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Abstract. Some attribute implications in an implicational base of a derived con-
text of many-valued context can be inferred from some other attribute implications
together with its scales. The scales are interpretation of some values in the many-
valued context therefore they are a prior or an existing knowledge. In knowledge
discovery, the such attribute implications are redundant and cannot be considered
as new knowledge. Therefore the attribute implicational should be eliminated. This
paper shows that the redundancy problem exists and formalizes a model to check
the redundancy.
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1 INTRODUCTION

Formal context is a simple data structure, which is defined as a triple (G,M, I)
where G is a set of objects, M is a set of attributes, and I ⊆ G×M . If (g,m) ∈ I
where g ∈ G and m ∈ M then (g,m) is read as “object g has attribute m” [1, 2].
Figure 1 is an example of formal context represented by a cross table. The formal
context is about small natural number. In the formal context,

G = {1, 2, . . . , 10},

M = {odd , even, greater than 2, greater than 5, prime, square}.
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3 × × ×
4 × × ×
5 × × ×
6 × × ×
7 × × × ×
8 × × ×
9 × × × ×
10 × × ×

Figure 1. Formal context of small natural number

Formal context is also able to represent a data table (relational data). A data
table will be represented by many-valued context. By scaling, the many-valued
context will be transformed into a one-valued context [1, 2, 3]. The one-valued
context is called a derived context. In this form, the many-valued context will be
analyzed.

Formal Concept Analysis (FCA) is a study to extract knowledge from the formal
context. The study is useful in knowledge discovery of data. Three forms of know-
ledge discovery offered by FCA are clusters (which are called formal concepts), data
dependencies (which are called attribute implications), and visualization of formal
concepts by single hierarchical diagram (which is called concept lattice) [4]. Many
researches are conducted in application of formal concepts analysis to knowledge
discovery [5, 6, 7, 8, 9, 10, 11].
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An attribute implication of formal context (G,M, I) is an implication in a form
A → B where A,B ⊆ M . The attribute implication means that all objects which
have all attributes in A also have all attributes in B. It holds in the formal context
(G,M, I) if it holds in each object g ∈ G. These following attribute implications
hold in the formal context in Figure 1:

1. {even, square} ⇒ {greater than 2},
2. {prime, greater than 2} ⇒ {odd},
3. {prime, greater than 5} ⇒ {odd}.

A set of attribute implications is an implicational base of a formal context (G,M, I)
if the attribute implications are sound, complete, and non-redundant with respect
to the formal context [2]. There are some algorithms to generate an implicational
base.

However, regarding the implicational base, sometimes there are attribute impli-
cations which are already known or can be inferred from other attribute implications
together with our existing knowledge. We call the existing knowledge as background
knowledge. This following simple example illustrates the problem. Recall the formal
context in Figure 1. From our knowledge, regarding the formal context we already
know that:

1. Every odd number is not even, and every even number is not odd.

2. Every number which is greater than 5 is also greater than 2.

Recall also the three attribute implications holding in the formal context. If we
consider the second knowledge, the third attribute implication can be inferred from
the first attribute implication together with this knowledge.

An attribute implication could be inferred from other attribute implications with
backgroud knowledge considered unimportant knowledge or redundant. Therefore,
the attribute implication could be ignored. Ignoring an attribute implication will
also reduce the size of knowledge extracted from a formal context to obtain only the
important knowledge.

Reducing size of knowledge extracted from a formal context is also a recent
issue in this research area because the size is sometime very large. The research
in [12] reduced the size by congruent relations whereas in [13] by block relations.
A research in [14] summarized this issue and classified all recent techniques in reduc-
ing the size of knowledge of concept lattice into 3: redundant information removal,
simplification, and selection.

Our research could be considered as another technique in redundant information
removal. The redundant information means attribute implications which could be
inferred from other atribute implications using background knowledge.

Some recent researches in knowledge discovery and data mining had considered
background knowledge to ignore or eliminate extracted knowledge which could be
inferred using the background knowledge [15, 16, 17, 18, 19, 20]. The inferred
exctracted knowledge is also called redundant knowledge. The redundant knowledge
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have to be eliminated since it becomes a handicap and harder for using it in decision
making [15, 17, 20, 21].

Regarding to a formal context, the background knowledge relating with formal
context exists. A kind of the background knowledge exists in analysis of many-
valued context. As stated earlier, a many-value context has to be transformed
into a derived context before being analyzed. The transformation process is called
scaling. The scaling needs some scales which are one-valued contexts. A scale can be
considered as interpretation of attribute values in the many-valued context. Thus,
the scales are representations of prior knowledge to the interpretation. Therefore
the scales contain some information which can be seen as background knowledge.
Interestingly, many sets of data are in the form of many-valued context [8, 9, 10, 11,
22, 23, 24, 25, 26, 27, 28, 29].

Another kind of background knowledge is from our prior knowledge. The kind
of background knowledge exists and some researches used it for formal concept
analysis [4, 12, 13, 30, 31, 32, 33]. Some of the researches used such background
knowledge to remove or reject some extracted knowledges which are incompatible
with it [4, 30, 31, 32, 33] where the extracted knowledge is in the form of attribute
implications [4, 30] and concepts [31, 32, 33]. The other researches used such back-
ground knowledge to reduce the size of extracted knowledge in the form of concept
lattice [12, 13].

To know whether an attribute implication of implicational base can be inferred
from some other attribute implications using some background knowledge is a hard
problem. However, it probably can be solved using SAT approach. The problem
will be encoded into SAT Problem and solved by SAT Solver.

SAT Problem (satisfiability problem) is to determine whether a given proposi-
tional formula is satisfiable or not. If it is not, we say that the propositional formula
is unsatisfiable. A propositional formula is satisfiable if there is an assignment for
all propositonal variables in that formula where the assignment makes the evalu-
ation of the formula to true value. If there is no such assignment, the formula is
unsatisfiable [34, 35, 36].

Some algorithms have been developed to solve the SAT Problem and imple-
mented in SAT Solver software. The algorithm which is implemented in many
modern SAT Solvers is DPLL algorithm [37, 38, 39]. The DPLL algorithm is a
backtracking-based algorithm for deciding the satisfiability of propositional formula
in conjunctive normal form. It was introduced in 1962 by Martin Davis, Hilary
Putnam, George Logemann and Donald W. Loveland [38] and is a refinement of the
earlier Davis-Putnam algorithm, which is a resolution-based procedure developed
by Davis and Putnam in 1960 [37].

The recent SAT Solvers are able to solve a propositional formula in millions
number of both clauses and variables in reasonable time. It gives a chance to make
SAT applicable in real world. Therefore, the current researches in the SAT area are
not only focusing in the algorithm [40, 41] and solver [42, 43, 44, 45, 46] but also
application of SAT [47].
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This paper introduces non-redundant implicational base using scales as back-
ground knowledge in many-valued context, models the problem, and formalizes it
in the satisfiability problem.

2 FOUNDATIONS

2.1 Formal Context

Definition 1 (Formal Context). A formal context (G,M, I) consists of two non-
empty sets G and M , and a relation I ⊆ G×M . We call the set G a set of objects,
whereas the set M a set of attributes. For g ∈ G and m ∈M , (g,m) ∈ I or gIm is
read as the object g has the attribute m [1].

A cross table can represent a formal context. The rows of the cross table rep-
resent the objects, and the columns represent the attributes. The headers of the
rows are object names, whereas the headers of the columns are attribute names. If
an object g has an attribute m, then we cross the table in row g and column m.
Figure 1 is a formal context in the cross table.

Definition 2 (Derivation Operator). If A ⊆ G is a set of objects, then we define [1]:

AI = {m | (g,m) ∈ I for all g ∈ A}. (1)

Reversely, if B ⊆M is a set of attributes, then we define:

BI = {g | (g,m) ∈ I for all m ∈ B}. (2)

Notation AII refers to (AI)I .

2.2 Attribute Implication

Let M a set of attributes in (G,M, I). A ⇒ B where A,B ⊆ M is an attribute
implication over the formal context. The attribute implication holds in the formal
context if each object of the formal context respects the attribute implication. An
object g ∈ G respects the attribute implication iff its attributes set is a model of
the implication [2].

Definition 3 (Model of Attribute Implication). Let A,B, T ⊆ M . T is a model
of attribute implication A⇒ B iff A ⊈ T or B ⊆ T [2].

Definition 4 (Respecting Object). An object g ∈ G respects to A ⇒ B over
(G,M, I) iff {g}I is a model of the attribute implication. An object g ∈ G respects
to a set L of attribute implications iff g respects all attribute implications in L [2].

Definition 5 (Holding Attribute Implication). An attribute implication A ⇒ B
holds in a formal context (G,M, I) iff all g ∈ G respect the attribute implication.
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Algorithm: Implicational Base
Input : A formal context (G,M,I)
Output: The implicational base, L
begin
X ← ∅
L ← ∅
repeat
if (X ̸= XII) then
L ← L ∪ {X ⇒ XII/X}

X ← Next Closure(X) from L
until (X = M)
return L

end

Figure 2. Implicational Base algorithm [1, 2]

A set L of attribute implications holds in a formal context (G,M, I) iff all attribute
implications in L holds in (G,M, I) [2].

Definition 6 (Inference). An implication A⇒ B can be inferred from L, denoted
by [2]

L ⊨ A⇒ B (3)

iff all models of L are also models of A⇒ B.

Definition 7 (Implicational Base). A set L of attribute implications is an impli-
cational base of a formal context, if the followings hold [2]:

• Sound, if L holds in the formal context.

• Complete, if the following holds. If there is an attribute implication which
holds in the formal context, it can be inferred from L.

• Non-redundant, if there is no attribute implication in L that can be inferred
from the others.

Figure 2 shows an algorithm to generate an implicational base of a formal con-
text. Next Closure(X) from L is the lexically smallest model of L which is lexi-
cally larger than X. Let A,B ⊆ M = {m1,m2, . . . ,mn} and m1 < m2 < · · · < mn.
We define A < B, which means “A smaller than B” or “B larger than A”, iff A <i B,
which is defined as follows, there is i such that

• i /∈ A and i ∈ B, and

• for all j < i, j ∈ A iff j ∈ B.

Example 1. Recall a formal context in Figure 1. The implicational base of the
formal context generated by algorithm in Figure 2 contains the following attribute
implications:
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• {greater than 5} ⇒ {greater than 2},
• {greater than 2, prime} ⇒ {odd},
• {greater than 2, greater than 5, square} ⇒ {odd},
• {odd , prime} ⇒ {greater than 2},
• {odd , even} ⇒ {greaterthan 2, greaterthan 5, prime, square}.

2.3 Attribute Implication of Many-Valued Context

Definition 8 (Many-valued Context). Amany-valued context (G,M,W, I) con-
sists of a set of objects G, a set of attributes M , a set of attribute values W , and
a ternary relation I ⊆ G ×M × W where (g,m,w) ∈ I and (g,m, v) ∈ I imply
w = v [2, 3].

In the attribute exploration of a many-valued context, we have to transform the
many-valued context into one-valued context. The transformation is called scaling.
In the scaling, we need some scales, which are also formal contexts [2].

Definition 9 (Scale). A scale for attribute m ∈ M of a many-valued context
(G,M,W, I) is a one-valued context Sm = (Gm,Mm, Im) with {w | (g,m,w) ∈
I and g ∈ G} ⊆ Gm [2].

Final Written Practical
1 Pass Pass Pass
2 Fail Pass Fail
3 Fail Fail Pass
4 Fail Fail Fail

Figure 3. Many-valued context
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Figure 4. Scales for attributes: Final, Written, and Practical, respectively
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Definition 10 (Derived Context). The derived context in scaling of the many-
valued context (G,M,W, I) and scales Sm for all m ∈ M is the context (G,N, J)
where

N =
⋃

m∈M

Mm (4)

and for g ∈ G and n ∈ N , (g, n) ∈ J iff (m, g, w) ∈ I and (w, n) ∈ Im [2].

Example 2. Figure 3 is an example of a many-valued context with

M = {Final ,Written,Practical}.

The many-valued context shows all possible results of driving test. The driving
test consists of two parts which are written and practical part showed by attribute
Written and Practical, respectively. The final result which depends on both test
parts is showed by attribute Final.

By scaling with a formal context in Figure 4 for all attributes in M , we obtain
a derived context in Figure 5.
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Figure 5. The derived context

2.4 SAT Problem

We take some notations from [36, 45] and [48] to formulate the propositional formula
and the SAT problem.

A propositional formula is a logical formula based on proposition. An atomic
(simple) formula consists of a single propositional variable whereas a complex for-
mula is a composition of connectors and propositional variable(s). The connectors
are ∧ (conjunction), ∨ (disjunction), → (implication), ↔, (biimplication), and ¬
(negation).
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Definition 11 (Propositional Formula). A propositional formula F is recursive-
ly defined as follows:

F =

 p,
¬F ′,
F1 ◦ F2, where ◦ ∈ {∧,∨,→,↔},

where

• p is a propositional variable, possibly with indices,

• F1, F2, and F ′ are propositional formulas.

Definition 12 (Interpretation). An interpretation Int is a mapping of proposi-
tional formulas to truth values {⊤, ⊥}.

An interpretation Int will uniquely act on each variable occurring in F . Let p
a propositional variable. Int will be either Int(p) = ⊤ or Int(p) = ⊥. An interpre-
tation Int will be a model of formula F if and only if Int(F ) = ⊤. F is satisfiable
if and only if F has some models, and F is unsatisfiable if and only if F has no
models.

Given a propositional formula F , the goal of the SAT Problem is to determine
whether the formula F is satisfiable or unsatisfiable.

3 BACKGROUND KNOWLEDGE IN MANY-VALUED CONTEXT

3.1 Background-Inferring Problem

Given an attribute implication which holds in a derived context, the question is
whether the attribute implication can be implied by the other attribute implications,
which also hold in the derived context, together with information in its scales.

Definition 13 (Background-inferring Problem). Scales can be considered as inter-
pretations of values in a many-valued context. Those are already some existing
knowledges which are used to derive the many-valued context to obtained a derived
one-valued context. The implicational base algorithm in Figure 2 does not con-
sidered the existing knowledge. The following shows that an attribute implication
probably can be inferred from some others attribute implications in the impliational
base together with the knowledge in those scales.

Let L a set of attributes implications which hold in the derived context from
a many-valued context (G,M,W, I) and scales Sm for all m ∈ M , H knowledge
represents the scales, and A ⇒ B an attribute implication which also holds in the
derived context. The background-inferring problem is whether:

(L ∪H) implies A⇒ B. (5)
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It means that all models of L and H are also models of A ⇒ B. Since a scale
Sm = (Gm,Mm, Im) consists of all possible combination values of attributes in Mm,
a model T of L is also a model of H iff for each Sm, T is compatible with Sm. T is
compatible with Sm iff there is g ∈ Gm such that {g}Im ⊆ T [30].

Example 3. These attribute implications hold in the derived context showed in
Figure 5:

• {Practical:Fail} ⇒ {Final:Fail},
• {Written:Fail} ⇒ {Final:Fail},
• {Written:Pass, Practical:Pass} ⇒ {Final:Pass},
• {Final:Fail, Practical:Pass} ⇒ {Written:Fail}.

Let L consist of the three first-attribute-implications and H represent informa-
tion from scales in Figure 4. All models of L containing {Final:Fail, Practical:Pass}
are

• {Final:Fail, Final:Pass, Practical:Pass, Written:Pass}, and
• {Final:Fail, Practical:Pass, Written:Fail}.

Because of the scale of attribute Practical (Figure 4), the first model is not the
model of H. Thus, only the second model is the model of (L∪H). It is also a model
of

• {Final:Fail, Practical:Pass} ⇒ {Written:Fail}.

Therefore, (L ∪H) implies the attribute implication.
For the next examples, we will use the natural numbers 1, 2, . . . to refer attribute

names Final:Pass, Final:Fail, . . . , respectively.

4 BACKGROUND-INFERRING PROBLEM IN SAT

The followings are some corresponding notations between formal context and propo-
sitional formula in this encoding:

• An attribute m ∈M corresponds to a propositional variable pm.

• T ⊆M corresponds to an interpretation IntT . m ∈ T iff IntT (pm) = ⊤.

Proposition 1. Let T,A,B ⊆M . T is a model of A⇒ B iff

IntT

(∧
b∈B

((∧
a∈A

pa

)
→ pb

))
= ⊤.
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Proof.

1. T is a model of A⇒ B. There are two possibilities:

(a) A ⊈ T
↪→ there is c ∈ A, but c /∈ T
↪→ IntT (pc) = ⊥
↪→ IntT

(∧
a∈A pa

)
= ⊥

↪→ For all b ∈ B, IntT
((∧

a∈A pa
)
→ pb

)
= ⊤

↪→ IntT
(∧

b∈B
((∧

a∈A pa
)
→ pb

))
= ⊤

(b) B ⊆ T
↪→ For all b ∈ B, IntT (pb) = ⊤
↪→ For all b ∈ B, IntT

((∧
a∈A pa

)
→ pb

)
= ⊤

↪→ IntT
(∧

b∈B
((∧

a∈A pa
)
→ pb

))
= ⊤

2. IntT
(∧

b∈B
((∧

a∈A pa
)
→ pb

))
= ⊤

↪→ For all b ∈ B, IntT
((∧

a∈A pa
)
→ pb

)
= ⊤

↪→ There are also two possibilities:

(a) For all b ∈ B, IntT (pb) = ⊤
↪→ B ⊆ T
↪→ T is a model of A⇒ B

(b) IntT
(∧

a∈A pa
)
= ⊥

↪→ There is c ∈ A, such that IntT (pc) = ⊥
↪→ There is c ∈ A, but c /∈ T
↪→ A ⊈ T
↪→ T is a model of A⇒ B.

□

From Proposition 1, A⇒ B corresponds to a propositional formula:

∧
b∈B

((∧
a∈A

pa

)
→ pb

)
.

We will use FA⇒B to refer the formula.

Example 4. Recall Example 3. We have the following correspond formulas, re-
spectively:

• p6 → p2,

• p4 → p2,

• (p3 ∧ p5)→ p1,

• (p2 ∧ p5)→ p4.
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Proposition 2. Let Sm = (Gm,Mm, Im) a scale to obtain a derived context (G,N,
J) and T ⊆ N . T is compatible with Sm iff

IntT

 ∨
g∈Gm

 ∧
a∈{g}Im

pa ∧
∧

a∈Mm/{g}Im

¬pa

 = ⊤.

Proof.

1. T is compatible with Sm = (Gm,Mm, Im)
↪→ There is gc ∈ Gm, such that {gc}Im ⊆ T
↪→ IntT (

∧
a∈{gc}Im pa ∧

∧
a∈Mm/{gc}Im ¬pa) = ⊤

↪→ IntT

(∨
g∈Gm

(
∧

a∈{g}Im pa ∧
∧

a∈Mm/{g}Im ¬pa)
)
= ⊤

2. IntT

(∨
g∈Gm

(
∧

a∈{g}Im pa ∧
∧

a∈Mm/{g}Im ¬pa)
)
= ⊤

↪→ There is gc ∈ Gm, such that IntT (
∧

a∈{gc}Im pa ∧
∧

a∈Mm/{gc}Im ¬pa) = ⊤
↪→ {gc}Im ⊆ T
↪→ T is compatible with Sm = (Gm,Mm, Im).

□

From Proposition 2, we know that the information related with a scale Sm =
(Gm,Mm, Im) corresponds to a propositional formula:

∨
g∈Gm

 ∧
a∈{g}Im

pa ∧
∧

a∈Mm/{g}Im

¬pa

 .

We will use Hm to refer the propositional formula which a scale Sm corresponds to.

Example 5. Recall Example 3. From scale of attribute Final, Written, and Prac-
tical in Figure 4, we have the following formulas:

• (p1 ∧ ¬p2) ∨ (¬p1 ∧ p2),

• (p3 ∧ ¬p4) ∨ (¬p3 ∧ p4),

• (p5 ∧ ¬p6) ∨ (¬p5 ∧ p6).

Proposition 3. T is a model of a set of attribute implications L, iff

IntT

( ∧
A⇒B∈L

FA⇒B

)
= ⊤. (6)

Proof. T is a model of L
iff For all A⇒ B ∈ L, T is also a model of A⇒ B
iff For all A⇒ B ∈ L, IntT (FA⇒B) = ⊤ {from Proposition 1}
iff IntT

(∧
A⇒B∈L FA⇒B

)
= ⊤. □
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Proposition 4. T is a model of H, which is information representing scales Sm =
(Gm,Mm, Im) for all m ∈M , iff

IntT

( ∧
m∈M

Hm

)
= ⊤. (7)

Proof. T is a model of H
iff For all m ∈M , T is compatible with Sm = (Gm,Mm, Im)
iff For all m ∈M , IntT (Hm) = ⊤ {from Proposition 2}
iff IntT

(∧
m∈M Hm

)
= ⊤. □

Let FL =
∧

A⇒B∈L FA⇒B and FH =
∧

m∈M Hm. L corresponds to FL, whereas
H corresponds to FH.

Proposition 5. T is a model of (L ∪H) iff IntT (FL ∧ FH) = ⊤.

Proof. T is a model of (L ∪H)
iff T is a model of both L and H
iff IntT (FL) = ⊤ and IntT (FH) = ⊤ {from Proposition 3 and Proposition 4}
iff IntT (FL ∧ FH) = ⊤. □

Proposition 6. (L∪H) does not imply A⇒ B, iff FL∧FH∧¬FA⇒B is satisfiable.

Proof. (L ∪H) does not imply A⇒ B
iff There is T ∈M , T is a model of (L ∪H), but T is not a model of A⇒ B
iff There is T ∈ M , IntT (FL ∧ FH) = ⊤ (Proposition 5) and IntT (FA⇒B) = ⊥
(Proposition 1)
iff There is T ∈M , IntT (FL ∧ FH ∧ ¬FA⇒B) = ⊤
iff FL ∧ FH ∧ ¬FA⇒B is satisfiable. □

Example 6. Recall Example 3, 4, and 5. Let L = {{6} ⇒ {2}, {4} ⇒ {2}, {3, 5} ⇒
{1}} and H information from scales in Figure 4. We want to check whether (L∪H)
does not imply {2, 5} ⇒ {4}. Then, we obtain the following propositional formula:

1. p6 → p2,

2. ∧p4 → p2,

3. ∧(p3 ∧ p5)→ p1,

4. ∧((p1 ∧ ¬p2) ∨ (¬p1 ∧ p2)),

5. ∧((p3 ∧ ¬p4) ∨ (¬p3 ∧ p4)),

6. ∧((p5 ∧ ¬p6) ∨ (¬p5 ∧ p6)),

7. ∧¬((p2 ∧ p5)→ p4).

Let F be the propositional formula. If we consider the conjunct 4 then we only
have two possible interpretations e.g. IntT1 and IntT2 , where:
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• IntT1(p1) = ⊤ and IntT1(p2) = ⊥,
• IntT2(p1) = ⊥ and IntT2(p2) = ⊤.

IntT1(F ) = ⊥ since IntT1(¬((p2 ∧ p5)→ p4)) = ⊥ (conjunct 7).
Whereas IntT2 will be a model of F , if IntT2(p3) = ⊥ or IntT2(p5) = ⊥ because

of conjunct 3. Suppose IntT2(p3) = ⊥. Because of conjunct 5, IntT2(p4) = ⊤. It
makes IntT2 over conjunct 7 be ⊥. Thus, IntT2(F ) = ⊥.

Also IntT2 over conjuct 7 will be ⊥ if IntT2(p5) = ⊥.
We can conclude that neither IntT1 nor IntT2 will be a model of F . Thus, F is

unsatisfiable. Therefore, (L ∪ H) implies {2, 5} ⇒ {4}. It is the same conclusion
obtained in Example 3.

5 CONCLUSION

We showed that some attribute implications in an implicational base of derived
context of many-valued context can be inferred from the many-valued context’s
scales. Even though, the scales are intepretation of some values in the many-valued
context, therefore the scales are an existing knowledge. Some literatures proposed
that knowledge in knowledge discovery from data, an implicational base in case
of a formal context, which can be inferred from existing or background knowledge
should be eliminated. They will be redundant knowledge.

We also formalized a model to check the redundancy in SAT Problem. The
formulation has also been proven.

In the next research we will develop an algorithm to obtain non-redundant im-
plicational base of many-valued context using scales as background knowledge based
on the proposed model. Some experiments with real data also will be conducted
using the algorithm.
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