 7 2
2 8 3 5 10 3 3 7 0
1 8 4 4 9 4 3 6 1
1 9 4 5 9 4 3 6 1
1 9 5 4 10 5 3 7 2
1 10 3 7 11 3 2 9 1

Table 5. The influence of the number of parallel branches in the network and the total
number of activities in each parallel branch on the event log size

6 CONCLUSIONS

The examples show that with our modification of the PM discovering technique,
we are able to reduce the problem of completeness of logs in parallel processes
that occur in the basic α algorithm. That way, we can improve the efficiency of
obtaining a block-structured process model, with the meaning that our algorithm
can guarantee the discovery of the original model from significantly smaller logs,
which do not satisfy the condition of completeness. For that reason, we first defined
the causally complete logs [5] and then the weakly complete logs presented in this
paper.

The contribution that we have made with the paper goes in two directions.
The first is that by defining a new type of event logs – weakly complete event
logs, we have made an improvement with regards to overcoming of the conditions
of completeness and causall completeness. The weakly complete logs were cre-
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Figure 6. The relation between Nmcl, Nmccl, Nmwcl and Na

ated as a consequence of our efforts to improve the properties of causally com-
plete logs, primarily in terms of their size. The detailed experimental analysis
presented in this paper has just shown that such an improvement has been real-
ized.

Comparative analysis of the results showed that weakly complete event logs can
be significantly smaller than both complete and causally complete event logs by the
number of traces from which the process model can be discovered.

Figure 7. The relation between Nmcl, Nmccl, Nmwcl and Nb
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Figure 8. The relation between differences: Nmcl −Nmwcl, Nmccl −Nmwcl and Na −Nb

The other contribution of defining weakly complete event logs presented in this
paper is that they enabled the interactive generation of parallel business process
models by demonstration, which was our primary goal. To accomplish our goal,
a graphical user interface (GUI) was created, through which the user demonstrates
different scenarios of process execution. The graphical user interface that we created
is a tool that visually shows steps of α||-algorithm. Such tool could serve as a learn-
ing tool and playground for those who want to learn more about how the much
better known and more general α-algorithm, which is based on the same principles,
functions.

Our assumptions and preconditions for process models (that have to be block-
structured parallel models), to which our algorithm and technique are applicable,
may look as a serious restriction. However, our solution still covers a respectably
wide subclass of process models and represents a first step in a more ambitious
attempt to solve the very serious problem of log completeness. In our future research,
we will try to expand our work to other categories of processes.
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