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Abstract. Low Level Virtual Machine (LLVM) is a widely adopted open source
compiler providing numerous optimization opportunities. The discovery of the best
optimization sequence in this large space is done via iterative compilation, which
incurs substantial overheads, especially for big data applications operating on high
volume and variety datasets. The large search space is mostly comprised of identical
codes generated via different optimizations. However, no mechanism is implemented
inside the LLVM compiler to suppress the redundant testings. In this regard, this
paper proposes REDUCER for eliminating the identical code executions by per-
forming Intermediate Representation (IR) level comparisons. REDUCER has been
tested using the well-accepted MiCOMP technique in LLVM 3.8 and 9.0 compiler,
with embedded (cBench) and big data workloads. In comparison to MiCOMP 19.5 k
experiments, REDUCER lowers the experiment count up to 327, i.e. 98%, and on
average to 4 375, i.e. 77%, for cBench (LLVM-3.8). Similarly, for LLVM-9.0 the
reductions are up to 1 931, i.e. 90%, and on average 5 863, i.e. 69.9%. Due to the
significant experiment reduction, for embedded workloads, the iterative compilation
is up to 58.6× and on average 4.1× faster with REDUCER (LLVM-3.8) than Mi-
COMP, whereas, with REDUCER (LLVM-9.0) the compilation is up to 8.5× and
on average 2.9× faster. Moreover, REDUCER is found to be scalable and efficient
for big data workloads where the iterative compilation is reduced to few days, as
code is compared one time only for a single application tested on multiple datasets.
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1 INTRODUCTION

Low Level Virtual Machine (LLVM) [1] is an open source compiler infrastructure,
which is widely adopted due to high ease of use, flexibility, portability, and modular-
ity [1, 24, 23]. It features source and target independent Intermediate Representation
(IR) code, which allows numerous optimizations to be easily applied. Among the
millions of available optimizations inside LLVM, the suitable optimizations for the
given application, environment (architecture, OS, compiler), and dataset combina-
tion can be found by repeated execution of the program with each optimization,
commonly known as iterative compilation. The testing of this huge search space for
varying application, dataset, and environment incurs significant time and resource
overheads. These costs are especially exaggerated if the optimizations are tested for
big data applications [7], involving high volume and variety datasets [12]. In the
case of volume, each optimization sequence is executed with a large data size which
is more time-consuming than routine sizes. Similarly, in the case of variety, each
optimization is iteratively executed with multiple datasets, increasing the number
of runs.

Several techniques [14, 15, 3, 10, 11] have been proposed for reducing the search
space in LLVM. However, these techniques consider the identical codes as separate
optimization, hence increasing the overall search space due to redundant testings.
Although [20, 22, 19], emphasizes on reducing the search overhead by detecting iden-
tical codes. But, no such method has been practically adopted by LLVM compilation
techniques, for detecting identical optimization sequences. Instead, iterative compi-
lation is treated as a black box, and complex techniques are proposed for reducing
the search space.

The repeated code execution makes the process of iterative compilation infeasible
by unnecessarily increasing the number of experiments which ultimately leads to
heavy resource and time wastage. The overheads are especially inflated for big
data applications processing high volume and variety datasets [7, 12]. For instance,
an application has total 19.5 k optimized codes, with only 500 unique codes. If the
application is tested with large size data taking approx. 3 h, then 19.5 k∗3 = 58 500 h
approx. is required to find the best optimization sequence, having 19 k redundant
experiments. Whereas, if the unique 500 codes are detected at the start, then
only 500 ∗ 3 = 1 500 h + detection time is needed to search the best optimization.
Similarly, for testing the considered application with 5 varying datasets each taking
2 h, approx. 19.5 k∗2∗5 = 195 000 h is required with 19 k redundant tests. However,
if the redundant tests are suppressed, then only 500∗2∗5 = 5 000 h+detection time
is enough.

For reducing the LLVM optimization space, this paper proposes REDUCER,
which lowers the search space by detecting identical codes. It has been tested using
well-accepted Mitigates the Compiler Phase-ordering (MiCOMP) [3] technique in
Low Level Virtual Machine (LLVM) compiler [1]. LLVM makes the REDUCER
portable enough to work on any host platform as the reductions are made on the
basis of machine-independent code. REDUCER selects the executable candidates
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after comparing the generated IR with the already existing IR codes. In case, only
if the IR does not match with existing IRs, it is selected as an executable candidate.
REDUCER testing has been performed using embedded, i.e. cBench benchmark
suite (LLVM-3.8&9.0), and big data workloads (LLVM-9.0). MiCOMP [3] was
tested in 2017 on LLVM-3.81, using agglomerative clustering, thus for LLVM-9.0
we have extended MiCOMP approach by finding the optimization clusters, but
using k-means algorithm. It has been observed that our derived k-means based
sub-sequences for LLVM-9.0 exploit greater speedup than MiCOMP’s agglomerative
based [3] sub-sequences for LLVM-3.8.

For both LLVM 3.8 and 9.0, REDUCER shows substantial reduction in ex-
periment count of embedded workloads. Also, it is discovered that the increase
in optimization sequence length, increases the redundancy fraction, which encour-
ages the testing of longer sequence lengths. In this manner, the larger optimization
space can be exploited, which has been uncovered till now. Moreover, Dynamic
Programming (DP) has been applied to estimate the unique code sequences. DP is
found to be less accurate than REDUCER, with increased experiment count. De-
spite a significant number of code comparisons, REDUCER is observed to be faster
than MiCOMP, and this speed is expected to significantly increase for longer se-
quences and big data applications. As evident via experiments, REDUCER cuts
down the iterative compilation of big data benchmarks to a few days in comparison
to months and years taken by MiCOMP. This way, the possibilities of finding the
best optimization sequence for big data applications are enlarged due to REDUCER.
Hence, REDUCER is a simple yet effective solution to be adopted by any iterative
compilation technique. Following are the main contributions of this paper:

1. To the best of our knowledge, the first work which practically accelerates the
iterative compilation process of LLVM by reducing the search space via simple
IR code comparisons.

2. Higher portability, i.e., REDUCER can work on any host platform due to ma-
chine-independent LLVM IR code.

3. Exploitation of greater speedup by extending MiCOMP for LLVM-9.0 using
k-means clustering.

4. Facilitating the iterative compilation process for big data applications, i.e., re-
peated tests are suppressed by comparing code one time for a single application
tested on multiple datasets.

5. Facilitating the exploitation of large search space via longer sequence length, be-
cause the analysis shows redundancy fraction is increased with sequence length.

Rest of the paper is organized as follows: Section 2 discusses background and
motivation, REDUCER is presented in Section 3, the experimental setup is discussed

1 LLVM-3.8 was the newer version in 2017, but at the time of experimentation of this
paper, i.e. 2020, LLVM-9.0 is the newer version.
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in Section 4, Section 5 analyzes the results. Section 6 discusses the related work,
followed by a conclusion in Section 7.

2 BACKGROUND AND MOTIVATION

This section discusses various terminologies and concepts. Also, the motivation
behind this work is presented.

2.1 Compiler

Compiler is a program that translates the high-level language code into architec-
ture specific assembly and enables the optimizations for exploiting the hardware
resources. This implies that despite the presence of powerful hardware design, the
performance goals are not met due to a lack of competent software solutions. In the
present era, the hardware resources (processors, caches, DRAMs, and hard disks)
show reliance on the compiler for extracting the higher performance, energy ef-
ficiency, and reduced development time. The compilation life cycle proceeds by
passing the source code through front end, middle end (optimizer), and back end.
The front end emits Intermediate Representation (IR) code, which is passed through
middle end to perform specific optimizations like inlining, unrolling, etc. In the end,
the back end generates the machine code [25, 18, 8, 9, 2, 17].

2.2 LLVM

Low Level Virtual Machine (LLVM) is an open source compiler infrastructure, con-
taining reusable and modular compiler technologies. It provides wide optimization
opportunities due to library based optimizer’s design. Besides, it allows flexibility as
the optimizations passes can be ordered to be executed in a specific order. This way,
the design enables the selection of individual optimization passes to execute. LLVM
allows working with anyone optimizer separately, without considering other modules
attached to it. Whereas, the traditional compilers are designed as tightly intercon-
nected code, which is tougher to break into small parts for better understanding
and use. The LLVM code is represented by Static Single Assignment (SSA)-based
Intermediate Representation (IR), which provides low level operations, type safety,
portability, flexibility, etc. The LLVM IR appears to be a universal IR, as all the
phases of LLVM compilation use this IR [1, 24, 23].

2.3 Iterative Compilation

For an application, dataset, and architecture, the optimal set of optimizations is
found via iterative compilation, where the best optimization combination is detected
by running a program multiple times, each time with different optimizations combi-
nations. This iterative testing involves billions of different optimizations. To avoid
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this huge space exploration, standard optimizations, i.e., -O1, -O2, -O3, -Os, have
been provided in commercial compilers, which on average bring good performance on
a set of applications. However, there exist optimizations combinations that outper-
form the standard optimization levels for many programs by a considerable margin.
Finding the best optimizations ordering can significantly improve the performance
metrics like execution time, energy, power consumption, and code size.

Despite the great potential offered by iterative optimization, it is not widely
used in compilers, because it requires numerous recompilations and training runs
to detect the best optimization combination for a given program. This way, the
costly overhead of recompilation and training runs can eradicate the benefits of
iterative optimization, hence it is not a feasible option due to excessive compilation
time [3, 4, 12, 6].

2.4 Phase Ordering Problem

In multi-phase optimizing compilers, there exist no ideal ordering of phases which re-
sults into phase ordering problem. For instance, a transformation pass X, optimizes
the code such that the effect of some optimizations to be performed by the following
pass Y is hindered. Similarly, by switching phases order, pass Y can deprive pass
X optimizations. On the contrary, a phase can bring new optimization opportuni-
ties for the other. In this situation, it is the responsibility of compiler writers to
carefully consider the order in which each optimization phase is performed [4, 3].

Consider an application that is passed through the front end by disabling all
optimizations to emit an Intermediate Representation (IR) a. Consider a set of
optimizations o1, o2, . . . , on. For finding the suitable optimization for application,
a is required to be passed through the optimization set. The optimizations space
due to the phase-ordering problem is in the factorial as permutations are involved,
which is represented by Equation (1). Where n is the number of optimizations under
study [4, 3].

|ΩPhases| = n!. (1)

Considering the optimizations to be applied repeatedly with a variable-length se-
quence of optimizations. The problem space will be expanded as per Equation (2).
Where, m is the maximum desired length for the optimization sequence [4, 3].

|ΩPhases Repetition variableLength| =
m∑
i=0

ni. (2)

Even with reasonable n and m, the optimization search space is huge. For instance,
with n and m 10, an optimization search space consisting of more than 11 billion
different optimization sequences is formed [4, 3].

The phase-order search problem finds an optimal optimization sequence for
a program from an infinitely huge space of optimization sequence. The problem
is combinatorial in nature having no convexity or linearity properties, thus a given
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sequence cannot be called optimal. Only the performance of a sequence can be com-
pared relative to a default compiler optimization sequence (like -O3). The sequence
is said to be good for a program, if it is showing a noticeable improvement in per-
formance over default optimization sequences. Therefore, it is not necessary that
a good sequence is also an optimal one [33]. Similar to previous works [3, 15, 11],
this paper reports the performance speedup relative to LLVM’s highest optimization
level of -O3.

2.5 MiCOMP

Several techniques [14, 15, 11, 33] have been proposed for search space reduction
in the given scenario, but the Mitigates the Compiler Phase-ordering (MiCOMP)
has been selected in this paper, due to its systematic and reproducible approach for
reducing the optimization space of those compilers, which exhibit the phase ordering
problem. It works by clustering the LLVM’s -O3 optimization passes into different
groups (sub-sequences). The optimizations order within a group is internally fixed,
but the group ordering can be altered.

The phase-ordering is exploited by using the sub-sequences instead of individual
optimizations, which reduces the search space significantly. These sub-sequences
can be found using any automated clustering technique. MiCOMP is effective as
it exploits greater speedup by testing smaller search space as compared to other
techniques. MiCOMP reduces the search space (Equation (2)) by fixing n to be 5
and m ranges from 3 to 7 [3]. For the experimentation of MiCOMP, n and m are
fixed to 5 and 6, respectively, in [3], as shown by Equation (3):

Ω =
6∑

i=0

5i = 19.5 k. (3)

Assuming m = 6, n = 63 (LLVM-3.8), Equation (2) becomes

Ω =
6∑

i=0

63i = 62.5 b. (4)

Hence, MiCOMP achieves a speedup of 62.5 b/19.5 k = 3 201.2 k approx. over
LLVM-3.82. Amongst the given 19.5 k tests, there exists a strong likelihood of iden-
tical codes, hence such codes are not required to be executed repeatedly. However,
identical code testing has not been performed by MiCOMP. Assuming α be the
fraction of identical codes out of 1, for the given optimization space, Equation (2)
becomes

Ω =
m∑
i=0

ni ∗ (1− α). (5)

2 LLVM-3.8 -O3 has 63 internal passes.
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Assuming α = 20% = 0.2, MiCOMP Equation (3) becomes

Ω =
6∑

i=0

5i = 19.5 k ∗ (1− 0.2) = 15.6 k. (6)

In this manner, for α = 0.2, MiCOMP search space is reduced by 20% by ignoring
redundant optimizations. Let P (α) be the probability of finding α percent repeated
codes, where 0 ≤ P (α) ≤ 1. P (α) depends on input application characteristics and
the effect of optimizations on that. It is independent of platform features for generic
codes.

Front 
End

Application
(high level language)

Intermediate 
Representation (IR)

MiCOMP
Optimized 

IR Set
REDUCER

Back 
End

Reduced 
Optimized IR Set

Executable 
Code

Figure 1. Compilation flow

3 REDUCER

For suppressing the identical codes in LLVM, this paper proposes REDUCER as
shown in Figure 1. As it can be observed, an application is compiled by front
end, which emits Intermediate Representation (IR), then the IR is passed through
MiCOMP’s given optimization sub-sequences and REDUCER, which emits unique
optimized IR by comparing each new IR with existing old IR. As represented via
Equation (7), the un-optimized IR (x1) is passed through optimization set (optn) to
get the new IR (yn). The new IR (yn) is only retained if it is not identical to old IRs
(yo), otherwise, the IR is discarded. The execution of REDUCER is continued until
redundancy checking is not done for all the optimized IRs. Once the REDUCER is
stopped, the found unique code IRs are added to the reduced optimized IR set. In
the end, the reduced set is passed through the backend for converting the IR codes
into target-specific executables.

yn = optn(x1), if yn ̸= yo. (7)

The overall compiler optimization space reduction is shown in Algorithm 1. The
algorithm receives unoptimized IR, -O33 optimized IR, -O3’s optimization sequence,
the desired number of clusters, and maximum sequence length as input. Firstly, Mi-
COMP procedure is invoked for constructing the required clusters using a clustering
algorithm. Then, a sequence set is constructed by inserting the appropriate opti-
mization permutations of length 1 to maximum sequence, which are generated from
the set of derived optimization clusters.

After this REDUCER is invoked for generating the optimized IR codes by sup-
pressing redundancies. Firstly, an -O3 optimized IR is added to the optimized set,

3 -O3 is a baseline to compare optimization sub-sequences performance [3].
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Algorithm 1: Compiler optimization space reduction

Input: Un-optimized IR (x1), O3 optimized IR (x2), Set of LLVM -O3
optimization sequence o = {o1, . . . , oN}, Desired number of clusters
(NumClust), Maximum sequence length (MaxSeqLen)

Output: Reduced Executables Set (y)
/* Finding Optimal -O3 Sub-Sequences using MiCOMP */

1 Construct an optimization dependency graph G = (V,E) using o;
2 Construct a weighted adjacency matrix M from G;
3 clusters ←M . ApplyClusteringTechnique (NumClust);
4 for SeqLen in 1 to MaxSeqLen do
5 SeqSet +=GeneratePermutations(clusters,SeqLen);
6 end
/* Reducing search space by evicting repeated codes using proposed

REDUCER */

7 IRSet .Add(x2);
8 for flag in SeqSet do
9 temp ← x1.ApplyOptimization(flag);

10 if !temp.IsEquivalent(IRSet) then
11 IRSet .Add(temp);
12 end

13 end
/* Compile IR codes to generate executables */

14 for k in IRSet do
15 y ← CompileIRtoExecutable(k);
16 end

and then a new optimized IR is generated by applying the individual optimization
subsequence obtained from the sequence set. It is followed by comparing the gener-
ated subsequence IR with existing -O3 optimized IR. In the case of different codes,
the generated IR is added to the optimized set, otherwise, it is discarded. This
process is repeated for all optimization sub-sequences. Each new IR is compared
with the ones generated in previous iterations. Finally, the reduced set of IR codes
is compiled to generate executables.

The proposed REDUCER algorithm is based on the sequential comparison,
which is time-consuming process. However, this timing overhead is justified be-
cause it eliminates redundant testing, which is highly beneficial for big data appli-
cations processing volume and variety datasets. For a single application, the IR
comparison is done one time only, irrespective of the size and format of datasets.
Consider an application, operating on 5 datasets with average execution time as d1
(5min), d2 (10min), d3 (25min), d4 (30min), d5 (65min). With MiCOMP overall
time is roughly (5 + 10 + 25 + 30 + 65min = 135min ∗ 19 531 = 2 636 685min).
However, with the inclusion of REDUCER having α = 0.8, and comparison time =
2 880min, the overall time is roughly 2 880+ (135 ∗ 3 907)min = 530 325min, which
is around 4.9× faster than MiCOMP.
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Parameters Embedded Workloads Big Data Workloads

Total RAM 8GB 64GB

Total Swap 2GB 2GB

Disk Cache 1GB 1GB

Model Name Intel(R) Core(TM) i7-
8550U CPU@1.80GHz

Intel(R) Xeon(R) Silver 4216
CPU@2.10GHz

Page Size 4 kB 4 kB

Hard Disk 1TB SATA Harddisk 1TB SATA Harddisk

Operating System Linux Ubuntu 18.04.4 LTS Linux Ubuntu 18.04.4 LTS

L3 Cache 8 192KiB Associativity:
16-way Set-associative

8 192KiB Associativity: 16-way
Set-associative

L2 Cache 256KiB Associativity:
4-way Set-associative

256KiB Associativity: 4-way Set-
associative

L1I, D cache 32KiB Associativity:
8-way Set-associative

32KiB Associativity: 8-way Set-
associative

Compiler LLVM-3.8, LLVM-9.0 LLVM-9.0

Benchmark Ctuning cBench suite v1.1
[13, 5, 16] dataset one

Rodinia [28], Phoenix [31], Cor-
tex Suite [30], Genann [32], Grep
[29]

LLVM-9.0 k-means (5 clusters),
Python-3.8.1 scikit-learn

Same

Table 1. Experimental setup

4 EXPERIMENTAL SETUP

This section discusses the details of the setup which has been established to test
the proposed technique. Firstly, the steps behind finding the optimization clusters
for LLVM-9.0 are discussed. Then, the performance benchmarks and metrics are
mentioned. Finally, the implementation steps of REDUCER are discussed.

4.1 LLVM 9.0 Clusters

k-means clustering is a partitioning method that tries to discover the k number
of clusters. The algorithm specifies the cluster centroid as the mean of the points.
Firstly, k is selected randomly of the objects in the data set, each of which represents
a cluster mean. For each of the remaining objects, an object is allocated to the
cluster, on the basis of shortest Euclidean distance between the cluster mean and
the object. Then, the algorithm iteratively improves the within-cluster variation.
For each cluster, the new mean is computed using the objects allocated to the cluster
in the previous iteration. Finally, all the objects are reassigned using the updated
means as the new cluster centers. The iterations continue until the clusters built in
the current turn are the same as the previous turn [36, 37].



552 H. Ahmed, M.A. Ismail

-in
lin

e

-lcssa-verification

-sroa

-assumption-cache-tracker
-memoryssa

-ipsccp

-la
zy

-b
lo

ck
-fr

eq

-aa

-e
ar

ly
-c

se
-m

em
ss

a

-m
em

2r
eg

-s
lp

-v
ec

to
riz

er

-p
ro

fil
e-

su
m

m
ar

y-
in

fo

-c
al

lsi
te

-s
pl

itt
in

g

-sccp
-e

lim
-a

va
il-

ex
te

rn

-b
lo

ck
-fr

eq

-p
hi

-v
al

ue
s

-b
as

ica
a

-g
lo

ba
lo

pt

-s
co

pe
d-

no
al

ia
s

-m
ld

st
-m

ot
io

n

-gvn

-ju
m

p-
th

re
ad

in
g

-tti

-lo
op

-lo
ad

-e
lim

-aggressive-instcombine

-g
lo

ba
ld

ce

-lo
op

-u
ns

wi
tc

h

-deadargelim

-lo
op

-v
ec

to
riz

e

-argpromotion
-targetlibinfo

-attributor

-lo
op

-a
cc

es
se

s
-forceattrs

-lo
op

-id
io

m

-opt-remark-emitter

-correlated-propagation
-called-value-propagation

-alignment-from-assumptions

-loop-deletion

-loop-distribute

-in
st

co
m

bi
ne

-lc
ss

a

-scalar-evolution

-demanded-bits

-memdep

-globals-aa
-rpo-functionattrs

-branch-prob

-postdomtree

-inferattrs

-fu
nc

tio
na

ttr
s

-tr
an

sf
or

m
-w

ar
ni

ng

-tbaa

-constmerge

-lo
op

-ro
ta

te

-d
iv

-re
m

-p
ai

rs

-lazy-value-info

-b
as

icc
g

-in
st

sim
pl

ify

-re
as

so
cia

te
-indvars

-p
go

-m
em

op
-o

pt

-bdce -adce

-lo
op

-s
im

pl
ify

-loop-unroll

-s
im

pl
ify

cf
g -la

zy
-b

ra
nc

h-
pr

ob

-li
bc

al
ls-

sh
rin

kw
ra

p

-dse

-lo
op

-s
in

k

-loops

-ta
ilc

al
le

lim

-p
ru

ne
-e

h

-d
om

tre
e

-licm-s
tri

p-
de

ad
-p

ro
to

ty
pe

s

-fl
oa

t2
in

t-barrier
-memcpyopt

Figure 2. Directed graph for LLVM’s 9.0 -O3. Each node represents an optimization pass,
edge thickness depicts the strength in the connection between two nodes.

Using MiCOMP [3] approach (Algorithm 1), clusters of size 5 have been found
using well-accepted elbow method4 [36] for LLVM-9.0 -O3 optimization sequence via
k-means technique in Python, as mentioned in Table 1. The directed graph is shown
in Figure 2. The obtained clusters for LLVM-9.0 are presented in Table 2. In com-
parison to MiCOMP implementation in [3], we believe our implementation is easier,
adaptable, and reproducible as it is done using basic k-means technique via Python
based library. Whereas, in [3] MATLAB is used with a complex Graph Agglom-
erative Clustering (GAC) toolbox [26], which is not easily adaptable for producing
the results. Our k-means based clusters exploit better performance than GAC as
evident by Section 5.4.1. It is possibly because all merges are final in agglomer-
ative clustering that is once a decision is made to combine two clusters it cannot
be undone afterward, which prevents a local optimization criterion from becoming
a global optimization criterion. This creates difficulty for high-dimensional, noisy,
and complex graph data with multiple edges like Figure 2. This issue is tackled by
partitioned based k-means clustering technique. Hence, k-means appears to be the
suitable choice in a given situation [37].

4.2 Benchmark and Performance Metrics

For evaluating the proposed technique, embedded workloads belonging to automo-
tive, security, office, and telecommunication categories from Collective Benchmark

4 It chooses the optimal number of clusters by fitting the model for a range of a number
of clusters k values [36].
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Sub- Compiler Passes Our derived Compiler Passes
seq (LLVM-3.8) [3] (LLVM-9.0)
A -ipsccp -globalopt -deadargelim -forceattrs -inferattrs -callsite-splitting

-simplifycfg -functionattrs -argpromotion -ipsccp -called-value-propagation -attributor
-sroa -jump-threading -reassociate -indvars -globalopt -mem2reg -deadargelim
-mldst-motion -lcssa -rpo-functionattrs -lazy-block-freq -prune-eh -inline -functionattrs
-bdce -dse -inferattrs -prune-eh -argpromotion -memoryssa -jump-threading
-alignment-from-assumptions -barrier -libcalls-shrinkwrap -branch-prob -reassociate
-block-freq -loop-unswitch -branch-prob -loop-simplify -lcssa-verification -loop-rotate
-demanded-bits -float2int -forceattrs -indvars -loop-idiom -loop-deletion
-loop-idiom -globals-aa -gvn -loop-accesses -mldst-motion -gvn -memcpyopt -sccp -dse
-loop-deletion -loop-unroll -loop-vectorize -barrier -float2int -loop-distribute -loop-vectorize
-sccp -strip-dead-prototypes -inline -slp-vectorizer -alignment-from-assumptions
-globaldce -constmerge -strip-dead-prototypes -constmerge -instsimplify

B -licm -mem2reg -lazy-branch-prob -block-freq -licm -loop-unroll
-demanded-bits -loop-accesses -loop-sink

C -loop-rotate -instcombine -loop-simplify -instcombine -simplifycfg -tailcallelim
-loop-unswitch -adce -div-rem-pairs

D -memcpyopt -sroa -early-cse-memssa -correlated-propagation
-aggressive-instcombine -pgo-memop-opt -lcssa
-scalar-evolution -phi-values -bdce -loop-load-
elim

E -loop-unswitch -adce -slp-vectorizer -globals-aa -elim-avail-extern -rpo-functionattrs
-tailcallelim -globaldce

Table 2. Compiler optimizations clusters using MiCOMP for LLVM-3.8 -O3 [3] and our
derived for LLVM-9.0 -O3

(cBench) programs [13, 5, 16] are used, as described in Table 3. The evaluation is
done in terms of percentage experiment reduction, percentage redundancy fraction,
speedup, and percentage time improvement metrics represented by Equations (8),
(9), (10), and (11).

Percentage Experiment Reduction =
old count− new count

old count
∗ 100, (8)

Percentage Redundancy Fraction =
Redundant Codes Count

Total Codes Count
∗ 100, (9)

Speedup =
Execution Timebase
Execution Timenew

, (10)

Percentage Time Improvement =
Execution Timebase − Execution Timenew

Execution Timebase
∗ 100.

(11)

4.3 REDUCER Implementation Details

REDUCER has been implemented using bash script in Linux with 5 optimization
clusters and a maximum sequence length of 6. The implementation is inspired
from [22] by comparing the checksum of each IR code with the ones stored in a file.
In case, if checksums are not matched, the new code checksum is stored in the file,
otherwise, it is discarded. The checksum has been computed using Linux md5sum
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cBench Programs Description

automotive bitcount Bit counter

automotive qsort1 Quick sort

automotive susan c Smallest Univalue Segment Assimilating Nucleus Corner

automotive susan e Smallest Univalue Segment Assimilating Nucleus Edge

automotive susan s Smallest Univalue Segment Assimilating Nucleus S

bzip2d Burrows Wheeler compression algorithm

bzip2e Burrows Wheeler compression algorithm

consumer jpeg c JPEG compression kernel

consumer jpeg d JPEG decompression kernel

consumer lame MP3 encoder

consumer mad MPEG audio decoder

consumer tiff2bw convert a color TIFF image to gray scale

consumer tiff2rgba Convert a TIFF image to RGBA space

consumer tiffdither Convert a TIFF image to dither noisespace

consumer tiffmedian Convert a color TIFF image to create a TIFF palette file

network dijkstra Dijkstra’s algorithm

network patricia Patricia Trie data structure

office ispell Spelling checker

Text to speech synthesis program

office stringsearch1 Boyer-Moore-Horspool pattern match

security blowfish d Symmetric-key block cipher Decoder

security blowfish e Symmetric-key block cipher Encoder

security pgp d Pretty Good Privacy decryption algorithm

security pgp e Pretty Good Privacy encryption algorithm

security rijndael d AES algorithm Rijndael Decoder

security rijndael e AES algorithm Rijndael Encoder

security sha NIST Secure Hash Algorithm

telecom adpcm c Intel/dvi adpcm coder/decoder Coder

telecom adpcm d Intel/dvi adpcm coder/decoder Decoder

telecom CRC32 32 BIT ANSI X3.66 crc checksum files

telecom gsm GSM for voice encoding/decoding

Table 3. cBench benchmark suite details [5, 16]

command5. REDUCER source code has been released on Github6. The embed-
ded workloads have been run on Intel Core i7 laptop machine with 8GB RAM,
while big data workloads have been run on Intel Xeon Server machine with 64GB
RAM. Both machines have used the same Linux Ubuntu operating system. Further,
experimental setup details are shown in Table 1.

5 md5sum uses the MD5 algorithm for printing a 32-character checksum of the given
file. A checksum is a string of letters and numbers used to uniquely identify a file.

6 https://github.com/hameeza/REDUCER/

https://github.com/hameeza/REDUCER/
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5 RESULTS ANALYSIS

This section analyzes the results in four parts. Firstly, a reduction in experiment
count is reported, which is followed by studying the longer sequences exploitation
and dynamic programming (DP) analysis. Finally, REDUCER performance is ana-
lyzed for embedded and big data workloads.

5.1 Experiment Count Reduction

REDUCER experiment count has been compared with MiCOMP’s static 19.5 k7

via Figures 3 and 4. For all applications and both versions of the compiler, the
experiment count has been reduced by a significant amount.
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Figure 4. Percentage reduction of number of experiments in REDUCER vs MiCOMP for
LLVM-3.8&9.0

For embedded workloads (cBench) compilation in LLVM-3.8, it can be ob-
served that REDUCER narrows down the experiment count to 327 from MiCOMP’s
19.5 k for telecom adpcm c and telecom adpcm d. This large improvement of 98%

7 Computed in Equation (3), keeping optimization clusters = n = 5 and maximum
sequence length = m = 6.
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is achieved because REDUCER detects 98% of repeated codes produced by Mi-
COMP’s optimization sub-sequences. Despite varying optimizations, the identical
codes are generated because the majority of optimizations produce nil effect on the
considered applications.

Whereas, for consumer lame (LLVM-3.8), the experiment count is reduced to
10 503, bringing only 46% improvement, which are applied on the considered ap-
plication, thus generating the greater proportion of unique codes. On average, RE-
DUCER brings a decent reduction of 77% for LLVM-3.8. However, for the same
applications and datasets, REDUCER average experiment reduction is lowered to
69.9% for LLVM-9.0, as the newer optimization sub-sequences produce lesser iden-
tical codes. The highest reduction of 90% is observed for network dijkstra as the
experiment count is lowered to 1931. This way, REDUCER discovers the emergence
of highly redundant codes via the interaction of LLVM optimization passes.

The derived optimization sub-sequences for different compiler versions show
varying code redundancy behavior despite keeping the uniform test environment.
For telecom adpcm c, LLVM-3.8 optimization sub-sequences produce 98% redun-
dant codes, but LLVM-9.0 sub-sequences produce only 87% repeated codes. Overall,
LLVM-3.8 sub-sequences produce more redundant codes as compared to LLVM-9.0,
which is possibly due to increased transformation opportunities in LLVM-9.0 as op-
timization passes in LLVM-9.0 are greater than LLVM-3.8. By enabling a greater
number of transformations, the optimized codes are likely to differ from each other.
With the higher experiment reduction in LLVM-9.0, it is expected that REDUCER
will bring promising outcomes for future compilers as well.

Furthermore, Table 4 shows the equivalent optimal sub-sequences reported in [3]
by MiCOMP for LLVM-3.8. For most applications, it has been found that MiCOMP
optimal sub-sequences contain the identical code of the ones already generated in
previous generations. For example, for telecom adpcm c, MiCOMP sub-sequence is
ECDDCC (length 6), which is equivalent to EC (length 2), found at the second
generation. This way, EC is enough and ECDDCC is not needed.
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9.0
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MiCOMP Optimal Equivalent Optimal
Applications Sub-Sequence Sub-Sequence

automotive bitcount BEACCA BEACA

automotive qsort1 CBAAAC CBAAAC

automotive susan c BDBCCB BBCCB

automotive susan e AABACA AABACA

automotive susan s ECCCDE ECE

bzip2d CBDACA CBDACA

bzip2e CBADCA CBADCA

consumer jpeg c DDC C

consumer jpeg d CCED CED

consumer lame BCBACB BCBACB

consumer mad DCEDCD DCEDCD

consumer tiff2bw DDCAB CAB

consumer tiff2rgba DDCA CA

consumer tiffdither CCDCD CDC

consumer tiffmedian DEDDC EC

network dijkstra EECBBE CBE

network patricia CECBAA CECBAA

office ispell ABCBAC ABCBAC

office rsynth ABCBA ABCBA

office stringsearch1 ABCBAC ABCBAC

security blowfish d ECEACD CECAC

security blowfish e BCCEEA BCCEA

security pgp d DCAACA CAACA

security pgp e DCA CA

security rijndael d ACCACE ACCACE

security rijndael e CAEEC CAEC

security sha DACECA ACECA

telecom adpcm c ECDDCC EC

telecom adpcm d DCAACA CAACA

telecom CRC32 DCAACA CAACA

telecom gsm DCAAC CAAC

Table 4. MiCOMP equivalent optimal sub-sequence in LLVM-3.8

5.2 Exploitation of Longer Sequences

The effectiveness of REDUCER in facilitating the exploitation of longer sequences
is shown for embedded workloads (cBench), by studying the redundancy behavior
w.r.t. sequence length in Figure 5. For all applications (LLVM-3.8&9.0) sequence
length 1, the redundancy is null. The redundancy is increased as the sequence
length is increased. For automotive bitcount (LLVM-3.8), redundancies are 96%,
91%, 83%, 68%, 44%, and 0% for sequence lengths 6, 5, 4, 3, 2, and 1, re-
spectively. The average redundancies are 79%, 72%, 62%, 49%, 32%, and 0%,
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Figure 6. Redundancy fraction w.r.t. sequence length for LLVM-3.8&LLVM-9.0, dotted
lines indicate extrapolated values

respectively, for LLVM-3.8. Whereas, for LLVM-9.0, these values are 72%, 63%,
52%, 38%, 22%, and 0%, respectively. This study discovers how the redundant
codes are increased substantially when sequence length is increased. It encourages
the testing of longer sequence lengths containing optimal solutions, which are usu-
ally not exploited due to a large number of executions. With REDUCER, these
longer sequences can be exploited, by the elimination of high proportion redundant
codes.

The redundancy fraction has been extrapolated8 for sequence lengths 7, 8, 9,
and 10, which is shown in Figure 6 for few applications. It can be seen for auto-
motive bitcount-3.8 and telecom adpcm c-9.0 the expected redundancy is 100% for
length 7 and above. This way, the programmer can safely skip the longer sequences
for these applications, without feeling the guilt of missing the optimal by not testing
the higher space, as the fraction of unique codes is expected to be minimal in that re-
gion. On the contrary, for consumer lame-3.8 the predicted redundancies are 59%,
68%, 78%, and 88%, which are increased but less than 100%. A similar trend has
been observed for consumer mad-3.8, bzip2d-3.8, and bzip2d-9.0. This way, longer
sequence testing is needed for such applications. In this regard, REDUCER can
significantly speed the testing process by suppressing the increased proportion of
repeated codes in these longer sequences.

5.3 Dynamic Programming Analysis

Dynamic Programming (DP) is a recursive optimization approach that transforms
a complex problem into a sequence of simpler sub-problems, and stores the solution
to each sub-problem such that it is solved only once. Each time the same sub-

8 Extrapolation is done using the Excel TREND function.
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A B C D ELength 1

AA, AB, AC, 
AD, AE

BA, BB, BC, 
BD, BE

CA, CB, CC, 
CD, CE

DA, DB, DC, 
DD, DE

EA, EB, EC, 
ED, EE

Length 2

AAA, AAB, AAC,AAD, AAE, ABA, ABB, ABC, ABD, 
ABE, ACA, ACB, ACC, ACD, ACE, ADA, ADB, 
ADC, ADD, ADE, AEA, AEB, AEC, AED, AEE

Length 3

AAAA, AAAB, AAAC,AAAD, AAAE, AABA,AABB, 
AABC, AABD, AABE, AACA, AACB, AACC, AACD, 
AACE, AADA, AADB, AADC, AADD, AADE, AAEA, 

AAEB, AAEC, AAED, AAEE…….AEEE

Length 4 …………..……………………..

AAAAA, AAAAB, AAAAC,AAAAD, AAAAE, AAABA,AAABB, 
AAABC, AAABD, AAABE, AAACA, AAACB, AAACC, AAACD, 
AAACE, AAADA, AAADB, AAADC, AAADD, AAADE, AAAEA, 

AAAEB, AAAEC, AAAED, AAAEE…….AEEEE

Length 5

AEBDCB←AEBDC+EBDCB

AEBDC←AEBD+EBDC

AEBD←AEB+EBD

AEB←AE+EB

AE←A+E

A←A

AAAAAA, AAAAAB, AAAAAC,AAAAAD, AAAAAE, AAAABA,AAAABB, 
AAAABC, AAAABD, AAAABE, AAAACA, AAAACB, AAAACC, AAAACD, 

AAAACE, AAAADA, AAAADB, AAAADC, AAAADD, AAAADE, 
AAAAEA, AAAAEB, AAAAEC, AAAAED, AAAAEE…….AEEEEE

Length 6

…………………………………..

..........

…………..……..

Figure 7. Composition of optimization sequences. Length 2 sequence (AE) is formed
by concatenating two length 1 (A + E) sequences. Length 3 (AEB) sequence is formed
by merging two sequences of length 2 (AE + EB), only if the first one ends and the
second one begins with the same character. Sequences of lengths 4, 5, and 6 are formed
similarly.

problem occurs, the previously calculated solutions are used instead of recomputing
it, thus computation time is saved [34, 35]. REDUCER retains the unique code se-
quences by comparing codes with each other. To estimate the unique code sequences
of length 2 to 6, we have applied Dynamic Programming (DP) technique and com-
pared it with REDUCER. The main motivation behind using DP has been taken
from Table 4, where equivalent sequences are a subset of MiCOMP sequences. It
implies that large sequences can be constructed by merging two smaller ones. This
recursive composition is represented in Figure 7. It can be observed from bottom
to top that the length 2 sequence is derived from two length 1 sequences, length
3 from two length 2, and so on. DP initially stores the unique length 1 sequences
which derive length 2, then length 2 sequences are stored which derive length 3, and
so on.

However, two sequences can be merged only if they have common characters,
which means that the second to last characters of the first sequence match with the
first to second last characters of the second sequence, as depicted in Figure 7.

The performance of DP is analyzed by means of the sequence estimation accu-
racy and experiment count increase in Figures 8 and 9. REDUCER shows 100%
accuracy of finding unique sequences for all applications, as it compares each code
with the existing ones. Additionally, REDUCER narrows down the experiment
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Figure 8. Accuracy of estimating unique optimization sequences via Dynamic Program-
ming (DP) for LLVM-3.8&LLVM-9.0 (the higher the better). Accuracy computed by
dividing correctly estimated DP sequence count with total unique sequence count.
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Figure 9. Dynamic Programming (DP) increase in experiment count w.r.t. REDUCER
for LLVM-3.8&LLVM-9.0 (the lower the better). Increase computed by dividing DP
estimated experiment count with REDUCER experiment count.

count as it retains only the unique sequences removing all the redundant ones.
Unlike REDUCER, DP does not check the actual uniqueness by comparing with
existing codes, instead it estimates the unique codes by combining the smaller se-
quences. This way, DP is likely to be faster than REDUCER. However, with DP
there is a higher chance of skipping of unique sequences and inclusion of redundant
codes, which results in accuracy loss and experiment count increase.

This work estimates the larger sequences by considering base sequence lengths
of 1 to 5. In the case of base length 1, lengths 2 to 6 are estimated by keeping actual
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single length unique sequences. For telecom adpcm c 3.8, A, B, C, and E are unique
codes. Hence, the larger sequences are formed from these four codes ignoring D. In
the case of base length 2, length 3 to 6 sequences are estimated by keeping actual
double length unique sequences. For telecom adpcm c 3.8, AA, AB, AC, AE, BA,
BB, BC, BE, CA, CB, CE, EB, and EC are unique codes. The same criterion
is used for base lengths 3, 4, and 5. From Figure 8, 100% estimation accuracy
can be seen for base length 1 in all cases. However, the higher accuracy is at the
cost of increased redundant codes. For all applications except telecom adpcm c-
3.8, the single length unique sequences are 5 (A, B, C, D, E), forming 52 double
length sequences, which results in 53, 54, 55, and 56 length 3 to 6 sequences, leading
to original 19.5 k experiments. It implies that due to the bottom-up approach, the
lower layer behavior is propagated to the upper layers too. As there is no redundancy
in the single length sequences, so the upper layers also keep all the sequences. On
the contrary, for telecom adpcm c-3.8, the experiment count is reduced to 5 460,
due to four single length unique codes. However, as depicted in Figure 9, still the
experiment count is 17× more than REDUCER which is the highest. Similarly, for
network dijkstra-9.0 experiment count is 10× more.

Furthermore, as per Figure 8, the accuracy starts dropping by increasing the base
length, due to missed unique sequences. These misses occur because estimation in
base 2, 3, 4, and 5 is done using correct unique sequences. It implies that the problem
of estimating larger sequences from smaller ones is not absolute, as the interaction
between multiple optimizations is indeterministic. For instance, the sequence ACCE
might be a unique one, despite its subsequences ACC and CCE are identical. This
behavior can be seen via bzip2d-3.8, where accuracy is 100% for base length 2,
but with an increase in length, the accuracy is dropped. It implies that the unique
double length combinations are able to derive all the unique higher length sequences,
however, the greater length sequences miss several unique combinations. For certain
application, a base length shows good accuracy, but for other, the accuracy is not
good with the same base. This depends on the interaction effect of optimizations
on a certain application, for one application a base covers such sequences whose
interaction produces greater unique combinations, thus increasing the accuracy. For
other, the effect can be reverse.

The base length increase also reduces the experiment count as the combinations
are derived by fixing the unique sequences, which are lesser in quantity. As per
Figure 9, for base length 5, all the applications except telecom adpcm c-3.8 show
a reduction in experiment count over REDUCER at the cost of lower accuracy.
For security pgp d-9.0, the experiments are lesser than REDUCER at 91.6% and
94.2% accuracy for base lengths 4 and 5, respectively. This way, DP is reasonable
for security pgp d-9.0 as the experiment increase is not much high for base lengths
≥ 2 and accuracy is decent as well. This behavior is due to the presence of a large
number of unique codes in security pgp d-9.0 and also because the base length ≥ 2
sequences are able to derive a higher number of unique sequences of greater lengths.
However, the accuracy of less than 100% makes DP unsuitable because the skipped
unique code might be the optimal one with the highest speedup over -O3.



562 H. Ahmed, M.A. Ismail

5.4 REDUCER Performance

REDUCER achieves the above experiments reduction (Section 4.3), at the cost of
code comparison time which is not present in conventional iterative compilation
techniques. In this regard, this section compares the overall time taken by RE-
DUCER and MiCOMP for embedded (Section 5.4.1) and big data (Section 5.4.2)
workloads.

5.4.1 Embedded Workloads

A set of embedded applications have been executed from cBench suite with dataset
one on Intel Core i7-8550U laptop machine. The details of the experimental setup
and cBench suite are mentioned in Table 1 and 3, respectively. The cBench appli-
cations have been executed using both REDUCER and MiCOMP for LLVM 3.8,
and 9.0. For each application, the execution time is measured by averaging three
executions of a loop-wrap. The total time taken by REDUCER is the sum of code
comparison, compilation, and execution time. Whereas, MiCOMP total time is the
sum of code compilation and execution time. The individual timings have been
reported in Table 5. REDUCER performance is depicted via Figure 10 in terms
of total time speedup w.r.t. MiCOMP. Additionally, each application speedup w.r.t.
-O3, and optimal sub-sequence for both LLVM-3.8 and 9.0 have been reported in
Table 6. The speedups and optimal sub-sequences are different than reported in [3],
due to different test environments.
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Figure 10. REDUCER time speedup w.r.t. MiCOMP for LLVM-3.8&LLVM-9.0

As per Table 5, for all the applications the IR comparison time is significantly
smaller than the compilation and execution time. This way, REDUCER’s prior IR
comparison cuts down the experiment count without increasing the time and re-
source overheads. Hence, the compilation and execution times are shorter for all
applications, because these have been measured only for the unique codes which
are lesser than the original 19.5 k. Further, a larger comparison time can be seen
for applications possessing a greater number of unique codes, due to an increased
number of comparisons. Also, the comparison time is increased for larger code
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sizes. For instance, telecom adpcm c (LLVM-3.8) and network dijkstra (LLVM-
9.0) take lesser time because the identical codes are already generated by some
previous sub-sequence, stopping the comparison for a code the moment its iden-
tical is found. It can be observed that the comparison time of telecom CRC32
(LLVM-3.8&LLVM 9.0) is slightly lesser than telecom adpcm c (LLVM-3.8) and
network dijkstra (LLVM-9.0) due to the smaller IR code size of telecom CRC32.
The redundancy proportion of telecom CRC32 is higher but lesser than the max-
imum identical codes count of telecom adpcm c (LLVM-3.8) and network dijkstra
(LLVM-9.0). On the contrary, due to comparing each code with a large number
of unique codes, the consumer lame (LLVM-3.8) and security pgp d (LLVM-9.0)
exhibit the maximum comparison time.

LLVM-3.8 LLVM-9.0 Speedup
Applications Speedup Optimal Speedup Optimal Optimal LLVM

w.r.t. -O3 Sub-Sequence w.r.t. -O3 Sub-Sequence 9.0 w.r.t. 3.8
automotive bitcount 1.08× ACACA 1.21× BDADB 1.0×
automotive qsort1 1.08× AABCAB 1.04× CAAADB 0.90×
automotive susan c 1.37× AAAAAE 1.08× AAAAAA 1.03×
automotive susan e 1.23× BCCEEB 1.06× AAABCB 1.26×
automotive susan s 1.07× AAAACA 1.24× AAAAAD 1.008×
bzip2d 1.40× BDECED 1.14× DADAC 1.03×
bzip2e 1.46× BBDE 1.08× CDBAAB 1.03×
consumer jpeg c 1.17× BAD 1.56× ACDCDA 1.35×
consumer jpeg d 1.45× BADAAE 1.02× AAAAAD 1.06×
consumer lame 1.01× DBECAA 1.25× AADDBC 1.28×
consumer mad 1.23× ABAC 1.11× AACBCD 1.01×
consumer tiff2bw 1.16× BCEABC 1.05× BECCCD 1.01×
consumer tiff2rgba 1.01× ABAEDA 1.24× AAAABD 1.43×
consumer tiffdither 1.08× EABECB 1.06× BCDAA 1.01×
consumer tiffmedian 1.27× CAEAEB 1.28× CBCABA 1.02×
network dijkstra 1.19× AAAA 1.09× AAAAB 0.87×
network patricia 1.13× AAAABC 1.06× AAAABC 0.81×
office rsynth 1.05× AAAABC 1.26× BCDCCB 0.98×
office stringsearch1 1.08× CABAAE 1.12× BACCE 1.06×
security blowfish d 1.11× ABADEE 1.006× BCACAD 1.05×
security blowfish e 1.08× EBAE 1.006× BBCACA 1.01×
security pgp d 1.17× ADAACC 1.05× DDABC 1.23×
security pgp e 1.05× BCACDE 1.07× BDDCBA 1.07×
security rijndael d 1.11× BECACA 1.18× AACAAC 1.19×
security rijndael e 1.12× ABECAB 1.24× BBDCBC 1.19×
security sha 1.13× CBACAC 1.06× BABDCC 1.01×
telecom adpcm c 1.48× BB 1.79× B 1.33×
telecom adpcm d 1.15× CAE 1.24× CCACDB 1.24×
telecom CRC32 1.08× AAAABC 1.06× BCABD 1.004×
telecom gsm 1.31× EBBAAB 1.03× DCCAAB 1.02×
Mean 1.16× – 1.14× – 1.06×

Table 6. Optimal speedup for LLVM 3.8 and 9.0

Despite increased comparison time, REDUCER clearly outperforms MiCOMP
for LLVM-3.8 and 9.0, which can be observed via Table 5. For all the applications,
REDUCER takes lesser time, as compared to MiCOMP. As depicted via Figure 10,
for LLVM-3.8, the maximum speedup of 58.6× is observed for telecom adpcm d,
because a large number of repeated executions have been suppressed. The lowest
speedup observed is 1.64× for consumer lame, due to less number of repeated codes.
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On average, for LLVM-3.8, a decent speedup of 4.13× is seen. Similarly, LLVM-9.0
shows a maximum speedup of 8.54× for telecom CRC32, lowest speedup of 1.64×
for security pgp e, and average speedup of 2.92×.

The redundancy count is not the only parameter to affect REDUCER perfor-
mance, instead it is equally affected by code size. For LLVM-9.0, network dijkstra
depicts the highest redundancy count, but its speedup is not dominating because its
comparison time is greater due to code size. Conversely, telecom CRC32 shows the
highest speedup due to both smaller code size than network dijkstra and higher re-
dundancy count than the majority of other applications. In this manner, for longer
sequence lengths (> 6) and smaller code sizes, the performance of REDUCER is ex-
pected to increase exponentially w.r.t. MiCOMP, as Figure 6 depicts the substantial
increase in redundancy proportion for longer sequence lengths.

Despite same workloads, the MiCOMP and REDUCER speed is different for
both LLVM-3.8 and 9.0, which is possibly due to wide differences in the compiler
versions resulting in varying -O3 internal passes. This way, the constructed sub-
sequences widely vary for both versions. It can be observed via Table 5, despite
a same number of experiments, the MiCOMP (LLVM-9.0) average speed is higher
than LLVM-3.8 because, for the majority of applications, LLVM-9.0 generated codes
are executed in lesser time than LLVM-3.8 due to enhanced optimizations. On the
contrary, REDUCER (LLVM-3.8) is on the average 1.35× faster than REDUCER
(LLVM-9.0). Primarily, two factors are affecting the speed of REDUCER, i.e. ex-
periment count and code execution time. For instance, REDUCER (LLVM-9.0) is
slower for telecom adpcm c, because it is required to process 2.4 k codes which are
only 327 with LLVM-3.8. Conversely, for a few applications REDUCER (LLVM-
9.0) dominates REDUCER (LLVM-3.8) but with a minor margin, for instance in
bzip2d, the processing is reduced to 7.5 k, which is 7.7 k with LLVM-3.8. The redun-
dancy count is varied by the impact caused by optimization sequences on a given
application, which is indeterministic.

Overall, the sub-sequences are able to exploit reasonable speedup for majority
applications as evident by Table 6. On average speedup9 of 1.16× and 1.14×, are
achieved for LLVM-3.8 and LLVM-9.0, respectively. Besides, the maximum speedup
is 1.48× and 1.79× for LLVM-3.8 and LLVM-9.0 telecom adpcm c, respectively.
With LLVM-9.0, -O3 has become even more powerful due to increased optimization
passes, thus it gets tougher to beat -O3 performance. This way, the speedup w.r.t.
-O3 is observed to be lesser for LLVM-9.0.

As per Table 6, LLVM-9.0 optimal sub-sequence is showing greater speedup
w.r.t. LLVM-3.8 optimal sub-sequence. The maximum speedup of 1.43× is seen
for consumer tiff2rgba, and the average speedup is 1.06×. The speedup is possibly
due to LLVM-9.0 being faster than LLVM-3.8 with an enhanced set of optimiza-
tion passes. Besides, the speedup is greater due to our efficient implementation of
MiCOMP for LLVM-9.0, which means that we have derived better LLVM-9.0 -O3
sub-sequences using k-means than the ones reported in [3].

9 Harmonic mean is used to average the speedup gains [3].
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5.4.2 Big Data Workloads

Several well known C/C++ based applications from Rodinia [28], Phoenix [31], Cor-
texSuite [30], genann [32], and grep-bench [29] benchmarks have been tested. Only
those applications have been selected which are part of standard big data bench-
marks, representing graph mining, classification, clustering, and statistics categories.
These include bfs, grep, k-means, word count, etc., as discussed in Table 7. These
benchmarks have been run on an Intel Xeon Server machine whose details are listed
in Table 1. Each application has been run with 3 to 4 datasets of varying sizes and
formats.

Application Description Input Dataset Format

Breadth-First
Search (BFS) [28]

Traverses a graph in a breadthward
motion.

Graph generated by
specifying the number of
nodes.

Grep [29] Searches a file for a particular pat-
tern of characters, and displays the
lines containing that pattern.

Text file containing
words.

k-means [28] Represents the data objects by the
centroids of the sub-clusters by di-
viding a cluster of data objects into
k sub-clusters.

Dataset consisted of a set
of numeric features.

Word Count
(WC) [31]

Counts the frequency of occurrence
of each unique word in a text docu-
ment.

Text files containing
words.

Gennan [32] Neural network library for using and
training feedforward artificial neural
networks (ANN).

Numeric predictive at-
tributes and the class.

Latent Dirich-
let Allocation
(LDA) [30]

Topic modeling algorithm that is
used in natural language process-
ing for discovering topics from un-
ordered documents.

Document is represented
as a sparse vector of
word counts, in the form:
[M][term 1]:[count]. . .
[term N]:[count]

Principle Com-
ponent Analysis
(PCA) [30]

It is a statistical technique for
feature extraction in multivariate
datasets.

Data numeric attributes
and the class.

Table 7. Benchmark details

The impact of REDUCER is more prominent with big data workloads which
consumes larger execution time than conventional cases. As can be observed via
Figure 11, for all the applications and datasets REDUCER makes the experimen-
tation feasible by bringing a substantial reduction in execution time. For each
application, the comparison and compilation are done only one time. This way, in
the Figure 11, only the bar corresponding to the first dataset includes the compar-
ison and compilation times along with execution time, the other bars only involve
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Benchmark Experiment Avg Exe Collection
Technique Environment Suite Count Time Imp Time

per Application w.r.t. Baseline
Less is Cortex-M0, BEEBS 50, 2.4% –
More [14] LLVM-3.8

Cortex-M3, 64 optimizations 5.3%
LLVM-5.0 + (O2 baseline)

Lost in Intel i5-6300U, CK Milepost- 66, 11.5% –
translation LLVM-6.0 GCC-Codelet
[15] Arm Cortex-A53, 64 optimizations 5.1%

LLVM-6.0 +(O3 baseline)
IODC [12] Intel Xeon, AMD, & MapReduce 300 random 32.43 % 110 days

Loongson clusters, & Server optimizations 10.71 % 740 days
GCC-4.4 Applications +(O3 baseline)

FFD [27] Cortex-M0, MiBench & 2 048 optimizations – –
Cortex-M3, WCET +(O1, O2 baseline)
Cortex-A8, Applications
Epiphany,
XMOS L1,
GCC-4.7

Sensitivity Intel Core i7 BEEBS 1 728 000 – –
Analysis [10] LLVM-3.8.1
Hybrid Intel Core i7-3779, Polybench & – 8.01% –
Approach [11] LLVM 3.5 cBench +(O3 baseline) 6.07%
MiCOMP [3] Intel Xeon Ctuning 19 530 optimizations 16.66 %

LLVM-3.8 cBench +(O3 baseline)
Intel Core i7-8550U,
LLVM-3.8, 14.41% 93 days
LLVM-9.0 12.50% 91 days

REDUCER Intel Core i7-8550U, Ctuning Avg reduction w.r.t.
LLVM-3.8, cBench MiCOMP 77.60%, 14.41% 24 days
LLVM-9.0 69.98% 12.50% 33 days

Table 8. REDUCER comparison with existing works

execution time. Hence, the comparison time is spent only for the first dataset
execution, the rest datasets execution is comparison free. REDUCER removes
the redundant codes at the start, hence executes all the datasets with a reduced
number of codes. Whereas, in MiCOMP, each dataset is executed with all the
codes including both the unique and identical. It can be observed via Figure 11,
REDUCER greatly facilitates the iterative compilation of bfs (Synthetic-20.7GB)
dataset, by cutting down execution time to only 12 days from 98 days of MiCOMP.
Similarly, for iterative compilation of PCA (Spambase-2.8GB) dataset, only 32
days are required with REDUCER in comparison to 111 days of MiCOMP. Sim-
ilarly, for other workloads, it can be seen how REDUCER makes the iterative
compilation feasible for big data workloads comprising of high volume and variety
datasets.

6 RELATED WORK

Several works [13, 22, 21, 20, 19] have emphasized on code comparisons for removing
redundant executions. [22, 21, 20, 19] were based on VPO (Very Portable Optimizer)
compiler back end, which performed all the analyses and optimizations on a single
low-level representation called Register Transfer Lists (RTLs). It detected the iden-
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tical function instances by performing three checks including instructions count,
instructions byte-sum, and the CRC (Cyclic Redundancy Code) checksum on the
bytes of the RTLs. Similarly, in [13] MD5 checksum of assembler code was obtained
to verify that no two optimizations combinations generate the same binary. The
work selected GCC 200 optimization combinations using a random search strategy.
In comparison to these, REDUCER to the best of our knowledge is the first work
that detects identical codes in LLVM by comparing the complete IR codes. The
granularity of comparison is complete IR code, not just a function or basic block
instance.

Conversely, other works [14, 15, 3, 12, 10, 27, 11] did not make the code level
comparisons and executed the same code repeatedly. The comparison of these works
with REDUCER is depicted via Table 8. In [14, 15], initially, the required perfor-
mance metrics were tested using standard optimization levels (O2, O3, etc). Then,
the metrics were measured by excluding one pass at a time from the standard op-
timization level, till all the passes were eliminated. In this way, the tested config-
uration count was lesser, because only the passes present in the standard LLVM
optimization level were considered. With this approach, the search space is re-
duced, but the performance improvement is significantly lesser than the other ap-
proaches.

In [12], iterative optimization for the data center (IODC) was proposed which
found the optimal compiler configurations for Map Reduce and server applications
involving a large collection of massive size datasets. IODC showed greater speedup
but at the cost of collection time of 850 days. Despite testing only 300 randomly
chosen combinations of compiler optimizations, the collection time was higher due
to the execution of a single application with multiple large datasets. However, if
the redundancy fraction is f % in the derived optimizations, then all the datasets
are required to be executed with these redundant f % codes, increasing the time
significantly. In this situation, the integration of REDUCER with IODC can achieve
the reported speedup in lesser runs, with a substantial reduction in data collection
time, because for an application the redundant codes are checked only one time
irrespective of the number of datasets.

The authors in [27] proposed fractional factorial design which reduced the search
space for finding optimal optimization combination in GCC. [10] performed sensi-
tivity test for analyzing the impact of 54 LLVM code optimizations on the execution
time of applications. Similarly, a design-space exploration was proposed in [11] for
searching compiler optimization sequence. The given hybrid approach found opti-
mizations and their order of application, through previously generated sequences
for training programs set. Initially, a clustering algorithm selected optimizations,
followed by a metaheuristic algorithm for discovering the sequence of optimizations.
As per results, the discovered optimized code sequences on average brought the
only improvement of 8.01% and 6.07% w.r.t. -O3, which is less in comparison to
other works. In [3] MiCOMP was proposed, which reduced the search space from
billions to few thousand. It did so by clustering LLVM -O3 optimizations into five
sub-sequences by using agglomerative clustering. The search space was reduced
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because phase ordering was exploited using sub-sequences, instead of individual
optimizations. Overall MiCOMP showed significant performance improvement rel-
ative to -O3, with 5 clusters and a maximum sequence length of 6 (total 19.5 k
experiments). By comparing the proposed works listed in Table 8 with MiCOMP,
it can be observed that MiCOMP searches the optimal optimization sequence (bet-
ter than -O3) in lesser runs for an application. Also, it is evident that MiCOMP
sub-sequences exploit greater speedup (w.r.t. -O3) than others. However, MiCOMP
did not exclude the identical codes present in 19.5 k sub-sequences, instead, all the
permutations were executed to find optimal sub-sequences, increasing the data col-
lection time.

This paper reduces MiCOMP search space by proposing REDUCER which is
responsible for eliminating identical codes. In this manner, the repeated execu-
tion of the same code is prevented, saving the testing time without affecting the
performance accuracy. As per Table 8, the performance improvements and data
collection time of MiCOMP reported in [3] and MiCOMP implemented in our work
are not comparable because each technique has been tested on different test envi-
ronments. It can be observed that REDUCER shortens the data collection time to
24 and 33 days (LLVM-3.8&LLVM-9.0) from MiCOMP’s 93 and 91 days without
sacrificing the performance improvement w.r.t. baseline. Further, we have extended
MiCOMP for LLVM-9.0 by constructing 5 clusters using k-means clustering. Our
derived optimization sub-sequences shows average speedup of 1.06× w.r.t. MiCOMP
(LLVM-3.8) sub-sequences given in [3].

7 CONCLUSION

The compiler search space reduction technique REDUCER has been presented in
this paper. REDUCER relies on straightforward code comparisons to inhibit iden-
tical code executions. REDUCER has been tested using well-accepted MiCOMP
iterative compilation technique with LLVM-3.8 and 9.0. As per reported results,
REDUCER substantially accelerates the iterative compilation process in compar-
ison to MiCOMP by eliminating a large number of redundant experiments. In
this regard, REDUCER completes the overall iterative compilation of embedded
workloads within 24 and 33 days (LLVM-3.8&LLVM-9.0), respectively, whereas
MiCOMP takes 93 and 91 days for the same task.

The promising results of REDUCER (LLVM-9.0) anticipate the high signifi-
cance of REDUCER for forthcoming compilers as well. Furthermore, REDUCER
is proved to be significantly faster for big data workloads. Besides, it is found to
be simple, generic, and easily adaptable in any iterative compilation technique. In
the future, we intend to reduce comparison time by implementing a parallel version
of REDUCER. Presently, REDUCER can only detect identical codes, in the future
REDUCER will be extended to detect equivalent codes as well, which is expected
to further reduce the search space.
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