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Abstract. Formal Concept Analysis (FCA) is a mathematical framework which
can also support critical activities for the development of the Semantic Web. One
of them is represented by Similarity Reasoning, i.e., the identification of different
concepts that are semantically close, that allows users to retrieve information on the
Web more efficiently. In order to model uncertainty information, in this paper FCA
with many-valued contexts is addressed, where attribute values are intervals, which
is referred to as FCA with Interordinal scaling (IFCA). In particular, a method for
evaluating concept similarity in IFCA is proposed, which is a problem that has not
been adequately investigated, although the increasing interest in the literature in
this topic.
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1 INTRODUCTION

Formal Concept Analysis (FCA) is a formal framework based on lattice theory which
is commonly used for data analysis [15, 28]. In the basic setting, FCA attributes
are crisp, i.e., any object either has or does not have an attribute of a given context.
This is the case of the so-called one-valued contexts. However, in real life most of at-
tributes are fuzzy rather than crisp, i.e., “it is a matter of degree to which an object
has a (fuzzy) attribute” [2]. In other words, an object may have different attributes
with different values, and an attribute may apply to different objects with differ-
ent values. This is the case of many-valued contexts [15]. Fuzzy Formal Concept
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Analysis (FFCA) is a generalization of FCA which provides a formal framework for
structuring, analyzing and visualizing data in the presence of uncertainty informa-
tion [32]. In particular, in FFCA contexts are many-valued, and the attribute values
are real numbers in the range [0, 1]. In this paper, this kind of FCA is referred to
as OFCA, in line with the notion of FCA with Ordinal scaling defined in [15].

Regarding the notion of fuzzy sets [7], Type-1 Fuzzy Sets (T1 FSs) and Type-2
Fuzzy Sets (T2 FSs) were both introduced by Zadeh, the former in 1965 in the semi-
nal paper [36], and the latter in 1975 in [37]. T2 FSs provide a way to overcome one
of the early objections made about T1 FSs, i.e., that “it sounds contradictory for
something that is fuzzy to have a perfectly defined membership function” [26]. In
this paper we focus on Interval Type-2 FSs (IT2 FSs) [22], which represent a simpli-
fication about T2 FSs that is receiving much attention in the literature in different
research areas, with different purposes, as for instance in [1, 8] just to mention
a couple of examples.

Similarity Reasoning, i.e., the identification of syntactically different concepts
that are semantically close, is fundamental in several research areas such as Cognitive
Science, Artificial Intelligence, Software Engineering, and in the Semantic Web [4,
17]. Concept similarity in the framework of FCA with Interordinal scaling (IFCA),
i.e., in many-valued contexts where attribute values are intervals, is a problem that
has been marginally investigated in the literature, despite of an increasing interest
in this topic.

In this paper, a concept similarity measure for IFCA is proposed which is novel
because it combines the IT2 FS framework, with regard to concept extents, and the
information content approach [23], with regard to concept intents. The latter has
been extensively investigated and experimented in the literature, and has a higher
correlation with human judgment with respect to the traditional approaches. In
particular, this paper is a short and revised version of the results presented in [14].
Furthermore, in this work both the basic notions and the overall approach are pre-
sented informally, by providing simple examples, in order to reach a broad audience
of readers, and not only specialists working in the area.

The paper is organized as follows. In the next section, the Related Work is
given, and in Section 3 the basic notions related to FCA and IFCA are recalled.
In Section 4 the notion of IFCA concept similarity is presented. In particular, first
the similarity between IT2 FSs is recalled and, successively, the information content
similarity is addressed. Then, they are combined in order to define the similarity
between IFCA concepts. Finally, in Section 5 an evaluation of the method is given,
and Section 6 concludes.

2 RELATED WORK

FCA techniques and tools have been employed in different research fields, such as,
Information Retrieval, e-Learning, Expert Systems, etc., and in the development of
the Semantic Web [32]. Similarity reasoning is fundamental in several research areas
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such as Cognitive Science, Artificial Intelligence, Software Engineering and, recently,
also in the Semantic Web [13]. In the development of the Semantic Web, similarity
reasoning supports all the activities that, in general, require human interaction
(which are time-consuming and error-prone), such as web service discovery, query
refinement techniques for search engines, extractions of patterns and trends in web
users behaviors, etc. Therefore, the similarity method proposed in this paper can
be employed in all the research fields that can benefit from the combination of FCA
techniques and similarity reasoning.

Some research challenges about the contribution of FCA in the Semantic Web
development are illustrated in [18], and concern the automatic or semi-automatic
generation of ontologies (ontology engineering), and the critical problem of identi-
fying the overlapping knowledge in a common domain (also referred to as ontology
mapping, merging, integration, or alignment). In particular, due to the presence in
the web of large and specialized ontologies, FCA has been employed for more than
one decade for reusing and combining independently developed domain ontologies,
see for instance [31].

FCA concept similarity has been addressed in [10], by relying on human domain
expertise, and in [11, 33], according to the information content approach, but in
both cases within one-valued contexts. Many-valued contexts have been addressed
in [13], but in the case of FCA with Ordinal scaling (OFCA). Therefore, in both
the mentioned papers, IT2 FSs have not been addressed and a similarity measure
has been proposed, based on T1 FSs, which has been experimented and compared
with the relevant similarity measures proposed in the literature. It has been used
as a basis for the definition of the similarity measure proposed in this paper for
FCA with Interordinal scaling (IFCA), as illustrated in the next sections. Note that
in [3] and [12] different problems related to OFCA have been addressed, by relying
on Rough Set Theory.

With regard to IFCA, a formal framework, referred to as L-Fuzzy concept theory,
has been defined in [5] which is probably the first research paper providing a theo-
retical foundation about it. Successively, some interesting works have been defined
in the literature which have investigated and deepened the mathematics underlying
specific aspects of IFCA, as for instance [6].

In [30] the need for IT2 fuzzy analytical systems for the development of the
Semantic Web is emphasized, and a similarity measure for IFCA is proposed. It is
based on the similarity measure for IT2 FSs defined in [35], the approach presented
in [11], and relies on the experimental results given in [13]. In Section 5, a discussion
about the evaluation of the proposed method is given.

As mentioned, the proposed T2ConSim combines the similarity of the con-
cept extents and the concept intents. Concept extents are evaluated according to
IT2FSim, which is the widely accepted crisp similarity measure for IT2 FSs defined
in [35]. It is used in most applications of general T2 FSs due to the simpler underly-
ing mathematics. Such a notion has been adopted here because it allows a relevant
simplification about the definition of similarity between general T2 FSs, in line with
the scope of this paper which is intended for non-specialist readers.
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3 FCA WITH MANY-VALUED CONTEXTS

In this section the basic notions related to Formal Concept Analysis (FCA) are
briefly recalled. In order to illustrate them, the context named Sardinia Hotels
presented in [14] is used, which also allows us to introduce, in the next section, the
notions underlying IFCA in an intuitive way.

In FCA [15], a one-valued context (context for short) is a triple (O,A,R), where
O is a set of objects, A is a set of attributes, and R is a binary relation between O
and A. In the Sardinia Hotels context mentioned below, the set O is defined by the
following six objects representing six different hotels:

O = {H1, H2, H3, H4, H5, H6},

and the set A is defined by the three following attributes:

A = {SwPool , Sea,Meal}

where SwPool stands for swimming pool. Furthermore, the relation R among hotels
and attributes is defined by Table 1.

A concept of the Sardinia Hotels context is, for instance, the pair (E, I) where
E is a set of objects, referred to as concept extent, and I is a set of attributes,
referred to as concept intent, defined as follows:

((H1, H3, H5), (Sea,Meal))

since the objects H1, H3, and H5 have both the attributes Sea and Meal, and vice
versa, both these attributes apply to the objects H1, H3, and H5.

Intuitively, we can say that concepts correspond to maximal rectangles of crosses
in the context, after appropriate permutations of rows and columns. It is possible
to establish an inheritance relation (≤) between concepts of a context, say (E1, I1),
(E2, I2), as follows:

(E1, I1) ≤ (E2, I2) iff E1 ⊆ E2(iff I2 ⊆ I1).

In particular, (E1, I1) is called subconcept of (E2, I2) and (E2, I2) is called supercon-
cept of (E1, I1). For instance, the concept ((H1, H2, H3, H5), (Meal)) is a super-
concept of the previous one, i.e.:

((H1, H3, H5), (Sea,Meal)) ≤ ((H1, H2, H3, H5), (Meal))

and, vice versa, the former concept is a subconcept of the latter.
Given a context (O,A,R), consider the set of all the concepts of this context,

indicated as L(O,A,R). Then:

(L(O,A,R),≤)
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SwPool Sea Meal

H1 × ×
H2 × ×
H3 × ×
H4 × ×
H5 × ×
H6 × ×

Table 1. The FCA Sardinia Hotels context

Figure 1. Concept Lattice of the Sardinia Hotels context [14]

is a complete lattice called Formal Concept Lattice (Concept Lattice for short),
i.e., for each subset of concepts, the greatest lower bound (the greatest common
subconcept) and the least upper bound (the least common superconcept) exist. For
instance, the Concept Lattice constructed from the context of Table 1 is shown
in Figure 1. Note that the Concept Lattice has two special nodes, the maximum
and minimum nodes, grouping all the objects and the attributes of the context,
respectively. The number of objects in the concept extent (the cardinality) is also
referred to as the support the concept [19], therefore the concept corresponding to
the maximum node has maximum support.

3.1 From One- to Many-Valued Contexts

In a one-valued context an attribute is a property that an object may have or may
not have. For instance, according to the one-valued context Sardinia Hotels above,
each of the attributes SwPool , Sea, and Meal applies or does not apply to each of the
hotel objects. However, in real world, an attribute may apply to different objects
with different values, i.e., it can be many-valued.
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In FCA, a many-valued context is a quadruple (O,A, V,R), where O is a set of
objects, A is a set of many-valued attributes, V is a set of attribute values, and R is
a ternary relation among O, A, and V such that:

(o, a, v) ∈ R and (o, a, w) ∈ R ⇒ v = w

where (o, a, v) ∈ R can be read as “the attribute a has the value v for the object o”.
Note that (O,A, V,R) is referred to as one-valued context if V has one element [15].

Analogously to one-valued contexts, many-valued contexts can be represented
by tables, where rows are labeled by objects and columns are labeled by attributes.
Many-valued contexts can be transformed into one-valued contexts according to
a conceptual scaling process [15]. In particular, in this process, each attribute of
a many-valued context is interpreted by means of a context, referred to as conceptual
scale (for details about the transformation process of a many-valued context into
a one-valued context see [15]). Typical conceptual scales are Nominal, Ordinal, and
Interordinal scales. Nominal scales are used for attribute values which mutually
exclude each other, for instance in the case of the attribute values {human, animal,
plant}. Ordinal scales are suitable when attribute values are ordered, and each value
implies the weaker ones, e.g., {extremely active, very active, active}. Interordinal
scales are used for attributes which have a range of possible values (intervals), e.g.,
{fully, very much, very few, not at all}. In the next subsection we focus on FCA
with Interordinal scaling.

3.1.1 FCA with Interordinal Scaling

As mentioned above, in many-valued contexts attributes do not describe objects
in a uniform way, i.e., a given attribute applies to different objects in different
ways. For instance, in the Sardinia Hotels context above, consider the attribute
Meal. In general, when reserving an hotel, we would like to know whether the hotel
provides both lunch and dinner, or half-board. Without the introduction of fuzzy
information, we have no way to specify how appropriate is an attribute to a given
object.

In order to deal with fuzzy contexts, we need to recall the following defini-
tions.

A Type-1 Fuzzy Set (T1 FS) A (also called fuzzy set) in a space of points X is
characterized by a membership function µA(x) which associates each point x in X
with a real number in the interval [0, 1] representing the grade of membership of x
in A [36]. Note that for an ordinary set, the membership function can take only the
values 1 and 0, depending on x does or does not belong to A, respectively.

For instance, the following set A:

A = ((H1, 1.0), (H2, 0.5), (H3, 0.5), (H5, 1.0))

is a T1 FS in the space of point X = {H1, H2, H3, H5}.
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An Interval Type-2 Fuzzy Sets (IT2 FS) Ã in a space of points X is character-
ized by two membership functions, an upper membership function µ̄Ã and a lower
membership function µ

Ã
which are both T1 FSs, such that each point x in X is

associated with an interval [µ
Ã
(x), µ̄Ã(x)] representing the grade of membership of

x in Ã [34].

For instance, the following set Ã:

Ã = ((H2, [0.6, 0.7]), (H4, [0.6, 0.8]), (H5, [0.4, 0.9]))

is a IT2 FS in the space of point X = {H2, H4, H5}.
In this subsection we address FCA contexts where grades of memberships are

intervals, and in particular words. Indeed, words are closer to human judgment
when we need to quantify “how much” an object is described by an attribute or,
vice versa, an attribute applies to an object [5, 30]. Possible words representing
grades of membership are:

{Fully ,Very Much,Very ,Few ,Very Few ,Not at all}.

For instance, consider the many-valued context Sardinia Hotels which is specified
by the fuzzy relation given in Table 2 where crosses in Table 1 have been replaced
by words, each allowing us to specify “how much” an object has, or is described by,
an attribute, and vice versa an attribute applies to an object.

Consider for instance the hotel H2 in Table 2. It has the attribute SwPool
with grade of membership Fully, which means that such an attribute fully applies
to the hotel H2 (and vice versa the hotel H2 can be properly described by the
attribute SwPool). Instead, the object H2 has the attribute Meal with a member-
ship value Very, which means that such an attribute partially applies to this hotel
(for instance it could provide meals just for lunch). In order to address only ob-
jects related to attributes with relevant grades of membership, a threshold is fixed
such that the pairs with membership values under the threshold are ignored. For
instance, assume that in the Sardinia Hotels context the intervals Very Few and
Not at all are below the threshold. With this assumption, the pair (H5, Sea) is
ignored.

For instance, consider the IFCA context for the Sardinia Hotels shown in Table 2.

SwPool Sea Meal

H1 Fully Fully

H2 Fully Very

H3 Very much Very

H4 Fully Fully

H5 Very Few Fully

H6 Fully Very much

Table 2. The IFCA Sardinia Hotels context, by using words



476 A. Formica

In order to elaborate such grades of membership, words are replaced by intervals
(IT2 FS grades of membership). The association of words with intervals is a problem
which has been extensively investigated in the literature and is still attracting a lot
of attention [25], [27]. A simple association of words with intervals is shown in
Table 3. Therefore, the context of Table 2 becomes the IFCA context shown in
Table 4.

Not at all [0.0, 0.1]

Very few [0.1, 0.3]

Few [0.3, 0.5]

Very [0.5, 0.7]

Very much [0.7, 0.9]

Fully [0.9, 1.0]

Table 3. Mapping words to intervals

SwPool Sea Meal

H1 [0.9, 1.0] [0.9, 1.0]

H2 [0.9, 1.0] [0.5, 0.7]

H3 [0.7, 0.9] [0.5, 0.7]

H4 [0.9, 1.0] [0.9, 1.0]

H5 [0.1, 0.3] [0.9, 1.0]

H6 [0.9, 1.0] [0.7, 0.9]

Table 4. The IFCA Sardinia Hotels context

In IFCA, Concept Lattices are defined similarly to FCA Concept Lattices. For
instance, the IFCA Concept Lattice constructed from the context of Table 4 is
shown in Figure 2. In IFCA an object of a concept is associated with an interval,
standing for the related grade of membership. In the case two or more attributes
apply to an object with different grades of membership (i.e., different intervals) the
object is associated with the interval having, as lower bound and upper bound,
the minimum between the lower bounds and the upper bounds, respectively. For
instance, consider again the concept involving the attributes Sea and Meal, which
in this case is defined as follows:

(((H1, [0.9, 1.0]), (H3, [0.5, 0.7])), (Sea,Meal))

since, as mentioned above, the pair ((H5,[0.1,0.3]), Sea) is not considered because
under the threshold. According to the context shown in Table 4, Sea andMeal apply
to H3 with different intervals, that are [0.7, 0.9] and [0.5, 0.7], respectively. Since
0.5 is the minimum between their lower bounds, and 0.7 is the minimum between
their upper bounds, in the concept above the object H3 has been associated with
the interval [0.5, 0.7]. Indeed this interval represents the highest common grade of
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membership that allows H3 to be described by both the attributes Sea and Meal
(and, vice versa, both the attributes Sea and Meal to be applied to H3).

In the following section, the similarity between concepts in IFCA is addressed.

TOP

BOTTOM

SwPool
H2,[0.9,1.0] H4,[0.9,1.0] 
H6,[0.9,1.0]

Sea, SwPool
H4,[0.9,1.0], H6,[0.7,0.9]

Meal, SwPool
H2,[0.5,0.7]

Sea
H1,[0.9,1.0], H3,[0.7,0.9], 
H4,[0.9,1.0], H6,[0.7,0.9]

Meal
H1,[0.9,1.0], H2,[0.5,0.7], 
H3,[0.5,0.7], H5,[0.9,1.0]

Meal, Sea 
H1,[0.9,1.0], H3,[0.5,0.7]

Figure 2. Concept Lattice of the IFCA Sardinia Hotels context [14]

4 IFCA CONCEPT SIMILARITY

In this section IFCA concept similarity is computed by combining the similarity of
concept extents, i.e., the IT2 FSs of objects, and the similarity of concept intents,
i.e., the sets of attributes.

4.1 Concept Extent Similarity

With regard to the similarity of concept extents, we need to recall a few basic notions
about IT2 FSs. Note that in the literature, the notions of similarity between T2
FSs have been proposed by several authors, and are based on different underlying
definitions (as for instance the notion of cardinality) [16, 34]. Below we focus on
the definitions that are the most frequently used in the literature, which require
a simpler mathematics with respect to the others.

4.1.1 Similarity Between IT2 FSs

In this subsection, the notions of cardinality and average cardinality of an IT2 FS
are recalled [16]. To this end, we first need to remind that the cardinality of a T1
FS A in a space of points X, also referred to as power of the T1 FS A, and denoted
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as p(A), is given by the sum of all membership grades, i.e.:

p(A) = p(µA(x)) =
N∑
i=1

µA(xi). (1)

For instance, the cardinality of the set A:

A = ((H1, 1.0), (H2, 0.5), (H3, 0.5), (H5, 1.0))

is:
p(A) = 1.0 + 0.5 + 0.5 + 1.0 = 3.0.

Given an IT2 FS Ã, the cardinality of Ã, denoted as P (Ã), is an interval defined
as follows:

P (Ã) = [p(µ
Ã
(x)), p(µ̄Ã(x))] (2)

where p(µ
Ã
), and p(µ̄Ã) are the cardinalities of the lower and upper membership

functions, respectively, which are T1 FSs. The average cardinality of an IT2 FS
Ã, indicated as AC(Ã), is defined as the average of its minimum and maximum
cardinalities, i.e.:

AC(Ã) =
p(µ

Ã
(x)) + p(µ̄Ã(x))

2
. (3)

For instance, consider the IT2 FS Ã:

Ã = ((H2, [0.6, 0.7]), (H4, [0.6, 0.8]), (H5, [0.4, 0.9])).

The cardinality of Ã, P (Ã), is the interval having as lower and upper bounds the
sums of the grades of the lower and upper membership functions, respectively, there-
fore:

P (Ã) = [1.6, 2.4]

because:
p(µ

Ã
) = 0.6 + 0.6 + 0.4 = 1.6

and:
p(µ̄Ã) = 0.7 + 0.8 + 0.9 = 2.4.

Then, the average cardinality AC(Ã) is the following:

AC(Ã) = (1.6 + 2.4)/2 = 2.

Let us now address the intersection and union of IT2 FSs. The intersection,
Ã ∩ B̃, and union, Ã ∪ B̃, of the IT2 FSs Ã and B̃ are both IT2 FSs. In particular,
the membership grades of an element x are intervals defined, respectively, according
to the lower and upper membership functions as follows:

Ã ∩ B̃(x) = [min(µ
Ã
(xi), (µB̃

(xi)),min(µ̄Ã(xi), (µ̄B̃(xi))], (4)

Ã ∪ B̃(x) = [max(µ
Ã
(xi), (µB̃

(xi)),max(µ̄Ã(xi), (µ̄B̃(xi))]. (5)
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On the basis of these notions, we are now able to recall the similarity between
IT2 FSs. In particular, we follow the crisp similarity measure proposed by [35], here
referred to as IT2FSim, which is defined below:

IT2FSim(Ã, B̃) =
AC(Ã ∩ B̃)

AC(Ã ∪ B̃)
(6)

and, therefore:

IT2FSim(Ã, B̃) =

∑N
i=1min(µ̄Ã(xi), (µ̄B̃(xi)) +

∑N
i=1min(µ

Ã
(xi), (µB̃

(xi))∑N
i=1 max(µ̄Ã(xi), (µ̄B̃(xi)) +

∑N
i=1max(µ

Ã
(xi), (µB̃

(xi))
. (7)

For instance, consider the previous set Ã, and the set B̃ below:

B̃ = ((H1, [0.4, 0.9]), (H2, [0.7, 0.8]), (H5, [0.3, 1.0])).

Then:

Ã ∩ B̃ = ((H2, [0.6, 0.7]), (H5, [0.3, 0.9])),

AC(Ã ∩ B̃) = ((0.6 + 0.3) + (0.7 + 0.9))/2 = 1.25.

and:

Ã ∪ B̃ = ((H1, [0.4, 0.9]), (H2, [0.7, 0.8]), (H4, [0.6, 0.8]), (H5, [0.4, 1.0])),

AC(Ã ∪ B̃) = ((0.4 + 0.7 + 0.6 + 0.4) + (0.9 + 0.8 + 0.8 + 1))/2 = 2.8.

Therefore:

IT2FSim(Ã, B̃) =
AC(Ã ∩ B̃)

AC(Ã ∪ B̃)
=

1.25

2.8
= 0.45,

which is a crisp measure of the similarity between the IT2 FSs Ã, and B̃. Such
a measure is used in order to evaluate the similarity of concept extents in IT2 Fuzzy
Concept Lattices.

4.2 Concept Intent Similarity

In order to address the similarity of concept intents, we need to briefly recall the
notion of information content similarity. It is based on the well-known notion of
information content, which has been extensively investigated in the literature [23].

4.2.1 Information Content Similarity

Let us consider a lexical database for the English language as, for instance, Word-
Net [9]. Besides English concept nouns, WordNet contains verbs, adjectives and
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adverbs, each associated with the related natural language definition and frequency.
Frequencies are estimated using noun frequencies from large text corpora, as for
instance the Brown Corpus of American English. Concept nouns are organized ac-
cording to the ISA and PartOf relationships, and for each concept noun, a set of
synonyms is given. In order to deal with the information content approach, below
we focus on (fragments of) WordNet ISA hierarchies and, for the sake of simplicity,
without addressing sets of synonyms. The probability of a concept noun c, p(c), is
defined as:

p(c) =
freq(c)

M
(8)

where freq(c) is the frequency of c from a text corpus, and M is the total number
of observed instances of nouns in the corpus. In this paper probabilities have been
assigned according to the SemCor project, which labels subsections of the Brown
Corpus to senses in the WordNet lexicon. In Figure 3, the simple fragment of ISA
hierarchy presented in [13] is recalled, where each concept is associated with the
related probability.

Top (1)

.....

...

Water (0.00248)

Lake (0.00003) Stream (0.00023)

Beach (0.00016)

Sea (0.00043) .....

Figure 3. A fragment of ISA hierarchy from WordNet [13]

The information content of a concept noun c is defined as − log p(c), that is, as
the probability of a concept noun increases, the informativeness decreases, therefore
the more abstract a concept noun, the lower its information content. The similarity
between hierarchically organized concept nouns is given by the maximum informa-
tion content shared by the concepts, that is, the more information two concepts
share, the more similar they are. Given a hierarchy of concept nouns organized
according to a tree (also referred to as taxonomy), consider two concept nouns
of this hierarchy, say c1, c2. Then, the maximum information content shared by
c1, c2 in the taxonomy is provided by the superconcept of c1, c2 whose informa-
tion content is maximum, i.e., the least common superconcept (lcs). In this paper
we focus on concept hierarchies which are trees, therefore the lcs of two concept
nouns always exists. Starting from these assumptions, the information content sim-
ilarity (ics) of two concept nouns is defined by the maximum information content
shared by the concepts divided by the information contents of the comparing con-
cepts [23].
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For instance, in the case of Lake and Sea, Water is their lcs in the hierarchy,
and therefore:

ics(Lake, Sea) =
2 log p(Water)

log p(Lake) + log p(Sea)
=

2 · 8.66
14.85 + 11.18

= 0.67.

Below, the ics is used in order to compute the similarity between sets of concept
nouns, i.e., between concept intents.

4.2.2 Similarity Between Sets of Attributes

In the following, since concept intents are defined by sets of attributes, we refer to
attributes rather than concept nouns. The comparison between concept intents is
performed according to the Hungarian algorithm in polynomial time [21]. Informally,
given a lexical database for the English language, consider two sets of attributes,
say I1, I2, defined in the lexical database. Let a candidate set of pairs be a subset
of I1 × I2 such that there are no two pairs in the set sharing an element. For
instance, assume that I1 and I2 represent a set of boys and a set of girls, respectively,
a candidate set of pairs defines a possible set of marriages (when polygamy is not
allowed). Within all possible candidate sets of pairs, consider (one of) the set(s)
such that the sum of the information content similarity (ics) of the pairs is maximal
(maximum weighted matching problem in bipartite graphs [11]). Such a sum is
indicated asM(I1, I2). Then, the similarity between the sets of attributes I1, and I2,
ASim(I1, I2) is defined as follows:

ASim(I1, I2) =
M(I1, I2)

n
(9)

where n is the greatest between the cardinalities of I1, and I2.
For instance in our running example, assume I1 = {SwPool , Sea}, and I2 =

{SwPool ,Lake}. In this simple case, within the two possible sets of pairs of attributes
that can be formed with I1 and I2 as described above, the set of pairs with maximal
sum is the following:

{(SwPool , SwPool), (Sea,Lake)},

because, of course, ics(SwPool , SwPool) = 1, and ics(Sea,Lake) = 0.67. Therefore:

M((SwPool , Sea), (SwPool ,Lake)) = 1.67,

whereas the other possible set of pairs:

{(SwPool ,Lake), (Sea, SwPool)}

leads to a null value (the ics of both the pairs are null because, according to the
ISA hierarchy of Figure 3, SwPool does not share any information content neither
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with Lake, nor with Sea). As a result:

ASim(I1, I2) =
M(I1, I2)

2
= 0.84.

Now we are able to evaluate the similarity between IFCA concepts, on the basis
of the similarity of concept extents and the similarity of concept intents defined
above.

4.3 Similarity Between IFCA Concepts

In this section, the notion of similarity between IFCA concepts, referred to as
T2ConSim, is presented. It is essentially given by the weighted average between
the similarity of the concept extents and the similarity of concept intents above.
Formally, given two concepts of an IFCA Concept Lattice, namely C1 = (Ẽ1, I1),
and C2 = (Ẽ2, I2), their similarity T2ConSim(C1, C2) is defined as follows:

T2ConSim(C1, C2) = IT2FSim(Ẽ1, Ẽ2) · w + ASim(I1, I2) · (1− w) (10)

where IT2FSim is the similarity between the IT2 FSs Ẽ1, Ẽ2, ASim(I1, I2) is the
similarity between the sets of attributes I1, and I2, and w is a weight, 0 ≤ w ≤ 1,
defined by domain experts depending on the characteristics of the application do-
main. In the case of very small values of w, concept similarity is evaluated by
taking into account mainly the concept intents, i.e., the sets of attributes associated
with the objects of the application domain whereas, in the opposite case, values of
w very close to 1 mean that the computation of similarity is performed by focus-
ing on the specific objects of the application domain, rather than their intensional
descriptions.

For instance, in our running example assume w = 1
2
, and consider the concept:

C1 = (((H4, [0.9, 1.0]), (H6, [0.7, 0.9])), (SwPool , Sea))

of the Concept Lattice of Figure 2. Furthermore, consider the concept C2 below,
defined as follows:

C2 = (((H2, [0.8, 1.0]), (H4, [0.7, 0.9]), (H7, [0.6, 0.8])), (SwPool ,Lake))

and suppose C2 belongs to a different context (it contains the object H7 and the
attribute Lake which do not belong to the context Sardinia Hotels). The similarity
between C1 and C2 is computed as follows:

IT2FSim(Ẽ1, Ẽ2) =
AC(Ẽ1 ∩ Ẽ2)

AC(Ẽ1 ∪ Ẽ2)
=

0.8

3.35
= 0.24



Concept Similarity in Formal Concept Analysis with Many-Valued Contexts 483

because:

Ẽ1 ∩ Ẽ2 = (H4, [0.7, 0.9]),

AC(Ẽ1 ∩ Ẽ2) = (0.7 + 0.9)/2 = 0.8,

Ẽ1 ∪ Ẽ2 = ((H2, [0.8, 1.0])(H4, [0.9, 1.0]), (H6, [0.7, 0.9]), (H7, [0.6, 0.8])),

AC(Ẽ1 ∪ Ẽ2) = ((0.8 + 0.9 + 0.7 + 0.6) + (1.0 + 1.0 + 0.9 + 0.8))/2 = 3.35.

We have seen that:

ASim(I1, I2) = M((SwPool , Sea), (SwPool ,Lake))/2 = 0.84.

Therefore:

T2ConSim(C1, C2) =
1

2
· 0.24 + 1

2
· 0.84 = 0.54.

5 EVALUATION AND DISCUSSION

In line with the work for non-fuzzy concepts presented in [11], the information con-
tent approach and the use of a lexical database for the English language lead to
a fundamental difference with respect to other proposals. In fact, in the absence
of them, the evaluation of the attribute similarity (independently of the related
objects), such as Sea and Lake in the example of the previous section, requires “ad-
ditional knowledge” which, in general, is provided by a panel of experts in the given
application domain [10]. Furthermore, note that T2ConSim is not a distance-based
similarity measure and, in line with the notion of information content similarity on
which it relies, the triangle inequality does not hold [23].

Finally, it is important to note that setting the parameter w in T2ConSim is
a complex problem whose definition is, in general, left to the domain expert accord-
ing to the context, which plays a crucial role when measuring concept similarity [20].
Within similarity measures, this topic has been addressed by several authors in dif-
ferent research areas as, for instance, in [29] where the problem of determining
features’ relevance in the context of Geographical Information Systems has been
analyzed. However, the definition of (semi-)automatic criteria to evaluate context-
dependent parameters is still a challenging topic which requires human expertise
(and goes beyond the scope of this paper).

With regard to concept intents, which are non-fuzzy sets, it is important to recall
that their similarity can also be evaluated by following several different approaches
defined in the literature, as for instance Dice, Jaccard , Cosine [24], etc. Here we
only recall the Jaccard measure since it is the one on which the similarity between
IT2 FSs is based (of course reformulated for crisp sets), and we show the reason why
it is not indicated in order to evaluate the similarity of concept intents.



484 A. Formica

Let I1, and I2 be two concept intents, the Jaccard similarity, Jaccard(I1, I2),
is defined on the basis of the cardinalities of their intersection and union sets as
follows:

Jaccard(I1, I2) =
| I1 ∩ I2 |
| I1 ∪ I2 |

. (11)

For instance, in our running example, consider the intents:

I1 = (SwPool , Sea),

I2 = (SwPool ,Lake),

then, according to their intersection and union sets:

Jaccard((SwPool , Sea), (SwPool ,Lake)) = 1/3 = 0.33.

Note that Sea and Lake do not contribute to the intersection since they are evaluated
as different strings, independently of their semantics. Vice versa, in Subsection 4.2.2
we have seen that, according to the information content approach, the ics between
Sea and Lake is:

ics(Sea,Lake) = 0.67

and:
ASim((SwPool , Sea), (SwPool ,Lake)) = 0.84,

which is closer to human judgment. Indeed, Lin’s approach has been extensively
experimented in the literature and shows a higher correlation with human judgment
than other methods such as Resnik, Wu and Palmer, etc., and the traditional edge-
counting approach [23].

The impact about the use of the information content approach within OFCA has
been experimented in [13]. In the mentioned paper, the experimental results show
that the correlation with human judgment has an average increment of about 0.3,
with respect to the compared proposals. Besides the use of the information content
approach, this significant increment is due to the combination of the concept extent
and the concept intent similarities.

This strong imbalance in favor of the measure proposed within OFCA, on which
this approach is based, makes us optimistic for future possible experimentations and
comparisons with forthcoming proposals within IFCA.

6 CONCLUSION AND FUTURE WORK

In this paper a similarity measure for IFCA concepts has been proposed. It essen-
tially combines the similarity of concept extents, that are IT2 FSs, and the similarity
of concept intents, that are sets of concept nouns. In particular, concept extents
are compared according to the IT2FSim, that is the widely accepted crisp similarity
measure for IT2 FSs, that allows a relevant simplification about the definition of
similarity between general T2 FSs. Concept intents are evaluated according to the
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information content approach, which has been extensively experimented in the liter-
ature and has a higher correlation with human judgment. This combination makes
us confident about future comparisons with forthcoming proposals. In addition, in
this paper both IT2 FS theory and IFCA have been recalled, by providing simple
examples which allow to reach a broad audience of non-specialist readers.

As future work, we are arranging a wide experiment involving the students of our
Institute in order to quantify the correlation of the proposed measure with human
judgment that, unfortunately, is not an easy job due to the complexity of Concept
Lattices.
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