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Abstract. Electric vehicles (EVs) are environmentally friendly and are considered
to be a promising approach toward a green transportation infrastructure with lower
greenhouse gas emissions. However, the limited driving range of EVs demands
a strategic allocation of charging facilities, hence providing recharging opportuni-
ties that help reduce EV owners’ anxiety about their vehicles’ range. In this paper,
we study a set covering method where self-avoiding walks are utilized to find the
most significant locations for charging stations. In the corresponding optimization
problem, we derive a lower bound of the number of charging stations in a trans-
portation network to obtain full coverage of the most probable routes. The proposed
method is applied to a transportation network of the southern part of Sweden.
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1 INTRODUCTION

The sale rate of electric vehicles (EVs) has been growing rapidly over the past ten
years, and there is a need to adapt the current transportation infrastructure to
meet future recharging demands. Increased use of EVs – including both plug-in
hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs) – has been
recognized as a promising, sustainable approach to lowering traffic emissions, in-
cluding greenhouse gases [1]. However, their limited driving range and the scarcity
of public accessible charging stations prevent EVs from gaining widespread mar-
ket acceptance [2]. Psychological stress caused by the fear that the vehicle will
run out of energy and be stranded is referred to as range anxiety [3]. As a con-
sequence of range anxiety, EV owners may use their electric-powered vehicles for
short trips exclusively, with the result that they require an additional vehicle for
longer trips. In a small survey with 58 participants from 2011, Skippon and Gar-
wood [4] report that consumers might consider an EV as their main car or second
car if it had a range of 150 miles (241 km) or 100 miles (161 km), respectively.
In a more recent survey, from 2016, Skippon et al. [5] report that consumers’ de-
sired driving ranges for EVs have substantially increased. The results show that
people who have driven a modern EV would consider having an EV as the main
car if the driving range is 200 miles (322 km) and as the second car if the driving
range is 150 miles. Also, the study by Jensen et al. [6] confirms that the limited
driving range is a concern for the acceptance of EVs. The study reports that the
EVs’ driving ranges do not match the expectations of consumers, after they use
EVs for a trial period. Thus, as decision-makers and infrastructure planners con-
sider to gain market acceptance for EVs, it will be important to determine how
to best allocate charging stations to compensate for the current limited capacity
of EV batteries. A strategic allocation of accessible charging facilities or battery
swap stations may reduce the range anxiety of EV owners. Hence, an important
step in addressing the problem of allocating of the charging station is to identify
the routes in the transportation network that are most likely to be used to serve as
many EV drivers as possible. Additionally, a desirable outcome of a charging station
allocation is that every vehicle that drive around in the network, regardless of its
position, should be able to reach a charging station before it runs out of energy.
A strategic deployment of charging infrastructure may also minimize the initial cost
of the installment of new charging facilities and relieve the load on the electrical
power system [7].

In the current paper, we propose a novel solution procedure for the set covering
problem for the allocation of EV charging stations. The basic formulation of the
set covering problem is to minimize the number of charging stations such that each
route is covered by at least one charging station [8, 9]. The set covering formulation,
among other methods of deploying a public charging infrastructure, has received
substantial attention from the research community. In what follows, we give a brief
review of some of the methods that have been proposed in the literature. In Wang
and Lin [10], a flow-based set covering method is proposed to minimize the cost of
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installation of charging facilities such as fast-refueling stations and battery exchange
stations. The optimization method for the flow-based set covering method is based
on the following vehicle-routing logic: the greater the distance a vehicle is driving,
the more likely it is that the vehicle will require refueling. An extension to the
problem is to consider a dual objective model to minimize the installation cost and
maximize the population coverage, by combining the flow-based set covering model
and the traditional set covering model [11]. Wang [11] considers the allocation
of charging stations for electric scooters, where the aim is to minimize the total
installation cost. The model by Wang [11] is extended by Wang and Lin [12] to
consider facility budget constraints, multiple types of recharging stations, and vehicle
routing behavior. The types of charging stations include slow- and fast-recharging
stations as well as battery swap stations. The case study presented in [12] shows
that the results achieved with mixed-type charging facilities are better than those
achieved with single-type facilities. The refueling logic requires numerous binary
variables, which makes the problem hard to solve. When a flexible expanded network
method is used, as proposed by MirHassani and Ebrazi [13], the solution time of
the flow-based set covering method is significantly reduced. Wen et al. [14] consider
both the problem of how to maximize the flow coverage with a fixed number of
available charging stations and the problem of how to minimize the number of
charging stations to obtain full coverage. In both models, the limited driving range of
EVs is addressed by partitioning routes into sub-routes according to recharging logic.
In the above-mentioned model, the general assumption is that vehicles would only
consider routes that are the shortest or have the least traveling time between origin
and destination. Li and Huang [15], Huang and Zhou [16], and Hosseini et al. [17]
use the concept of deviation path. In their models, the shortest-path assumption is
relaxed by the assumption that EV users are willing to slightly deviate from their
preferred trips to ensure that they can refuel en route to their destinations. Frade
et al. [18] present a mixed-integer optimization problem to maximize the coverage
of both daytime and nighttime demand within an acceptable level of service for
a neighbourhood in Lisbon. Funke et al. [19] propose a framework based on the
hitting set problem, which aims to guarantee energy supply for all shortest paths in
the network.

Another method commonly used to locate charging facilities and battery swap
stations is based in flow capturing models [20, 21]. The Flow Refueling Location
Model (FRLM) aims to locate a fixed number of charging stations in the nodes in
such a way that the total number of vehicles can be refueled within their limited
driving range [22]. Further, if it is possible to locate charging stations both along
links and in nodes, the coverage of the network may be substantially improved com-
pared to when nodes are the only candidate sites [23]. A more realistic extension
to the FRLM is to consider the charging capacity of the allocated facilities [24].
In the capacitated FRLM, the location variables are not binary but non-negative
integers, meaning that multiple charging facilities could be located to serve as many
vehicles as possible. Based on a flow-capturing model, Lim and Kuby [25] devel-
oped three heuristic algorithms for locating alternative-fuel stations. Solving the
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FRLM is usually a two-stage process; the first stage generates combinations of can-
didate locations, and the second stage uses these combinations to locate charging
stations to maximize the number of refueled vehicles. Capar and Kuby [26] devel-
oped a method to solve the FRLM in one stage. To plan and design an infrastructure
complete with battery swapping stations and battery management, Mak et al. [27]
study the robust location problem of battery swapping stations under demand un-
certainty.

If available, Global Position System (GPS) data can be utilized to support the
allocation of charging stations. GPS data can, for example, be collected from taxis
to obtain vehicle travel patterns, which are used to allocate charging stations [28,
29, 30, 31]. GPS travel survey data can also be used to simulate vehicles’ driving
and charging behavior to optimally locate charging stations such that the number
of missed trips is minimized [32]. Additional data, such as initial battery level of the
vehicle and charging mode (normal or fast), together with GPS data, may provide
useful insights on the charging behavior of EVs [33]. However, the applicability of
methodologies based on GPS data is limited, due to the lack of data available for
research purposes [34].

To capture the interaction between the availability of charging stations and the
route choices of drivers, several studies use traffic assignment models to identify the
locations of charging stations. Traffic assignment models are multi-commodity flow
problems under some given optimal or equilibrium routing principle. He et al. [35]
propose a bi-level traffic assignment model. The upper level allocates a fixed number
of charging stations such that the number of vehicles that use a charging station is
maximized, while user equilibrium of route choice together with the EV’s limited
range is considered in the lower level. He et al. [36] propose a framework to cap-
ture the interactions between the locations of charging stations, electricity prices,
route choices, and recharging time, which is solved by an active-set algorithm. Ad-
ditionally, He et al. [37] present three different network equilibrium models, where
the different flow dependencies and energy consumption are integrated. A similar
model considers drivers’ spontaneous adjustments and the interactions of travel and
recharging decisions [38].

Despite the extensive work in academia, the process of allocating charging sta-
tions is still a challenging problem in real-world scenarios due to legal, physical, and
financial constraints [34]. Typically, constraints are much stricter and more com-
plex than is assumed in studies, and there is a need for data and knowledge to fully
understand the impacts of charging infrastructure concerning location, installation,
operation, and future maintenance.

The current paper extends the paper by Fredriksson et al. [39] where an iterative
solution procedure to optimally allocate charging stations for EVs is proposed. In
particular, the contribution of the current paper is an explicit termination criteria for
the iterative method, along with an improved route identification method to capture
driving behavior. The studied problem is formulated as a set covering problem
where the constraints in the associated integer problem are obtained by self-avoiding
random walks. In the random walks, a probabilistic rule determined by link flows
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is applied in each node to select the next node in the walk. By iteratively adding
constraints and solving sub-problems, we obtain a lower bound approximation of
the minimal number of charging stations required to cover a transportation network
without route enumeration.

The paper is organized as follows: In Section 2 we describe the model and the
problem formulation. The proposed solution algorithm is explained in Section 3.
Numerical results are presented in Section 4, and Section 5 concludes this paper
and discusses some future research directions.

2 PROBLEM FORMULATION

A transportation network is described by a set of nodes N = {1, 2, . . . , n} and
a set of routes R. For each route r ∈ R, let δir = 1 if a vehicle is visiting node
i ∈ N while traveling on route r, and δir = 0 otherwise. Let xi be a binary
variable where xi = 1 if a charging station is allocated in the node i ∈ N , and
otherwise xi = 0. An allocation of charging stations is mathematically defined by
a vector x = (x1, x2, . . . , xn) ∈ {0, 1}n. The driving range is the maximal distance
a vehicle can drive without recharging and is denoted by dmax. Let dEw be the Eu-
clidean distance from the start node to the end node in a self-avoiding walk w.
A self-avoiding walk w is a route if dEw > dEmin where dEmin is a positive real num-
ber.

The problem studied in this paper is formulated as a set covering problem and
is based on covered known routes. A route r ∈ R is covered if at least one charging
station is placed in one of its nodes. The route cover criteria for a route r correspond
to the inequality ∑

i∈N

δirxi ≥ 1. (1)

The set covering problem for the allocation of charging stations can be described
as follows: Given a transportation network, find the set of all routes R and the
minimal number of charging stations and their locations such that each route r ∈ R
is covered. The optimization part of the problem corresponds to the optimization
program

(P ) z = min
x∈{0,1}n

{∑
i∈N

xi :
∑
i∈N

δirxi ≥ 1,∀r ∈ R

}
. (2)

Theoretically, even for a rather small transportation network, a complete route
enumeration can lead to an unmanageable number of constraints in our set covering
problem. Furthermore, if a complete route enumeration is available, we strongly
believe that many of these routes may not be used at all by any vehicle. Instead of
trying to find the set of all routes, we claim that it is sufficient to identify the most
probable sub-routes (sub-routes that are most likely to be used), which, however,
is far from a trivial task in large transportation networks. For simplicity, we refer
to these sub-routes as routes. We assume that all routes r ∈ R have a maximum
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length dmax. Hence, vehicles driving distances shorter or longer than this maximum
distance cover fractions of routes or multiple routes, respectively. We describe our
route identification method in Section 3.2, where we also discuss how we deal with
the limited driving range of EVs.

3 OPTIMAL PLACEMENT OF CHARGING STATIONS

In this section we describe the solution procedure for our set covering problem.
We also discuss how we obtain the routes that will be iteratively added to our
model.

3.1 Solution Procedure

A solution to the charging station allocation problem is obtained by iteratively
solving sub-problems (P (k)) of our problem (P ), where the sub-problems are based
on subsets of routes Rk ⊂ R. The sub-problems yield a sequence of optimal solutions
with a monotonically increasing minimum number of charging stations, converging
to the optimum value of problem (P ). Our aim is to search and select routes
in the network to achieve a solution with coverage of the most probable routes.
To this end, we exploit probabilistic self-avoiding random walks to identify routes
in the transportation network. The identified routes are iteratively generated and
added as constraints to the integer problem under consideration. The approximation
technique proposed to solve our problem is based on integer programming, and the
outline of the method can be described with the following basic steps:

0. Initialization: Set iteration counter k = 0, and Rk = ∅. Fix xi = 1 if a charging
station is already allocated in node i ∈ N .

1. Given a reference set Rk ⊂ R, solve the sub-problem

(
P (k)

)
z(k) = min

x∈{0,1}n

{∑
i∈N

xi :
∑
i∈N

δirxi ≥ 1,∀r ∈ Rk

}
(3)

yielding the solution vector x(k).

2. Define the entering index by a route re ∈ R satisfying
∑

i∈N δirex
(k)
i = 0. Stop

with approximate optimal reference set Rk ⊂ R, if a new re cannot be found
according to some termination criteria.

3. Define the new reference set by Rk+1 = Rk ∪ {re}, set k = k + 1, and go to
step 1.

A flowchart of the solution procedure is depicted in Figure 1. At iteration k,
the solution vector x(k) is infeasible for the new reference set Rk+1 since the new
entering index re is uncovered. We can easily provide a feasible solution to sub-
problem P (k+1) by setting xi = 1 where i = min{k : δkre = 1}.



414 H. Fredriksson, M. Dahl, J. Holmgren

Without any prior knowledge about the routes in the network, it is compu-
tationally difficult to estimate the number of routes in a transportation network,
and thereby to find a suitable, explicit termination criteria. For instance, the it-
erative method could be terminated when a sufficient number of constraints has
been collected, when some search time for a new uncovered route is exceeded, or
when a new uncovered route cannot be found within a certain number of iterations.
In our numerical examples in Section 4 we apply the latter termination criteria.
If a new uncovered route cannot be found after 10 000 random walk attempts, we
assume that the most commonly used routes in the network have been taken into
consideration.

Initialization.
Set k = 0 and Rk = ∅

Solve sub-problem (P (k))

Search for entering index re
Add route re to Rk.
Set k = k + 1

Entering
index re
found?

Termination
criteria
met?

Stop

Yes

No

Yes

No

Figure 1. Flowchart for the solution procedure for our set covering problem
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3.2 Self-Avoiding Random Walks

As mentioned above, the constraint index re, which is chosen to enter the basis Rk

is defined by a route that does not satisfy the current solution, i.e., a constraint
violation. By using the most probable routes in the network, we claim that when
no entering index re can be found according to some termination criteria, the most
commonly used (probable) routes in the network will be covered by at least one
charging station.

In practice, finding the complete route set R is computationally difficult, and
several models use a predefined set of routes. We use self-avoiding random walks
as a search method to simulate the driving behavior of EV drivers to find new
uncovered routes. A self-avoiding random walk is defined as a random walk with
the restriction that it cannot revisit a node. Self-avoiding random walks can be
more effective when exploring a transportation network and may model driving
behavior more realistically than unrestricted random walks, since they cannot return
to already visited nodes [40]. A probabilistic rule determined by collected link flows
is applied at each node to select the next node among the neighbors of the current
node, yielding a probabilistic self-avoiding random walk. Let i ∈ N be the current
node in the walk; then the probability of choosing the next neighboring node j is

p =
ϕ(i, j)∑

x∈Ni
ϕ(i, x)

. (4)

Here, Ni ⊂ N is the set of adjacent and unvisited nodes of the current node i, in
the current walk under construction, and ϕ(i, j) is the flow on link (i, j).

Link flows can be collected using temporary or permanent sensors, including
pneumatic tubes, that are moved around in the network according to a periodic
scheme. Obviously, the link flows do not provide as much information as other
flows – e.g., origin–destination flows and route flows – but they are easier to ob-
tain. Obviously, the link flows vary over time, but on an aggregate level, static
link flows provide a sufficient approximation to generate the most probable routes
in a transportation network. The collected link flows are utilized to model driv-
ing behavior in the network. We argue that this approach provides a reference for
planning and charging infrastructure for the current transportation situation. Due
to the current vehicle market, the collected link flow data are mainly constituted
by vehicles with internal combustion engines fueled by gasoline or diesel. Although
changes may occur depending on vehicle type, in this study we assume that travel
patterns and driving behavior are the same for EVs and for gasoline or diesel-fueled
vehicles.

Depending on the scenario under investigation, in our route generation process,
we restrict our selection to only consider routes with maximum length dmax, which
is assumed to be the maximal distance a vehicle can to travel without passing
a node equipped with a charging station. Thus, a partition of the full route into
road segments, of appropriate lengths to handle the limited driving range of EVs is



416 H. Fredriksson, M. Dahl, J. Holmgren

identified directly. Since the program optimally allocates charging stations such that
each route is covered, a solution will ensure coverage of the most probable routes of
length dmax. In other words, an EV cannot travel longer than dmax without passing
a charging facility if it travels on the most probable route. In this way, we can adjust
the parameter dmax to respect the driving range of an EV.

Since we are demonstrating our proposed method on a government-controlled
transportation network with roads between cities and metropolitan areas, we are
especially interested in covering routes that are included in trips between communi-
ties. To avoid peculiar zigzag behaviors or U-turns, we only consider routes where
the Euclidean distance is at least dEmin between the start- and end-nodes of the route.

Each of the random walks begins in a randomly chosen node. If a walk reaches
a node already equipped with a charging station, i.e., the route is already covered
by the current solution, a new random walk is restarted in a randomly chosen node
until a new unique entering index re, violating the constraints in the current sub-
problem, is found. The search method for the entering index re is done by the
following steps.

1. Start in a random node.

2. With probabilities according to Equation (4), randomly choose a neighbouring
unvisited node (in the current walk).

(a) If the chosen node has a charging station allocated on it, discard the walk
and go to Step 1.

(b) If the total length of the walk under construction exceeds dmax, and the
Euclidean distance between the first and current node exceeds dEmin, add
the walk to the problem as a constraint, solve the sub-problem, and go to
Step 1.

(c) Otherwise, repeat Step 2.

Depending on the network under study, there is a margin of error concerning the
limited driving range, since the generated walks are presumed to be slightly longer
than dmax. This error, however, can be alleviated by lowering dmax.

As the number of constraints increases, it will be more and more difficult to
find new uncovered routes, since vehicles are more likely to traverse a node already
equipped with a charging station. Hence, our iterative process converges towards
an optimal solution where the most probable routes are covered. Because the iter-
ative solution procedure converges to an optimal solution with full coverage of the
most probable routes in a transportation network, we argue that a solution using
our proposed method is worthy of consideration since it does not contain routes that
are less likely to be used.

3.3 Outline of the Convergence

The main idea of the optimization procedure is to iteratively solve sub-problems
of our set covering problem and to continuously further extend the current sub-
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problem into a slightly larger problem. Since the problem is formulated as a set
covering problem, a solution to the problem is not necessarily unique, but the it-
erative procedure is continuously striving for a solution with a minimal number of
charging stations. The procedure ensures coverage and localizes common junctions
of interest within the given transportation network. The main purpose of this pro-
cedure is to ensure that each charging station is placed in an environment that is of
mutual interest to several of the found routes.

The behavior of convergence can be briefly outlined, and the emphasis is on an
intuitive understanding for the optimization procedure. Assume that we are given
the solution xk to any sub-problem P (k). If we now add one single constraint where
xk violates the constraint, we can easily provide a feasible solution to iteration k+1
as described in Section 3.1. We now establish the following important inequality
relations

z(1) ≤ . . . ≤ z(k) ≤ z(k+1) ≤ . . . ≤ z. (5)

The first inequality is due to the fact that the optimal solution for problem
(P (k+1)) is a feasible solution for problem (P (k)) in integer problem formulation (3)
and provides an upper bound for (P (k)). The sequence (z(k)) is thus monotoni-
cally increasing and upper bounded. Convergence to the optimum value of z(k)

is motivated by the last equality where the existence of a finite optimal reference
set R is established. We note, in this context, that the convergence of the algo-
rithm is based on the assumption that numerical difficulties (such as randomness,
size of network, etc.) are avoided due to the presence of a reliable software for
the solution. In practice, the optimal value of z will never be reached for large-
scale networks. However, the system yields an appropriate approximation, and
therefore it is subject to continuous improvement with the aim of reaching the op-
timum.

In this presentation, we emphasize the simplicity and efficiency of this approach
to finding a minimal number of charging stations and allocating them so that every
route is covered. Since the procedure is based on a controlled selection of con-
straints, there are opportunities to add and fulfill requirements that make the pro-
cedure of selecting routes to model the transportation network even more realis-
tic.

4 COMPUTATIONAL STUDY

To demonstrate our proposed method’s effectiveness, we consider the network of the
southernmost part of Sweden. This network is one of six traffic regions maintained
by the Swedish Transport Administration. The network consists of 14 500 nodes
and 34 500 links distributed over an area of approximately 44 500 square kilometers,
spread across five counties, and it is shown in Figure 2. The mean length of the
links is 1.29 km with a standard deviation of 1.98 km. The distribution of the link
lengths in the network under study is shown in Figure 3. Since the majority of the
links are quite short, routes in our scenarios ranges 60 km to 100 km in length, and
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will consist of several nodes. Although, a random walk may have choose a node with
low probability, according to the probabilistic rule (4), it will most likely reassemble
with more probable links in a later stage. The link flows used in our study are based
on real-world data collected from traffic counts in July 2018. The data was obtained
from The Swedish National Road Database (NVDB) provided by the Swedish Trans-
port Administration. In the optimization procedure, neighboring regions have not
been taken into account.

Figure 2. The national transportation main road map for the southern Sweden (area of
interest is beneath the black border). The transportation network (all roads) consists of
14 500 nodes 34 500 links distributed over an area of 44 500 square kilometers.

We implemented our problem-solving method to find allocations of charging
stations in the numerical computing environment MATLAB® [41] and Gurobi Op-
timizer [42].
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Figure 3. Distribution of link lengths in the network of southern Sweden, where the mean
length of the links is 1.29 km, with a standard deviation of 1.98 km. The 339 points counted
in the rightmost bin are links with length greater than 9.06 km.

4.1 Scenario Descriptions

In our numerical evaluations we consider 3 different scenarios, each with varying
maximal driving range dmax, and minimal distance travelled dEmin. We study the
number of charging stations required to obtain full coverage of all found routes. In
all scenarios we used a maximum number of search iterations as termination criteria.
If no new uncovered route re could be found within 10 000 iterations, the program
was terminated. The number of constraints in the final iteration and the number of
allocated charging stations for each scenario are shown in Table 1. As mentioned
in Section 3.3, a solution to our set covering problem might not be unique, but it
provides a lower bound of the number of charging stations required to cover each
of a number of considered routes. Examples of solutions for each of the considered
scenarios are illustrated in Figures 4, 5, and 6.

We emphasize that, since we use a network in the southernmost part of Swe-
den, the studied scenarios have a macroscopic approach. The allocation of charging
stations has a focus outside urban and metropolitan areas, in this regard, the pro-
cess of its optimization has a focus on the government-controlled transportation
network.

As the numerical results show, the number of required charging stations de-
creases as dmax increases. For illustrative purposes, Figure 7 shows how the optimal
placements of charging stations have evolved during the iterative process for Sce-
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dmax (km) dEmin (km) Constraints Allocated Charging Stations

Scenario 1 60 30 1 177 203
Scenario 2 80 40 1 075 174
Scenario 3 100 50 569 104

Table 1. Number of constraints and number of allocated charging stations of the iterative
set covering model for the three scenarios generated by different parameter settings of
dmax and dEmin

nario 3 with dmax = 100 km and dEmin = 50 km. The figure shows all nodes that have
been included in an optimal solution x(k) for some iteration index k. As seen in the
figure, numerous nodes have been considered as candidate sites for optimal place-
ment to achieve coverage. The final allocation of charging stations for this scenario
is depicted in Figure 6.

Figure 4. The allocation of charging stations for dmax = 60 km and dEmin = 30 km

5 CONCLUSIONS AND FUTURE WORK

EVs for both public and private transport seem to be a promising solution to reduce
greenhouse gas emissions. However, the scarcity of available charging stations and
the limited driving range of EVs, are two major barriers for the widespread adoption
of EVs. In the current paper, we propose a node-based formulation of a set covering
method to optimally allocate charging stations for EVs. The constraints in the
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Figure 5. The allocation of charging stations for dmax = 80 km and dEmin = 40 km

Figure 6. The allocation of charging stations for dmax = 100 km and dEmin = 50 km
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Figure 7. All candidate nodes for optimal allocation of charging stations for dmax =
100 km and dEmin = 50 km

corresponding optimization problem are based on self-avoiding random walks along
the links in the network and the problem is solved by a pruned integer program that
can take the existing infrastructure into consideration. The iterative optimization
procedure and the probabilistic route selection provide an approximation of the
optimal allocation to obtain full coverage.

The computational results of the proposed iterative method, in the case study
of the Southern Sweden transportation network, shows that the method is able
to allocate charging stations optimally without numerical difficulties. The results
indicate how charging facilities can be located strategically to cover the most prob-
able routes for an EV fleet in the studied area, for the several different scenar-
ios. In particular, the method provides a lower bound to obtain full coverage and
localizes nodes that are of common interest for the routes in the transportation
network. From the results of our computational study, in which we compared max-
imal driving distances of 60, 80, and 100 kilometers, respectively, we observe that
the ability to extend the driving distance of EVs significantly reduces the need for
EV charging stations. In particular, the number of allocated charging stations in
our considered network dropped from 203 to 88 when dmax was increased from 60
to 100 kilometers. This means that the number of charging stations dropped by
56.7% when we increased dmax by 66.7%. Hence, in addition to helping drivers
to overcome the range anxiety, increasing the driving range of EVs also signifi-
cantly reduces the need to build charging infrastructure. Further research based on
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the current work can be conducted in several directions. One direction could con-
sider the inclusion of budgetary constraints and the recharging capacity of charg-
ing stations. Another research could be focused on the search method for uncov-
ered routes. A third direction of further research includes the optimal allocation
considering that charging will most likely occur in the beginning or the end of
a trip.
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A Model of Self-Avoiding RandomWalks for Searching Complex Networks. Networks,
Vol. 60, 2012, No. 2, pp. 71–85, doi: 10.1002/net.20461.

[41] MATLAB, Version 9.4.0813654 (R2018a). The MathWorks Inc., Natick, Mas-
sachusetts, 2018.

[42] Inc. Gurobi Optimization. Gurobi Optimizer Reference Manual, 2018. Available at:
http://www.gurobi.com.

https://doi.org/10.1016/j.trb.2014.05.010
https://doi.org/10.1016/j.trc.2015.08.018
https://doi.org/10.1016/j.procs.2019.09.446
https://doi.org/10.1002/net.20461
http://www.gurobi.com


A Probabilistic Method to Optimally Allocate Charging Stations 427

Henrik Fredriksson received his B.Sc. in media technology
from Blekinge Institute of Technology in 2011, and B.Sc. and
M.Sc. in mathematics from Linnaeus University in 2012 and
2013, respectively. He is currently Ph.D. student in applied
mathematics at the Department of Mathematics and Natural
Sciences, Blekinge Institute of Technology. His scientific re-
search is focused on mathematical models within the areas of
transportation and traffic.

Mattias Dahl received his M.Sc. in computer engineering from
Lule̊a Institute of Technology, 1993, Licentiate in Engineering,
Lund University, 1997, and Ph.D. in applied signal processing,
Blekinge Institute of Technology (BTH), 2000. Since 2005, he
has been with the Department of Mathematics and Natural Sci-
ences, BTH, where he is currently Professor of Systems Engi-
neering. He has authored about 100 scientific publications and
patents and has received several awards from the Swedish Inno-
vation Agency and the Swedish Foundation of Technology Trans-
fer.

Johan Holmgren is Associate Professor of computer science
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