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Abstract. With the ever growing number of edge devices, the idea of resource
sharing systems is becoming more appealing. Multiplayer games are a growing
area of interest due to the scalability issues of current client-server architectures.
A paradigm shift from centralized to decentralized architectures that would allow
greater scalability has gained a lot of interest within the industry and academic
community. Research on peer to peer network protocols for multiplayer games was
mainly focused on cheat detection. Previously proposed solutions address the cheat
detection issues on a protocol level but do not provide a holistic solution for the
architecture. Additionally, existing solutions introduce some level of centralization,
which inherently introduces single point of failures. We propose a blockchain-based,
completely decentralized architecture for edge devices with no single point of failure.
Our solution relies on an innovative consensus mechanism based on verifiable de-
lay functions that additionally allows the network to derive verifiable randomness.
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We present simulation results that show the assignment of players and referees to
instances is pseudo-random, which inherently prevents collusion-based cheats and
vulnerabilities.

Keywords: Edge computing, consensus, peer to peer, network protocol, multi-
player games, blockchain
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1 INTRODUCTION

The gaming industry is worth almost 135 billion at the time of writing [7]. The same
source predicts a steady 10% growth in the next 2 years, reaching 180 billion by the
end of 2021. The recent trends toward multiplayer games have been very successful
with games like Fortnight earning more than 2.4 billion in revenue in 2018 alone [26].
Steam, the biggest game distribution platform reported it serves as much as 18.5
million clients concurrently. Cloud computing enabled servers need to be migrated
real time in order to meet the demand of clients. Additionally, network latency was
reduced due to localisation approaches where servers are spawned geographically
close to clients if possible. However, maintaining a player base of thousands or
even millions together with the hardware and software infrastructure is both very
expensive and difficult to maintain [29]. The recent idea of a “sharing economy” can
be applied in tandem with the paradigm shift to edge computing. More specifically,
clients on the edge of the system can profit from sharing resources, such as bandwidth
and computing power, thereby releasing the burden on centralized servers.

This can be achieved by using a peer to peer (P2P) architecture. P2P gaming
architectures have been studied extensively but have not been widely adopted [29].
The main issues are closely related to the lack of authority and trust. Centralized
architectures solve these issues with authoritative servers. The server’s tasks are to
simulate game play, validate and resolve conflict in the simulation, and store the
game state. P2P multiplayer architectures were previously able to address some of
the cheating vectors but required some level of centralization.

More recently, blockchain technology has gained a significantly large interest.
Research in cryptography and fault tolerant consensus mechanisms has been driving
the evolution of decentralized P2P systems.

The already available schemes that, at least theoretically, address most of the
identified cheats in distributed gaming architectures RACS [28] and Goodman [12]
still retain a central authority either to store the game state or as a refereeing
authority and, thus, still retain the Single Point Of Failure – (SPOF) [8] property.
Our research presented in this paper mostly focuses in the elimination of the SPOF
but still being able to successfully address the same set of cheats. We were able to
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achieve the set goals and were even able to partially address the Collusion cheat, as
described in Section 5.7.

2 STATE OF THE ART

Baughman et al. [3] propose an improvement of their lock-step protocol [2] Asyn-
chronous Synchronization (AS), the first protocol for providing cheat-proof and fair
play-out of centralized and distributed network games. The protocol also provides
implicit robustness in the face of packet loss. At proving the correctness of their ap-
proach, they make a number of assumptions: there exists a reliable channel between
all players; all players know of all other players; players are able to authenticate
messages from each other player; and all players wait only a finite time before mak-
ing decisions and revealing commitments. Their approach can be implemented in a
true peer-to-peer fashion, thus eliminating the SPOF, but, as it can be seen from
Table 1, the approach is not immune to Replay/Spoof cheat [28].

GauthierDickey et al. [11] present a protocol designed to improve on lock-step
protocol [2] by reducing latency while continuing to prevent cheating. They achieve
this by adding a voting mechanism to compensate for packet loss in the environment.
They call this protocol New Event Ordering (NEO).

Corman et al. [6] present SEA protocol and argue that it outperforms NEO
algorithm in all cheat prevention properties; further, they present three possible
cheats that the NEO protocol fails to address: Attacker can replay updates for
another player. Attacker can construct messages with any previously seen votes
attached. Since the votes are signed, the messages will appear to come from another
player. Attacker can send different updates to different opponents.

Cronin et al. [14] present SP protocol which addresses the late-commit cheat
and presents a performance improvement on the existing protocols (lock-step).

Goodman [12] proposes IRS hybrid C/S – P2P design; it operates by routing
request messages through a centralized server and relaying them to proxy clients,
a secure method by which it is certain that the requesting and proxy clients received
the same message. The proxy clients perform calculations for others, relieving the
server of the calculation burden. The code of the IRS approach relies on identifying
malicious clients. This can be done with a certain probability and can still lead to
cheat exploits.

Pellegrino and Dovrolis [20] propose a change from Client-Server architecture to
Peer-to-Peer with Central Arbiter architecture (PP-CA) that contains server band-
width requirements when increasing number of players, effectively solving the biggest
scalability problem. The system still retains the SPOF in the form of the centralized
arbiter. The paper focuses entirely on the elimination of the bandwidth problem
and does not deal with any cheats; actually, it introduces a new form of cheating
(e.g., blind opponent – BO, discussed in Section 3).

Webb et al. [28] compare all algorithms and show that all the previous dis-
tributed protocols and schemes are vulnerable to several cheats. Their proposed
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scheme (RACS), which extends PP-CA [20], solves most of the problems but still
has the SPOF in the form of the Identity server and Referee: a process running on
a trusted host that has authority over the game state.

Most of the presented protocols are SPOF-free as they address only the P2P
communication protocol but are vulnerable to cheats, as can be seen on Table 1.
The RACS and IRS address most of the cheats but reintroduce the SPOF. Our
scheme eliminates the SPOF problem and still retains all the properties described
in RACS [28] and at least partially deals with the Collusion cheat that, at least in
our opinion, cannot be eliminated by means of protocols and technology.

3 CHEAT TAXONOMY

In this article, we use the definition of Yan and Randel [30] for online game cheating:
“Any behaviour that a player uses to gain an advantage over his peer players or
achieve a target in an online game is cheating if, according to the game rules or
at the discretion of the game operator (i.e., the game service provider, who is not
necessarily the developer of the game), the advantage or the target is one that he is
not supposed to have achieved.” Cheaters try to gain unfair advantage over other
players. This can totally destroy the in-game economics of an online game or simply
ruin the gaming experience. Grievers, as the name implies, are players with the
sole intention of hurting other players’ experience as much as possible. When this
behaviour adheres to game rules, it is technically not a form of cheating and is out
of scope of this paper. Both groups exploit the same set of cheats.

The taxonomy presented in Table 1 and accompanying text and later used in this
paper follows the taxonomy presented in Web et al. [28] and Yahyavi et al. [29], we
added 3 additional entities, 2 were not addressed by the previous research (Robust-
ness and User data privacy), the last one (Lack of Devices Situation) is a consequence
of our approach and not applicable to other architectures. It is addressed later in this
section. Multiple authors addressed the issue of systematic classification of cheating
in online games, such as Yan and Randel [30] who present a taxonomy of 15 types
of cheats and just by comparing the number of entries we could assume that the
later introduces additional forms. We argue that the set of cheats presented in our
paper fully covers the whole set presented in Yan and Randel [30] with the addition
of two new entries that are discussed separately. The translations are presented in
Table 1 in the second column. The “Cheating by compromising passwords” can be
classified as “Social engineering” class and as such omitted. We argue that these
two entries cannot be successfully addressed by the game architecture, they must
be addressed mostly by informing the players.

1. Bug – bugs in games can lead to potential misuse by the players. No scheme
directly addresses this problem, it is assumed that the bugs will be fixed by
software developers.

2. IE, IC – the goal of IE (Information Exposure) is to obtain secret information to
which the cheater is not entitled, thus gaining an unfair advantage in selecting
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Yan Problem/Cheat RACS IRS C/S AS NEO Damage

1 L Bug
√ √ √ √ √ √

2 A, F, H IE, IC
√ √ √

× ×
√

3 Bots × × × × × ×
4 A, C, F Supp. update, TS, FD

√ √ √ √ √ √

5 A, F, H Replay, Spoofing
√ √ √

×
√ √

6 A, D, F, H Undo n/a n/a n/a
√

× n/a

7 A, C, F, H BO
√ √

n/a n/a n/a
√

8 G DDoS
√ √ √ √ √ √

9 B Collusion × × × × ×
√1

10 M, Robustness × × × × ×
√

11 J User data privacy
√ √ √

× ×
√

12 Lack of Devices Situation n/a n/a n/a n/a n/a
√

13 E Exploiting AI n/a n/a n/a n/a n/a n/a

14 I, O Social Engineering n/a n/a n/a n/a n/a n/a∗

Table 1. Chart presenting all identified cheats and schemes for detection and removal.
The n/a is given to a scheme that does not have to deal with the observed cheat for
implicit reasons (mostly architectural).

the optimal action. The IC (Invalid Command) cheat occurs when an applica-
tion or data files are modified to issue commands or command parameters that
originally could not be generated.

3. Bots – programs that act as players can be introduced to the game. The pro-
grams can exercise number of cheats including Collusion.

4. Supp. update, TS, FD – A cheater can suppress sending the state update, send
the updates at a slower rate (FD) to gain advantage or incorrectly timestamp
messages to gain advantage.

5. Replay, Spoofing – a player can obtain advantage by replicating messages by
means of local software instead of using the tools provided by the game (example:
sending impossibly fast series of missiles).

6. Undo – a player succeeds to undo a previously sent message after already re-
ceiving the opponents message and realizing that the original message was not
optimal.

7. BO – in distributed schemes that use a Central Arbiter (CA), such as PP-
CA [20], cheater may purposely withhold updates to his peers (but not to the
CA), effectively covering own actions.

8. DDoS – a (cheating) player may use DDoS [17] attack to temporally disable the
opponent to send messages and thus get advantage.

9. Collusion – unfavorable situation may occur whereby certain clients cooperate
with one another in order to gain unfair advantage over others. Collusion via
the use of external communication is difficult to eliminate due to the use of
non-monitored means of communication [12].
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10. Robustness – The robustness metric shows how much is the system or scheme
or protocol fault tolerant (how much it is tolerant to node failure, at the worst
to server node failure). The basic Client-Server architecture is the least robust
and totally decentralized system is the most robust.

11. User Data Privacy – user profiles with scoring and possibly in-game funds and
purchases are stored for future use. Client Server architectures use the server as
a means for reliable storage, distributed systems have to deal with security risks
as the data is spread on the network or stored locally at clients an thus easily
available for tempering.

12. Lack of Devices Situation – all schemes that rely on an outer referee (an external
entity that is not part of the game) rely on the availability of the referee. In
decentralised architectures where refereeing is done by other players, the scheme
relies on availability of adequate number of players.

13. Exploiting AI – Exploiting artificial intelligence (AI) cannot be handled within
the protocol or the architecture. The idea that a player can use an AI to improve
its decision making in a game is not possible to detect on the protocol level.

14. Social Engineering∗ – social engineering is a very broad term. Generally, it in-
volves using social information about a player to trick the person into revealing
sensitive information pertaining to a game, i.e. passwords. Our protocol uses
ECDSA public cryptography, and does not require passwords. The authentica-
tion is not necessary as messages exchanged between players are all signed and
verified.

4 DECENTRALIZED ARCHITECTURE FOR THE EDGE

Previously proposed P2P architectures rely on some level of centralization. We pro-
pose a completely decentralized architecture for edge devices that would inherently
circumvent the single point of failure (SPOF). In contrast to client-server (C/S)
architectures, where the server is authoritative, P2P networks are arguably more
exposed to cheats and vulnerabilities. To address the issues Web et al. propose
RACS [28], a referee node that takes the authoritative role in case of conflicting or
inconsistent states between players.

However, RACS does not address issues of node selection. In completely decen-
tralized networks, deriving secure randomness is an open question. From a security
point of view, a decentralized random generator must not be known in advance to
avoid attacks and vulnerabilities based on information exposure (IE). At the time of
writing, most networks rely on oracle networks secured with game theoretical incen-
tive schemes [21, 10]. However, the security models for such systems require strong
incentives, which are mostly based on staking mechanisms that introduce penalties
for bad actors and rewards for good actors [13]. A recent paper proposed a mathe-
matical construction for verifiable random functions (VDF) [4], an extension of time
lock puzzles [22] that produce verifiable proofs of computation. More specifically,
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VDFs are similar to time lock puzzles but require a trusted setup where the verifier
prepares each puzzle using its private key. Additionally, a difficulty parameter can
be adjusted to increase the amount of sequential work, thereby increasing the delay.
The proof can be used as an entropy pool for a seeded random to derive randomness
within a decentralized system while preventing attacks based in IE. We solve the
requirement for a trusted set up (private key of the VDF) by using a blockchain
structure. Blocks have a configurable block time parameter, which is used to adjust
the difficulty parameter of the VDF, to target the block time. The consensus algo-
rithm is a novel lottery draw scheme, where nodes draw lottery tickets in order to
be voted as block producers.

Suppose the current block is H at height (canonical id) h. The block hash of
blockH is used to compute the VDF and obtaining proofHp. Each node n ∈ N then
draws its own lottery ticket Ht, which is defined as the distance between the node’s
public key, andHp. Since all nodes share the sameHp, and all nodes (asymptotically)
computed Hp at the “same” time, the lottery draw is not predictable. A node is
elected to be part of the validator set if Ht is within the v closest tickets, where v is
a configurable parameter usually set to P

PPI
, where P is the total number of players,

and PPI is the number of players per instance. Nodes that belong to the validator
set are considered referees, and block producers for block H + 1. The structure of
the block is shown in Figure 1.

Previous block
hash

Current block
hash VDF_proof Validator

signatures

Scores for games
ended

Players assigned to
instances

Players waiting to join Cheaters detected

i1(key,score)
i2(key,score)

.

.
in(key,score)

i1:(key1,...key n)
i2:(key2,...key n)

.

.
in:(keyn,...key n)

pub_key1

pub_key2

.

.
pub_keyn

(i1,b_key)1
(i2,b_key)2

.

.
(in,b_key)n

Figure 1. The Header of a block contains the previous block hash, current block hash,
VDF proof, and signatures of all validators that signed the block. The body of the block
contains a list of game instances that completed (combination of players public addresses),
and their scores, a list of players waiting to join the next round (block), and a list of
instances with assigned players that were in the waiting queue of the previous block.

Players are uniquely identified by their public key. Each player generates a pub-
lic-private key pair before connecting to the P2P network. Upon joining the network,
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players synchronize the last block to find the validator set. Querying the Distributed
Hash Table – DHT [25], a node connects to the one or more validators to broadcast
their intent to join a game. Once consensus is reached amongst the validators, a new
blockH will be forged that will include the player’s public key in the players awaiting
list. Players will receive block H, learn about their inclusion to the awaiting list,
and wait for block H + 1. Note that the target block time is configurable with
the VDF difficulty and should be set by the game operator. Upon receiving block
H + 1, the players’ public key will be assigned to an instance. Each instance has
a unique ID, which is obtained by concatenating the public keys of players assigned
to the instance. Each player parses the instance ID to obtain the public keys of
opponents and connects to them by querying the DHT (with the public key) for
their address. The last address of the instance ID is the assigned validator that will
assume the role of the referee. Once the instance is resolved (game finished), the
referee (also a validator) will inform all other validators and propose the inclusion of
the decision/score in the next block. Validators will vote on the proposed block by
signing it with their public key. Clients can verify their signature using their public
key. In case a referee of an instance detected a cheater, a proof can be sent to the
set of validators for confirmation. The details of how this is achieved are explained
in detail in Section 5.

A candidate block H+1 is then transmitted (using gossip protocol) [15] through
the P2P network. Each client accepts the block if and only if the block references the
local block hash at height h, the provided proof Hp is valid, and the candidate block
contains signatures of all validators whose public keys can be computed by each
node using Hp. The nodes that are part of the validator set execute a matchmaking
algorithm that must be deterministic (but can rely on randomness derived from
Hp) and can use the previous block as input (list of players wanting to join). The
matchmaking algorithm assigns player to game instances, and referees from the
validator are set to act as authoritative nodes. The deterministic nature of the
matchmaking algorithm is used to reach consensus amongst the validator nodes.
The consensus is reached as all honest nodes will construct the same candidate block
and will sign all candidate blocks equal to theirs. The result will be a candidate
block signed by the majority of validators.

The construction assumes validators, referees, and players to be players. How-
ever, a set T of trusted nodes is required and assumed to be maintained by the
game maintainers. These nodes are called full-nodes and are necessary to guaran-
tee liveliness of the system even in extreme cases where there are no players in the
network. Full-nodes are also responsible for permanently storing the blockchain and
maintaining a DHT-based structure other nodes can query to discover other peers.
Players are assumed to be lite clients that do not need to store the entire blockchain
history in order to participate in the consensus [27]. Additionally, referees are as-
sumed to be players as well. The matchmaking algorithm should avoid assigning
players to be referees to their own game instance.

Each game can have one referee, which arguably decreases the robustness. All
decisions about conflicts proposed by a referee must be presented to the validator
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set in order to reach consensus and gather enough signatures to make the block
valid. However, the referee can unexpectedly disconnect or even worse, be attacked
by a player during the game. To circumvent this issue, any number of validators
can be assigned as backups in case the referee is unresponsive.

Referees in DAMAGE are running the same protocol as RACS. However, in
case a referee detects a cheating player, the proof (usually a set of states that allow
validators to recreate/simulate the game) must be presented to the set of validators
(also RACS referees). Consensus is reached if and only if 2

3
validators agree [5].

Decisions about the proposed cheat detected is done by voting for the block. Each
block contains a list of (public key, instance key) pairs and the type of cheat detected.
Assuming the validator is honest, and the referee proposing the detected cheat is
as well, both validators will reach the same conclusion and thus sign the block. In
any other case, the block will only be signed by the malicious validator. Proposals
that do not reach consensus are considered invalid blocks and will be rejected by
the client protocol. A subset of nodes (without the majority vote) running modified
clients may choose to accept the invalid block, thereby forking the chain [1]. In such
cases, the next block would either resolve the fork if it is accidental or disconnect
(network level) the subset of nodes with the modified protocol due to an invalid
VDF proof on the forked chain.

5 SECURITY MODEL

All communication between peers provides the same level of security to that of
C/S architectures by using public key (ECDSA) cryptography. DAMAGE provides
a secure and completely decentralized protocol for selecting referees, and match
players to game instances. However, the player and referee protocols are based on
RACS [28] and therefore DAMAGE inherits cheat detection properties of RACS,
and extends them with efficient and secure peer selection, peer synchronization,
robustness, and some aspects of collusion.

5.1 Referee Selection

We address the issue of Referee selection by using VDF to derive randomness with
which a lottery-based consensus is reached. The sequential nature of VDFs prevents
IE attacks where a player would compute the VDF and, using the proof, obtain
information about which nodes are part of the validator set and which node is
assigned as the main referee to each game. Game operators should set the difficulty
parameter according to their desired performance/security ratio. A more difficult
VDF will result in players waiting to be matched to an instance longer (i.e., a few
seconds), while a lower difficulty will potentially allow malicious players to discover
the nodes that will be within the set of validators before others. We argue that
knowing the set of validators and, consequently, the referee node for a game does
not give the player a competitive advantage. This is further explained in the case
of collusion.
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5.2 Referee Trust

In RACS scheme referee nodes are assumed trustworthy (the authors acknowledge
this to be an open issue). We solve this issue with the validator set. Even if a RACS-
based referee is compromised, any player can dispute the referee and seek a decision
by consensus within the set of validators. The player would then have to compromise
2
3
nodes in the validator set, which is not known in advance and changed every block.
Instead of using only one referee per game, we propose to establish a Referee set

(validator set of referees) that. Additionally, the cardinality of the validator set is
a configurable parameter analogous to the trust level required by the game (higher
trust requires bigger cardinality).

5.3 Synchronization

On the data layer, nodes synchronize through the blockchain. Blocks store the
current state of the system on lite clients and the entire history on full-nodes main-
tained by the game operators. Blocks are gossiped across the network efficiently by
maintaining a DHT that maps nodes (public keys) to their network addresses. Ad-
ditionally, referees in the validator set must synchronize and reach consensus about
the detected cheats and results of the games played. Due to the deterministic nature
of the cheat detection algorithms, honest nodes will reach the same decision as the
referee that reported the cheat. Consensus is reached if the majority of the validators
sign the proposed block (which includes the decision about reported cheats).

5.4 Robustness

DAMAGE uses redundancy to increase fault tolerance. There are two main types of
faults that can occur. A peer can fail (disconnect or violate protocol) before, after
or during playing the game, and a peer acting as a referee (and also as a player in
a different game) fails at the same time.

Player faults after entering matchmaking: A peer that faults after it an-
nounced inclusion to the validator set will cause the validators to match its pub-
lic address to an instance. Other peers attempting to connect will fail and/or
result in protocol violation. It is up to the client protocol to decide if the game
instance can continue to run without the faulty peer or not. In case the instance
must be destroyed, this can be trivially solved by extending the referee’s proto-
col to label this as a “cheat”. The referee will announce the instance destruction
to the validator set.

Player faults during the game: If possible, the game instance should keep run-
ning. If not possible, the referee should notify the validator set about the de-
struction.

Player faults after the game: No effect on the system.
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Faulty validators (referees) are arguably a bigger security issue. Even without the
ability for players to know which referee will be assigned to their instance there
is still a possibility of DDoS attacks on referees during the game. To combat this
issue, validators form a randomly shuffled priority queue using the VDF proof. The
priority queue is a backup queue of referees that will take over an instance in case
the referee assigned faults. The fault tolerance can be increased on demand by
increasing the size of the validator set. However, detecting a faulty referee must be
done by peers playing in the instance. If messages from peer to referee are either
latent or connection is dropped, client protocol will take the following steps:

1. Set up a seeded random with the latest block (local) of the VDF proof.

2. Compute the lottery draw results to find the public keys of the validator set.

3. Shuffle the validator set list with the same seed.

4. Contact the next validator (backup referee for its game).

5.5 User Profile Management

Previous research relied on a central authority for authenticating users and manag-
ing their profiles such as avatars, variables, and metadata. Our architecture can be
extended with a completely decentralized storage and authentication service, a cen-
tralized authoritative server as well as inter-operability between both. A blockchain-
based authentication service can be built in by extending the block structure [18].
Additionally, blocks can be used for persistent immutable storage. However, storing
data in blocks raises scalability issues [31, 24] as the blockchain becomes hard to
maintain even for full nodes. Hybrid approaches have been proposed where data
is stored centrally whereas the signatures are stored on-chain [31]. This creates
a tamper-proof system where data can be verified and trusted as any attempt to
tamper with the data would invalidate the signature (hash) [24].

5.6 Lack of Devices Situation

The refereeing process relies on a set of validators that are randomly chosen for
each block time-cycle. The randomness of selection ensures that a player cannot
know who is refereeing the next game. Player’s devices are used to act as validators.
The pool of validators cannot be constructed if there are not enough players. It
is developers’ or game operator’s task to supply enough (a fixed number that does
not grow with player-base) resident secure services (servers) that act as starting
validators. These actors also maintain the blockchain (full nodes).

5.7 Collusion

Assuming the game runs multiple instances, we argue collusion between players is
not possible. We assume colluding players know and, hence, trust each other.
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Figure 5 shows a graph of a simulation of 200 players as nodes. The edges
represent the number of games (weight) a player was assigned another player as
the referee for the instance the player was matched to. Simulating 1 000 blocks,
the average degree was 200, and the graph density was 1. We observe that the
assignment of a referee and opponents derived using the VDF proof are thereby
random. Hence, players cannot know in advance which instance the set of validators
will assign them to nor the referee that will observe the game. Section 6.2 and
Figure 5 present an empirical evaluation of the “fairness” of the selection method
based on VDF. Suppose the colluding players are able to compute the VDF proof
faster then other players, and, hence, learn about the game instance assignment in
advance. However, since the seed for the next VDF is the block hash, the colluding
players can see at most one block time into the future. Every player must announce
the desire to be matched to a game in the current block (players awaiting list).
Matching awaiting players will be executed in the next block. Despite the ability to
see one block in the future, colluding players seek assignment to the same instance
since they must announce their willingness to play before they learn about the
instance assignment even in the worst case scenario.

6 EVALUATION

The paper presents a scheme to eliminate all known cheats in a fully distributed game
setting. The scheme eliminates the SPOF problem in previously presented hybrid
P2P – Referee settings for solving game cheats. We base our solution on already
presented solutions, mostly RACS [28]. We present simulation results leading to the
following conclusions:

• The VDF based selection of referees and players is fair.

• The block propagation scales well.

• Block propagation times are acceptable for fast match making, and conflict
resolution.

• Dynamic block size does not impact performance of the system.

• Players do not need to maintain a large number of outgoing connections.

• Latency and bandwidth do not substantially slow down information propagation
through the network.

The scalability of the solution is addressed in two ways. The first is the scalability
of the consensus mechanism and the ability to propagate state and state transition
depending on the block size. In this test we show that the solution can scale to
hundreds of thousands of nodes and achieve consensus.

The second scalability test is performed by introducing variance in latency and
bandwidth to mimic the instability of home internet connections under standard
TCP/IP parameters.
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Since every player is also a node, and potentially a referee, we argue that scal-
ability in terms of number of players can be derived by the aforementioned tests.
Additionally, due to the nature of the P2P architecture, once players are matched
into a game instance, the entire communication is done solely between them, and the
referee of that instance, which is completely independent of the rest of the network,
and hence does not impact the scalability.

In order to evaluate the solution a simulation environment was developed. We
simulate a P2P network where each peer (player) has the following constraints:

• Local bandwidth constraints. Bandwidth constraints are assigned to peers join-
ing the network based on the distribution obtained from the European report
on network bandwidth [9].

• Maximal number of outgoing connections (out edge degree) is assigned to nodes
(MAE), we ran tests with different values of this parameter, they are color-coded
in Figure 3.

• Each node’s connection is single-directional taking into account upload and
download bandwidth constraints of sender and receiver.

• Each new connection is assigned a round trip time (RTT) to represent variance
in latency. RTT values are assigned randomly fitting a Gaussian distribution
on an interval [30, 250]ms, the values were taken from the European report on
network bandwidth [9].

• Actual throughput of each connection is estimated using the Mathis metric [16]
with following parameters that were taken from real-life situations: maximum
segment size (MSS) of 1460 bytes (most used in today’s communications as
shown in papers such as [23]), the connection’s RTT, and a TCP packet loss
probability of p = 1.0 ∗ 10−5 [19].

Nodes (players) join the network by connecting to one of the trusted nodes. Trusted
nodes are those operated by the game maintainer and serve only as the entry point
for new peers to discover other peers or if needed to persistent storage for player
accounts. A node proceeds to run the peer discovery protocol building the DHT.
When new nodes are discovered, the peer attempts to make new connections until
theMAE limit is reached and the node is considered to be well connected. Examples
of different architectures (presented by connected directed graph) for 20 nodes are
presented in Figure 2.

Once a new block is forged the origin nodes propagates the block using a ba-
sic flooding algorithm simulating the bandwidth, and TCP constraints. In each
simulation, multiple directed graphs are constructed following the above protocol.
Simulations were carried out with different number of nodes to observe the scalabil-
ity of the solution. We measure propagation time as the total time it takes for all
nodes to receive a newly forged block.
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a) b)

c) d)

Figure 2. Examples of different architectures obtained by simulation. Number of nodes
in all examples is n = 20.
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6.1 Block Propagation Times

Blocks hold the state of the match making and games being played. Lowering
the block time (VDF difficulty) would result into a more responsive experience.
However, lower block times reduce security, and can cause network congestion. To
avoid possible client synchronization issues the network must be able to reliably
propagate blocks before new ones are forged. Additionally, the propagation times
vary depending on the network topology, block sizes, and average node degree.
We evaluate the scalability of propagating blocks in order to estimate viable block
times, and show the scalability of the solution. From Figure 3 we observe that
propagation times scale logarithmic as we increase the number of clients. Addi-
tionally, increasing the number of outgoing connection a node maintains reduces
the average propagation times as it reduces the risks of unfavorable graph typolo-
gies.
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Figure 3. Simulation of block propagation on different graph configurations. Configura-
tions are obtained by increasing the node count (number of players), and out degree using
a block size of 1MB.

Block size scales lineally with the number of clients. Every block has a constant
size for the header, which is 64 bytes for previous and current block hash, 100 bytes
for the VDF proof, and at least one validator signature of 64 bytes. As more
players join the network, more games need to matched, assigned to instances, and
scores saved. Figure 4 shows how the network scales with different block sizes. We
observe that latency and bandwidth speeds of some nodes can cause considerable
propagation slowdowns indicated by some outliers. However, this can be mitigated
by having nodes maintain a dynamic number of outgoing connections increasing the
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limit as blocks become larger (more players), and lowering the limit as blocks are
smaller.
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Figure 4. Simulation of block propagation on different graph configurations. Configura-
tions are obtained by increasing the block size. Nodes were limited to 3 outgoing connec-
tions.

6.2 The VDF Based Selection of Referees and Players is Fair

Figure 5 shows a graph of a simulation of 200 players as nodes. The edges represent
the number of games (weight) a player was assigned another player as the referee for
the instance the player was matched to. Simulating 1 000 blocks, the average degree
was 200, and the graph density was 1. We observe that the assignment of a referee
and opponents derived using the VDF proof are thereby random. Hence, players
cannot know in advance which instance the set of validators will assign them to nor
the referee that will observe the game.

6.3 The VDF Method Scales Well

The setting presented in Section 6.2 and Figure 5 shows that the VDF based selec-
tion method is fair, the graph shows 200 players and 1 000 blocks, as this was the
maximum feasible number combination that was still manageable to visualize. The
setting was further evaluated with different parameters for the number of players,
number of players per game and number of blocks. The number n of players per
game: means a game where n players participate, Number of blocks: how much time
the matchmaking process was observed. We evaluated the setting with 200, 1 000
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Figure 5. Simulation of 200 players in a 2-player game (PPI = 2) that played a total of
1 000 games. Nodes are players and edges represent instances where the destination node
was referee for the instance the player was matched to.

and 10 000 players, 1 000, 2 000 and 10 000 blocks, we also changed the number of
players per game. All results were consistent with the first test, the degree of all
players was near the number of players and the density of the graph was near 1.

7 CONCLUSION AND FURTHER WORK

The paper proposes a blockchain-based, completely decentralized architecture for
edge devices with no single point of failure that successfully addresses cheat prob-
lems. The presented solution is based on two hybrid approaches to P2P network
games anti-cheat schemes that were based of server acting as referees. We propose
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a completely decentralised approach while still retaining the same cheat resistance,
actually in the case of Collusion we were able to partially address the issue. The pro-
posed solution has not been fully implemented, we implemented the newly proposed
building stones and executed empirical testing on a pilot setting. As the solution
addresses the cheating problem in all aspects, a fully functional implementation is
possible. DAMAGE is applicable to most game types. However, it is most suit-
able for turn based games, where potential latency does not impact user experience
dramatically. Additionally, it reduces the complexity of the referee implementation
due to the simple ordering of actions in the discrete time. Our results show, that
the architecture scales automatically with the number of players thereby drastically
reducing operation costs of running a multiplayer game. Every player added to the
system also becomes a node, sharing its resources and contributing to verification
as a potential referee.
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