Computing and Informatics, Vol. 40, 2021, 734-753, doi: 10.31577/cai_2021_4_734

BALTICLSC: LOW-CODE SOFTWARE DEVELOPMENT
PLATFORM FOR LARGE SCALE COMPUTATIONS

Krzysztof MAREK, Michat SMIALEK, Kamil RYBINSKI
Radostaw Roszczyk, Marek WDOWIAK

Warsaw University of Technology
Plac Politechnike 1

00-661 Warszawa, Poland

e-mail: Krzysztof .Marek@pw.edu.pl

Abstract. In modern times, innovation often requires performing complex com-
putations in a short amount of time. However, for many small organisations and
freelance innovators, large-scale computations remain beyond reach because of the
small accessibility of computation resources and the lack of knowledge required
to use them efficiently. The BalticLSC Platform is a software development and
computing environment created to address this issue. This paper presents the as-
sociated software development process. The platform users can perform advanced
computations using ready applications or develop new applications quickly from
available components. This can be done using a visual notation called the Compu-
tation Application Language (CAL). CAL programs are developed in a dedicated
online editor, through selecting and connecting reusable computation modules. If
a required module is missing, it can be quickly created by encapsulating code inside
a standardised container. The platform’s ultimate goal is to relieve the developers
from the need to understand the complexity of the distributed parallel computa-
tion environment. The platform was implemented in the form of an online software
development portal. Validation of the platform consisted in the development of ap-
plications and modules by students not experienced in programming. The results
of this validation acknowledge the required platform’s characteristics.

Keywords: Visual languages, large-scale computing, low-code development

https://doi.org/10.31577/cai_2021_4_734

BalticLSC 735

1 INTRODUCTION

In the current rapidly developing world, technology innovation plays a crucial role.
In many cases, new discoveries require processing of large amounts of data with
the use of sophisticated domain-specific algorithms. Such requirements pose multi-
ple challenges for individual innovators, researchers, small and medium enterprises
(SMEs), or research institutions. To use large-scale computations in the develop-
ment of a new solution, the innovator has to manage the computation resources,
have domain-specific knowledge required to solve the problem, and have the pro-
gramming knowledge to not only implement the solution, but also do it in a way
supporting parallelisation and execution at the large scale. On the current market,
finding a specialist in a single of these fields poses a challenge, while the know-
ledge of all of them is required to innovate with the help of large-scale computa-
tions.

Over the recent years, large computation resources became widely available for
users, mainly due to the popularisation of Cloud Computing and its applications
to scientific problem solving [I3]. In the past, the researchers had to rely on tradi-
tional High-Performance Computing (HPC) [§], focused on single but very powerful
homogeneous systems, to perform the required computations. Such an approach
posed additional problems for individual innovators. HPC systems were costly and
not widely available. Moreover, computation applications were usually written with
a specific HPC resource in mind, making the code very difficult, if not impossi-
ble, to reuse. A good example of this problem can be found in the results of the
SHAPE project [12]. The goal of SHAPE was to promote HPC among Small and
Medium Enterprises (SMEs) by providing them with free access to supercomput-
ers and experts capable of developing HPC applications. Such support resulted in
successful application of HPC to the problems faced by SME innovators. However,
in most cases, the usage of HPC solutions stopped after the external funding has
finished. This is due to lack of necessary SME own resources to continue. A pos-
sible solution to this problem can be Cloud Computing systems. Similarly to the
older idea of Grid Computing [7], such systems allow for better utilisation of com-
putation resources as described by, e.g. Assante et al. [2]. However not only the
availability of computation resources poses a threat to new innovations. In his
recent article, Pedro Palos-Sanchez describes the lack of knowledge and training
in using Cloud Computations, especially among European SMEs [9]. Large-Scale
Computations are not only expensive, but also require advanced knowledge to use
them.

A possible solution to the described problems can be a Large-Scale Computa-
tion Platform that uses a low-code approach. Such approaches use user-friendly
visual languages and software development environments to develop applications
in various domains [I1]. They stem from the model-driven paradigm that consists
in defining graph-based languages and developing appropriate language translation
mechanisms [5]. In our case, computation domain specialists would gain capabilities
to define their computations by using a high-level visual language that hides all

736 K. Marek, M. Smiatek, K. Rybiniski, R. Roszczyk, M. Wdowiak

the complexities of the underlying execution environment. This includes complex
communication within the execution platform and automatic paralellization of com-
putations. The main goal of this paper is to introduce such a platform, called the
BalticLSC and the associated software development process.

2 PLATFORM OVERVIEW

The BalticLSC Computation Platform was created to allow its end-users to per-
form advanced computations, requiring more than one PC to complete within a few
hours, as batch-processed applications. The aim was to require as little program-
ming knowledge as possible, and increase accessibility to computation resources by
providing seamless integration of already existing computation resources. To ac-
complish these goals, the platform provides means to connect computation resource
providers, software developers, and computation end-users.

The logical and physical architecture of the Platform is presented in Figure [I}
The central physical element of the network is the Master Node. This node hosts
the main control software of the Platform. The Frontend component provides the
web interface through which the end users can define and execute their applications.
The Master Node Backend component is responsible for storing all the computation
data, managing Computation Tasks (CT)EL distributing Computation Jobs (CJ) and
managing communication within the Platform through a set of gRPC and REST
APIs.

The Platform can be composed of many Cluster Nodes (see again Figure [)).
These nodes can be easily registered with the Master Node by the resource providers
and then participate in executing computations. Each Cluster Node hosts a stan-
dard container orchestration environment (Kubernetes or Docker Swarm). Such
nodes can execute CJs as standard containers compliant with the appropriate con-
tainerisation standard. Within each Cluster Node, jobs are managed by a dedicated
component — the Batch Manager. The Batch Manager receives batches of CJs from
the Master Node Backend and requests the creation of appropriate namespaces
and jobs within the container orchestration environment. Considering this, it can
be noted that connecting a resource to the BalticLSC Platform is relatively easy,
especially for regular computation resource administrators. In most cases it just ne-
cessitates installing the small Batch Manager component within an already running
container orchestration environment. It allows to connect computation clusters of
different size and facilitates better utilisation of resources which in many cases are
not fully used.

The basic building blocks of any Computation Application (CA) are Computa-
tion Modules (CM). These modules are compiled and stored as containers in an ex-
ternal container repository and then executed as appropriate CJs. CM programmers
can use dedicated software development kits that facilitate communication with the

1 See Section [3| for explanation of Computation Tasks and Computation Jobs.

BalticLSC

ClientPC2

\

Client PC1

737

T -~
«HTTPS» «HTTPS»
v -
1
1 -~
\ MagteT Node
\ P
e
«artifact» «artifact»
Frontend — —— —— ——— — — => MasterNodeBac
«REST»
7/
- \
- \
& \
|
Ve v
«GRPC» «GRPC»
\
1
e \
XLluster Node 231
s
Cluster Node 42
«artifact» cartifact»
BatchManager{42) |————————— = ClusterProxy
o=l GRPe T
f ~ _ «REST»
«REST» / ~ N
I ~ .
i N I
Namespac 63-a18) \\ Namespace (c91-a02) h"l | | : |
2\ rrh!
«artifact» cartifact» e —————————— L 11 : 1!
ModuleProxy (e63-a18) ModuleProxy (c91-a02) I | : :
I
A A it
N « “REST» 170
I REST» '\ REST») ~ o !
! Il
\ |
\ «artifa «artifa | | : :
«artifa \ Joblnstance Joblnstanc == - | 1!
Joblnstance \ | 1|
\ (N
v T ! 1!
\ Mo D D epepe———— |
e = o — = = — = — — |

Figure 1. BalticL.SC architecture

738 K. Marek, M. Smiatek, K. Rybiniski, R. Roszczyk, M. Wdowiak

Batch Manager. This is implemented through a set of proxies that handle REST
communication.

The BalticLSC Platform provides an online system that can be used to exe-
cute Computation Tasks (CT) based on CAs and to create new applications from
CMs. The online system consists of five elements: Application Store, Computation
Cockpit, Data Shelf, Development Shelf, and Application Editor.

The Application Store is a place where the platform users can search for available
CAs and CMs. The existence of the Application Store allows developers to reuse
the CAs and CMs created by others. A monetisation mechanism is planned to be
implemented to make a more significant incentive for developers to develop and
publish CAs and CMs.

The Computation Cockpit is used by the platform end-users to execute compu-
tations. To start some computation using a CA, a CT has to be created. A CT
can be started in a weak or a strong mode. The weak mode means the CT can
be distributed through assigning its constituent CJs to different Cluster Nodes. In
strong mode, all the CJs of a CT will be executed within a single computation node.
In such a case, the user can indicate the particular node where the computations
should be performed (e.g., depending on its geographical location or its performance
characteristics).

After creating a CT, the end-user must provide Data Sets required by the CA
to start the computation. Data Sets are definitions of the exact place from where
input data can be downloaded or where the CT’s output should be uploaded at
the end of the computation. The CT will not start until the required Data Sets
are provided. In some cases, Data Sets can be provided during the CT execu-
tion.

Data Sets are defined by the end-user in a Data Shelf and are universal. They
can be used both as input and output, provided that the privileges allow for ac-
cessing or uploading the data. To define a Data Set an end-user provides an access
path and required credentials to a specific file or folder, for example, located at
an FTP server or inside a cloud storage. Once defined, a single Data Set can be
reused multiple times between multiple runs of the same application as well as be-
tween different applications. Such universality limits the amount of work required
to perform computations, because the end-user does not need to provide the access
credentials for every CT whenever they are the same.

To create a new CA or a more advanced CM, the developer has to use the
Development Shelf. All the owned CAs and CMs can be accessed in the Development
Shelf. The owned CMs can be added to the developer’s Toolbox and used while
editing or creating a new CA. Moreover, the developers can create different versions
of CAs and CMs and publish them as appropriate releases. The release mechanism
can be used to control multiple versions of the same module. A specific release can
be made publicly available or only accessible by its creator.

The CAs present in the Development Shelf can be edited using a dedicated,
graphical Application Editor. This editor is web browser-based and allows to de-
velop applications is a special-purpose graphical language called the Computation

BalticLSC 739

Application Language (CAL). We present the language in the next section. The
editor works by saving CAL diagrams in real-time, while the diagrams can also be
exported as JSON files.

An example workflow of the BalticLSC Platform involving application devel-
opment and computation execution is presented in Figure 2l The users’ work be-
gins in the Development Shelf where they search for the necessary CMs and add
them to their toolbox. Next, they can create a new CA and edit it by connect-
ing the selected CMs in the Application Editor. In the editor, they can spec-
ify the types of data used by or returned by the CMs. Once the application is
ready, the author has to create a new release in the Development Shelf. Then,
to run the new CA, the end-user has to add it to the Cockpit in the Application
Store. Next, if the application needs data not previously used by the end-user,
they need to define new Data Sets in the Data Shelf. Finally, a new CT can be
defined in the Computation Cockpit. The computations start once the required
Data Sets are selected by the end-user. When the CA is running, the end-user
can monitor its progress by checking the status of each CM. If the computation
is taking too long or the first results are unsatisfactory, the CA can be manually
interrupted.

3 COMPUTATION APPLICATION LANGUAGE

To perform computations on the BalticLSC Platform an end-user has to run a Com-
putation Application (CA) in the form of a single Computation Task (CT). De-
pending on its parameters, a single CA can solve a specific computation problem,
perform analysis of provided data, or perform operations on data. A CA consists
of one or more Computation Modules (CM) connected together and described by
a low-code visual language called the Computation Application Language (CAL).
A single CM is a self-contained piece of software that performs a well-defined com-
putation algorithm. In the runtime environment, CMs are instantiated in the form
of Computation Jobs (CJ). In special cases, an entire CA can be used as a CM
and participate in developing other CAs. For the purpose of clarity, in this paper,
the name Computation Module will be used only to describe a single self-contained
module.

Every CA defined in CAL consists of 3 elements: Module Calls, Data Pins,
and Data Flows. Their concrete syntax is shown in Figure] Module Calls always
refer to respective Computation Modules. A Module Call indicates execution of
one or more instances of a CM. The actual number if instances depends on the
number of data items to be processed, as defined by the associated Data pins (see
below).

To perform computations, the CM instances need to be provided with data. In
the BalticLSC Platform this data is represented by Data Sets. Access to these Data
Sets is provided to the CM instances through so-called Data Tokens passed through
Data Pins. Data Pins of type “input” accept Data Tokens that point to Data Sets

740 K. Marek, M. Smiatek, K. Rybiniski, R. Roszczyk, M. Wdowiak

1. Development Shelf

W satticLsc

Neural Network
" Learner

o, User Decision

W

Neural Network Matrix Operations
Classifier

2. Application Editor

M GatticlsC

o ¢ Eol| B

3. Application Store

BalticLSC

@ YetAnotherlmageProcessor ..i My Reworked Film

- 4. Data Shelf
B —

BalticLSC

e °
=] o it g
;
G v
)
5. Computation Cockpit comomrorson | [wme e L R
l BaticLsc ’
EdgerDemoOutput2 ﬂ Muttpt FIP <

Host" “balticlsc-gatenay.dem. o

Edging Image Processor

ws Prioity Private allocation Arct

Figure 2. BalticLSC Platform user interface and workflow

BalticLSC 741

Data Pins
Y
> > =
Single data Multiple data Multiple token

Data Flows
Module Calls

Call name
Module name

Figure 3. Main syntactic elements of the Computation Application Language

provided by other modules or directly by the user. Data Pins of type “output”
deliver Data Tokens that point to Data Sets provided by the current module. CAL
distinguishes several types of configurable Data Pins depending on the multiplicity
of the data. “Single data” pin is used to represent a single file, a single database
table, or other single data container. “Multiple data” pin represents multiple files
in the form of a file folder, database schema, or a collection of data containers. The
last type of Data Pins is “multiple token”, representing a sequence of data items.
For example, multiple files sent one after another. “Multiple token” Data Pins allow
for batch processing of many individual data items independently and possibly in
parallel.

Data Pins can be used in CAL programs in two ways. First, they can be used
as standalone elements representing inputs and outputs for the entire Computation
Application. A standalone Data Pin is indicated by a vertical black bar before or
after the arrow, as shown in Figure @} The black bar before the arrow indicates that
the Data Pin is representing an input to the entire CA. Analogically, the black bar
behind the arrow indicates the output of the entire CA.

Standalone Input Data Pin

I}I Input Data Pin Output Data Pin
}>} Module Name >}

Standalone Output Data Pin

=

Figure 4. Pins and modules in the Computation Application Language

The second use of Data Pins is in conjunction with Module Calls. In this case,
Data Pins are placed on the edges of the appropriate Module Calls. They represent
the input and output data of the CM. A specific CM instance starts its operations
when it receives Data Tokens on every of its required input Data Pins. When

742 K. Marek, M. Smiatek, K. Rybiniski, R. Roszczyk, M. Wdowiak

the module finishes its computations (all or part), it sends Data Tokens to specific
output Data Pins.

To define flow of data in CAL programs one needs to connect Data Pins with
Data Flows. Data Flows are represented by simple arrows connecting output Data
Pins with input Data Pins. This indicates the transfer of Data Tokens within a CAL
program (cf. Computation Application). The Data Flow arrows have to start at
either output Data Pins of Module Calls or at standalone input Data Pins. Analog-
ically, they have to end at either input Data Pins of Module Calls or at standalone
output Data Pins.

4 EXAMPLE CAL APPLICATIONS

The presented notation of CAL seems simple at first sight. However, its semantics
allows for constructing even sophisticated parallelisation scenarios. In this section
we present some example CAL applications that illustrate basic parallelisation ca~
pabilities of CAL.

4.1 Simple Application — Face Recogniser

The simplest valid Computation Application written in CAL has to contain a sin-
gle Module Call, connected to one input and one output standalone Data Pins.
An example of such a CA is shown in Figure [f] This application takes pictures
from a Data Set assigned to the input Data Pin (“Input Photos”) and processes
them inside a CM (“Face Recogniser”) instance. This consists in a neural network
algorithm detecting and marking peoples’ faces on the pictures. After processing
all the images, they are uploaded to the Data Set specified by the output Data Pin
(“Output Photos”).

Input Photos Input(Face Rﬁcoogniser Output Output Photos
>>2 Face Recoogmser >2
1.

Figure 5. CAL diagram of the Face Recogniser Computation Application

Note that this simple CAL program uses “multiple data” pins. This means, it
operates on whole sets of data items (here: pictures). Thus, there is no parallel
execution of CM instances. All the pictures are processed by a single instance of
“Face Recogniser”. In order to make the application “parallelizable” one would need
to develop a “Face Recogniser” module that accepts single pictures, i.e., with “single
data” pins. In such a case, the BalticLSC execution engine would take individual
pictures from the input Data Set and assign each of them to a separate instance of
the new “Face Recogniser” module. This would allow for parallel processing of each

BalticLSC 743

of the pictures, where the CM instances could be potentially distributed between
various Cluster Nodes.

4.2 Advanced Application — Image Edger

A more advanced CA written in CAL is shown in Figure [} The presented CA
detects the edges of the provided pictures by splitting the image into three colours
and analysing them independently. As shown in the diagram, the pictures are taken
from the outside repository assigned to the “Data Input” pin. Each of the pictures
is processed by an instance of the “Image Channel Separator” module. It splits
a picture into one of the three RGB colours. Note that a single token arriving at
the “Input Image” pin causes the creation of three tokens — one on each of the
output pins (“Channel 1-3”). Each channel is processed by a call to an “Image
Edger” CM specific for the given colour. The final step is to merge the outputs of
the thee “edgers” into a single image. An instance of the “Image Channel Joiner”
module is started when tokens on each of the “chanel” input pins arrive. Note
that the execution engine keeps track of the tokens and assures that the “channel”
tokens arriving at a particular “Image Channel Joiner” instance relate to the same
picture.

ImageReader "“39% E:ﬂef‘”

ImageWriter

Image Edger01
0.1.4

Unrequired Param

=

Image Channel |channel 1
Separator 0.1

Image Channel
Separator 0.1

Image C hgnnel
~mage Edgeroz) Joiner 0.1
Input Image Image Edger02 Channel 2

Image Edger02
0.1.4

ImageReader

—

Image Edger03
0.14

Image Edger03
0.14

Unrequired Param

=

Figure 6. CAL Diagram of Image Edger computation application

The Image Edger application includes several possibilities to parallelise com-
putations. When executing this application, the BalticLSC execution engine takes
several pictures from the input Data Set and based on this it creates several in-
stances of the “Image Channel Separator” module. Furthermore, it creates three
instances of the “Image Edger” modules per each instance of the separator. Finally,
it creates an instance of the “Image Channel Joiner” module per the three instances

744 K. Marek, M. Smiatek, K. Rybiniski, R. Roszczyk, M. Wdowiak

of the edgers. For n input pictures, we thus obtain 5n module instances running in
the system, potentially in parallel.

The edge detection algorithm can be used as standalone but also as a step in
more advanced algorithms. Therefore, this CAL program could be easily turned
into a module and reused through a Module Call in some other applications.

5 DEVELOPMENT OF COMPUTATION MODULES

The library of Computation Modules forms the backbone of the BalticLSC Plat-
form. Modules encompass various algorithms performing computations in different
problem domains. Modules are reusable and can be interfaced with other modules
through compatible Data Pins. This allows for building more complex algorithms
through combining several module calls in a CAL program.

5.1 Computation Module Lifecycle

In order for a CM to operate within the BalticLSC system, it needs to be made
compliant with specific deployment and communication rules. The most basic re-
quirement is that it needs to be compiled and deployed as a Linux Docker container.
It also needs to communicate with the BalticLSC Engine through specific REST
interfaces (APIs). This allows to operate within the BalticLSC module execution
environment that is illustrated in Figure []] To assist the module development pro-
cess, example modules in Python and C# are publicly available, together with
a dedicated SDK and a developer’s manual.

CMs working within the execution environment are called Job Instances. Each
instance is executed on a specific Cluster Node and its instantiation and termina-
tion is managed through a specific Cluster Manager (using the Kubernetes or the
Docker Swarm technology). The instances’ lifecycles and passing of Data Token are
managed by the Batch Manager component. The Batch Manager is an intermediary
between the Job Instances and the central Master Node Backend component. It also
instructs the Cluster Manager to start or finish the instances.

To enable proper communication between a CM and the Batch Manager, every
CM has to implement a simple REST API (called JobAPI) consisting of two end-
points and has to use another simple REST API provided by the Batch Manager
(called TokensAPT). It also has to read appropriate configuration data and access
appropriate data stores with the information provided by the Data Tokens.

Computation Module programmers thus have to follow a specific standard life-
cycle. The list of steps in the lifecycle is provided below.

1. Read appropriate configuration data and set-up connections with the infrastruc-
ture (data stores, API endpoints, etc.).

2. Receive one or more Data Tokens on the JobAPI.

BalticLSC 745

BalticL 5C M as & rNode Bac kend

Ba ltichedeA Pl TBahicSewetAF‘l

BatchManager ﬂ

T T
| |
| TokensAR| |
I |

QuserP APl
| JobAPI

Cluster Manager E aManages Joblnstance

e

Figure 7. Component structure of the Computation Modules’ execution environment

3. Access and start processing Data Sets based on the received tokens and input
pin configuration.

4. Update existing or create new Data Sets based on output pin configuration.

5. When finished updating/creating some Data Set, send a Data Token to the
TokensAPI.

6. When completed the computation execution, send an acknowledgement message
for all the received tokens.

7. Reset all the internal states and prepare for potential processing of a next com-
putation execution.

5.2 Computation Module Configuration

Configuration of a Job Instance is determined through environment variables and
configuration files. Every CM is obliged to read several standard environment vari-
ables and process a standard pin configuration file. Below we present detailed infor-
mation on these standard configuration elements. Additional configuration elements
can be defined by the module developer if they are required to perform a specific
computation.

746 K. Marek, M. Smiatek, K. Rybiniski, R. Roszczyk, M. Wdowiak

e SYS_ MODULE_INSTANCE_UID - the identifier of the module (Job Instance)
granted by the Batch Manager that should be set in all the output tokens;

e SYS BATCH_.MANAGER_TOKEN_ENDPOINT - the address of the PutTo-
kenMessage endpoint;

o SYS_.BATCH_.MANAGER_ACK_ENDPOINT - the address of the AckToken-
Messages endpoint;

e SYS_PIN_CONFIG_FILE_PATH - the path to the pin configuration file, that is
generated and provided by the Batch Manager.

To access data, the CM uses the pin configuration file from the SYS_PIN -
CONFIG_FILE_PATH variable. Inside the file, an array of Data Pin definitions in
the form of a JSON object can be found. Each pin definition consists of several
attributes. An example JSON file with two pin configuration has been provided
below.

[{ "PinName": "Image Folder",
"PinType": "input",
"AccessType": "MongoDB",
"DataMultiplicity": "multiple",
"TokenMultiplicity": "single",
"AccessCredential": {

"User": "someuser",

"Password": "somepass",

"Port": "27017",

"Host": "b-36ala684-51a8"
¥

"PinName": "Images",

"PinType": "output",
"AccessType": "FTP",
"DataMultiplicity": "single",
"TokenMultiplicity": "multiple",
"AccessCredential": {

"Host": "ftp.somehost.com",
"User": "someuser",
"Password": "somepass"

},
"AccessPath": {
"ResourcePath": "/files/out"
}
]

BalticLSC 747

5.3 Token Processing by the Computation Module

For the CM to work inside the Platform, it has to receive and process Data To-
kens correctly. Data Tokens indicate from where the CM can access input data
and they inform the Computation Engine where the data output from the CM has
been uploaded. Without correct processing of Data Tokens, the CM would be iso-
lated from the rest of the Platform and would not be able to use full capabilities
of the BalticLSC environment. The process is started when an input Data Token
message is received at the ProcessTokenMessage endpoint of the JobAPI and han-
dled by the JobController. Following this, the CM checks for the correctness of
the token’s structure and contents (“CheckToken”). If the token is incorrect, the
CM immediately sends a response message “corrupted-token”. Further on, the CM
checks connections to data stores (“CheckDataConnections”). In case when the
data store does not respond and time-out occurs, the module immediately sends
a response message ‘no-response”’. In case when the data store responds by in-
dicating that the authorization or access to the data path has failed, the module
immediately sends a response message “bad-credentials”. If the token and data con-
nections are correct, the module starts processing the data contained in the token
(“StartDataProcessing”), sets the computation status of the module to “Working”
and immediately sends a response message “ok”. Normally, the processing work-
load should be started asynchronously as a separate thread. When processing data,
the module can connect to appropriate data stores through AccessCredentials taken
from the pin configuration file. During and after finishing data processing, appro-
priate acknowledgement tokens and output token messages are sent. When the
module processes data (cf. “DoProcessData’), it creates some Data Set, usually
by accessing (writing to) an appropriate data store, according to the specific Data
Pin definition. When the output Data Set is ready, the module sends an output
Data Token to the “PutTokenMessage” endpoint of the TokensAPI. The output
token message has to contain the appropriate AccessPath data of the data item
created by (output from) the module. When the module finishes a complete life-
cycle for a single computation algorithm (processes all received input tokens), it
sends an “ack-ok” message to the AckTokenMessage endpoint of the TokensAPI.
When the module encounters some data processing error (caused by corrupted data
etc.), it should send a “failed-data-processing” message to the AckTokenMessages
endpoint. Once the error message is received, the computation stops, an appro-
priate error message is displayed, and the end-user can download the logs from
the BalticLSC Platform. The end-user can also manually monitor the status of
each of the CMs based on the tokens received and stop the computations at any
time.

It is worth noting that the Batch Manager will transform the output tokens
received from one CM, into input tokens for the next CM. The tokens will start
appropriate further instances of (other) computation modules if necessary, and
as defined by the CA. Such approach allows for connecting different CMs inside

748 K. Marek, M. Smiatek, K. Rybiniski, R. Roszczyk, M. Wdowiak

a single CA without the need for changes in the code of the CM (provided the type
of data and access to them is compatible between the two CMs).

6 VALIDATION OF THE MODULE DEVELOPMENT PROCESS

The presented development process has been initially validated through a project
run in academic environment. The aim was to verify the difficulty of developing new
CMs by inexperienced platform users. A group of Computer Science students was
tasked with developing a new Computation Application using an already trained
neural network to detect the emotions of people on the provided images. To ac-
complish the task, a new CA containing several new CMs had to be implemented.
The CAL Diagram of the Emotion Detection Application is presented in Figure [§
First, to allow for Emotion Detection, the faces in the input images had to be
detected. Next, a different module, using another pre-trained neural network has
to detect characteristic points on previously detected faces. Another CM recog-
nises the mood of the person detected on the picture using the characteristic points
on their face. The results are then summarised by creating a JSON file with the
detected emotion of each detected face on the image. This is sent to the user to-
gether with the images with marked faces. Both the input download and output
upload modules were generic CMs available for everyone on the BalticLSC Plat-
form.

Output

1.0
) =
w Face Points 1.0 F 0
A |

detector Output

~J
]

Face Detector 1.0

Figure 8. CAL diagram of the Emotion Detection application used during validation

The participants were provided with the CM Development instructions described
in the previous section and an example module. They did not have information or
any previous experience with the BalticLSC Platform architecture or orchestration
solutions (Kubernetes and Docker Swarm) used to manage the CM. During the
experiment, the BalticLSC Platform was still under development. Therefore, parts
of its documentation and the example module were updated during its duration. The
updates were partially based on the feedback gained during the validation process,
especially the description of Data Pins in the manual. Participants stated that the
introduced changes were very helpful and the updated example module was easier
to use and understand.

BalticLSC 749

The biggest inconvenience brought up by the participants was the lack of test-
ing environment for developers. Therefore the new versions of the CMs needed to
be manually added to the platform by the administrators. This sometimes took
one or two days which significantly slowed down the development process. Since
the experiment, the testing environment has been implemented and is available
to the developers. At the end of the validation, all the participants were able to
produce working CMs which were successfully communicating within the Balti-
cLSC Platform. This was despite they had only basic programming skills and
knowledge about REST APIs and containerisation. With the required CMs al-
ready implemented, creating the CA (CAL program) was instant for every partici-
pant.

7 RELATED WORK

At its core, the BalticLSC Platform is a heterogeneous distributed computing plat-
form. The idea of connecting multiple different machines to form a computational
network capable of solving advanced problems is not new. One of the well-known
implementations was the Seti@home project [I] using the computation power of
private computers selflessly connected to the network via the Internet to search for
Extraterrestrial Intelligence. However, this solution was designed with a specific
task in mind and was not universal. A good example of a more universal solution
in the XtremWeb project [0], a peer-to-peer computation system capable of solving
different computation problems. This solutions enable large-scale computations in
a distributed environment but are still requiring extensive knowledge and experience
to successfully develop a computation application. The solution to this problem can
be a visual programing environment.

The idea to use a visual language to ease the development of HPC applications
existed among researchers for a long time [I4]. Current visual solutions focus on
cloud computation [I0] but are still based on code generation which makes the lan-
guage difficult to expand by implementing new functionalities. An alternative to
code generation can be the use of containerization, a technology commonly used in
cloud computing. The result of such an approach is Kubeflow [3] software stream-
lining the process of training of neural networks on a Kubernetes [4] orchestration
platform. However, Kubernetes was designed with homogeneous computation clus-
ters in mind, to use it optimally on multiple heterogeneous clusters, an additional
orchestration strategy is required as described by Zhong and Buyya [15].

8 CONCLUSIONS AND FUTURE WORK

BalticLSC Platform simplifies large-scale computations on two levels. The first one
is performing the computations. The end-user can reuse entire applications (CAs)
or their parts (CMs) without the need to write any code. They do not have to
manually administrate the computation resources on which the computations are

750 K. Marek, M. Smiatek, K. Rybiniski, R. Roszczyk, M. Wdowiak

performed. The second area of sipmplification is the development of the CMs. The
programers do not need to have an advanced knowladge of distributed and pararell
computing, orchestration solution, etc. To develop your own CM, outside of specific
domain knowledge, only the basic REST API and containerization knowladge are
required.

Therefore, at its core, the BalticLSC Platform can be applied to solving dif-
ferent computation problems and pararellizing them automatically. Areas like fi-
nite element method calculation, neural network training, or image processing can
benefit from an easy to use computation environment, allowing for solving mul-
tiple problems at once, therefore reducing the time to market of a new prod-
uct.

The solutions and technologies created for the BalticLSC Platform can be used
to create domain-specific large-scale computation platforms. Such specialization
would allow for easier development of the critical amount of domain-specific CMs,
therefore making CA development easier for users without significant programming
experience.

REFERENCES

[1] ANDERSON, D.P.—Co0BB, J.—KORPELA, E.—LEBOFSKY, M.—WERTHIMER, D.:
SETI@Qhome: An Experiment in Public-Resource Computing. Communication of the
ACM, Vol. 45, 2002, No. 11, pp. 56-61, doi: 10.1145/581571.581573.

[2] ASSANTE, D.—CASTRO, M.—HAMBURG, I.—MARTIN, S.: The Use of Cloud Com-
puting in SMEs. Procedia Computer Science, Vol. 83, 2016, pp. 1207-1212, doi:
10.1016/j.procs.2016.04.250.

[3] Bisong, E.: Kubeflow and Kubeflow Pipelines. In: Bisong, E.: Building Machine
Learning and Deep Learning Models on Google Cloud Platform. A Comprehensive
Guide for Beginners. Apress, Berkeley, CA, 2019, pp. 671-685, doi: [10.1007/978-1-
4842-4470-8_46.

[4] BurNs, B.—BEDA, J.—HIGHTOWER, K.: Kubernetes: Up and Running: Dive into
the Future of Infrastructure. Second Edition. O’Reilly Media, 2019.

[5] CaBoT, J.: Positioning of the Low-Code Movement within the Field of Model-
Driven Engineering. Proceedings of the 23'4 ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems: Companion Proceedings (MOD-
ELS 20), 2020, Art. No. 76, doi: 10.1145/3417990.3420210.

[6] CapPELLO, F.—DuiLALl, S.—FEDAK, G.—HERAULT, T.—MAGNIETTE, F.—
NERI, V.—LODYGENSKY, O.: Computing on Large-Scale Distributed Systems:
XtremWeb Architecture, Programming Models, Security, Tests and Convergence with
Grid. Future Generation Computer Systems, Vol. 21, 2005, No. 3, pp. 417-437, doi:
10.1016/j.future.2004.04.011.

[7] FOSTER, I.—ZHAO, Y.—RaICU, I.—Lu, S.: Cloud Computing and Grid Comput-

ing 360-Degree Compared. 2008 Grid Computing Environments Workshop, IEEE,
2008, pp. 1-10, doi: 10.1109/gce.2008.4738445.

https://doi.org/10.1145/581571.581573
https://doi.org/10.1016/j.procs.2016.04.250
https://doi.org/10.1007/978-1-4842-4470-8_46
https://doi.org/10.1007/978-1-4842-4470-8_46
https://doi.org/10.1145/3417990.3420210
https://doi.org/10.1016/j.future.2004.04.011
https://doi.org/10.1109/gce.2008.4738445

BalticLSC 751

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

HAGER, G.—WELLEIN, G.: Introduction to High Performance Computing for Scien-
tists and Engineers. CRC Press, 2010, doi: [10.1201/ebk1439811924L
PALos-SANCHEZ, P.R.: Drivers and Barriers of the Cloud Computing in SMEs:
The Position of the European Union. Harvard Deusto Business Research, Vol. 6,
2017, No. 2, pp. 116-132, doi: 10.3926 /hdbr.125.

QUIROZ-FABIAN, J.L.—ROMAN-ALONSO, G.—CASTRO-GARCfA, M.A.—
BUENABAD-CHAVEZ, J.—BOUKERCHE, A.—AGUILAR-CORNEJO, M.: VPPE:
A Novel Visual Parallel Programming Environment. International Journal of Parallel
Programming, Vol. 47, 2019, No. 5, pp. 1117-1151, doi: [10.1007/s10766-019-00639-w.
SAHAY, A.—INDAMUTSA, A.—D1 Ruscio, D.—PIERANTONIO, A.: Supporting the
Understanding and Comparison of Low-Code Development Platforms. 2020 46" Eu-
romicro Conference on Software Engineering and Advanced Applications (SEAA),
2020, pp. 171-178, doi: 10.1109/seaa51224.2020.00036.

TeLIB, H.—CISTERNINO, M.—RUGGIERO, V.—BERNARD, F.: RAPHI: Rarefied
Flow Simulations on Xeon Phi Architecture. Technical Report, SHAPE Project Op-
timad Engineering srl., 2016.

VEccHIOLA, C.—PANDEY, S.—BuvvYA, R.: High-Performance Cloud Computing:
A View of Scientific Applications. 2009 10" International Symposium on Perva-
sive Systems, Algorithms, and Networks, IEEE, 2009, pp. 4-16, doi: [10.1109/i-
span.2009.150.

ZHANG, D.Q.—ZuANG, K.: A Visual Programming Environment for Distributed
Systems. Proceedings of Symposium on Visual Languages, IEEE, 1995, pp. 310-317,
doi: 10.1109/VL.1995.520824.

ZHONG, Z.—Buvyya, R.: A Cost-Efficient Container Orchestration Strategy in
Kubernetes-Based Cloud Computing Infrastructures with Heterogeneous Resources.
ACM Transactions on Internet Technology (TOIT), Vol. 20, 2020, No. 2, Art. No. 15,
pp. 1-24, doi: [10.1145/3378447.

https://doi.org/10.1201/ebk1439811924
https://doi.org/10.3926/hdbr.125
https://doi.org/10.1007/s10766-019-00639-w
https://doi.org/10.1109/seaa51224.2020.00036
https://doi.org/10.1109/i-span.2009.150
https://doi.org/10.1109/i-span.2009.150
https://doi.org/10.1109/VL.1995.520824
https://doi.org/10.1145/3378447

752

K. Marek, M. gmiafek, K. Rybiniski, R. Roszczyk, M. Wdowiak

Krzysztof MAREK is Assistant at the Institute of Control and
Industrial Electronics of the Warsaw University of Technology.
He is currently Ph.D. candidate. His research interests include
agile software development methods, business process modelling,
requirements engineering, large-scale computations and software
engineering metrics.

Michat SMIALEK is Professor of software engineering at the
Warsaw University of Technology. He obtained his habilitation
(higher doctorate) degree in informatics from the Warsaw Mil-
itary University and graduated from the Warsaw University of
Technology (M.Sc. and Ph.D.) and the University of Sheffield
(M.Sc.). Since 1991 he has worked in the industry as Software
Developer, Project Manager and Professional Coach. His current
research interests include model-driven software development,
requirements engineering, software reuse, software language en-
gineering and large-scale computing. He published and edited

several books and over 100 papers in various journals and conference proceedings. He co-
ordinated two European-level research projects, chaired several international conferences
and reviewed for major computer science journals.

Kamil RyYBINSKI is Adjunct Professor at the Institute of the
Theory of Electrical Engineering and Applied Informatics of the
Warsaw University of Technology. He obtained his Ph.D. in soft-
ware engineering from the Faculty of Electrical Engineering at
the same university. His research interests includes requirements
engineering, model-driven software development and knowledge
representation.

Radostaw RO0OSZCZYK specializes in biomedical image analysis
and processing, machine learning, data analysis, and distributed
systems. He has experience in developing new methods and their
application in a wide range of scientific and technical fields, in-
cluding biomedical engineering, horticulture, and measurement
systems. He participated in international and national research
projects. For nearly 20 years, he worked in global corporations,
and currently, he is an employee of the Faculty of Electrical Engi-
neering at the Warsaw University of Technology. He is Member
of IEEE and ISHS.

BalticLSC

753

Marek WpowIAK has focused his research field on software en-
gineering and image processing. He conducted research centres
around issues, such as segmentation and quantitative analysis of
microscopic images, mathematical morphology in image filtra-
tion, machine learning.

