
Computing and Informatics, Vol. 40, 2021, 772–795, doi: 10.31577/cai 2021 4 772

ACTIVITY DIAGRAM GENERATION BASED
ON USE-CASE TEXTUAL SPECIFICATION

Bogumi la Hnatkowska, Mateusz Cebinka

Faculty of Information and Communication Technology
Wroc law University of Science and Technology
Wyb. Wyspiańskiego 27
50-370 Wroc law, Poland
e-mail: bogumila.hnatkowska@pwr.edu.pl

Abstract. The requirements specification phase is one of the most important dur-
ing software development. In many cases, its outcome takes a form of a use-case
model, which consists of use-case diagrams and supplementary use-case specifica-
tions. The requirements specification document is used by various stakeholders,
starting from customers or their representatives, through architects, developers to
testers. Each role may have specific preferences for the form of requirements speci-
fication. To solve this problem, we propose a template for writing use-cases based
on the existing guidelines and a transformation method that creates an activity
diagram from the use-case textual specification consistent with the proposed tem-
plate. There are several tools that can generate activity diagrams based on textual
specification, but none of them fully meets the requirements for the form of tem-
plate or resulting diagram, which should be correct (textual specification semantics
preserved), UML 2.5 syntax compliant and contain necessary data. The proposed
transformation method is supported by a tool that transforms models at the same
level of abstraction. The transformation itself is defined at the meta-model level.
The general idea of model-to-model transformation is not new, but the meta-models
are original and fit for purpose. The application of the method is demonstrated by
several examples. Due to the frequent potential changes in created specifications,
the automation of the process will save time. Moreover, a graphical representation
of a use-case is easier to analyze and find errors or inconsistencies compared to
a textual specification.

Keywords: Requirements specification, textual specification, use-case template,
activity diagram, generation

https://doi.org/10.31577/cai_2021_4_772


Activity Diagram Generation Based on Use-Case Textual Specification 773

1 INTRODUCTION

Requirements specification plays a key role in software development. This phase
and its outcomes are always present, regardless of the methodology used. In many
cases, the specification document takes a form of a use-case model that consists
of use-case diagrams and supplementary use-case definitions. The quality (read-
ability, consistency, completeness) of this specification is crucial to the project’s
success. Quality issues are addressed, among others, through the use of templates
when a textual specification is created or through a graphical representation of the
specification, e.g., by an activity diagram, for which certain quality checks can be
performed automatically.

The requirements specification document is used by various stakeholders, start-
ing from customers or their representatives, through architects, developers ending
with testers. Each role may have specific preferences for the appearance of the re-
quirements specification. Customers are likely to prefer a textual form over formal
diagrams because of its comprehensibility and ease of creation. Developers or testers
would probably prefer diagrams over textual specifications due to their unambiguity
and the potential application of generation tools.

To solve the problem of different needs for the form of use-case specification, we
propose a textual template for writing use-cases based on the existing guidelines and
a transformation method that creates an activity diagram from the textual use-case
specification assuming it follows the proposed template.

There are several methods and tools that perform similar tasks, but none of them
fully meets our requirements, both in terms of the supported textual specification
template and the generated activity diagram, which should be informative, consis-
tent with UML 2.5 syntax [20] and correct (the semantics of the textual specification
should be preserved).

We also expect the solution to be runnable in a popular commercial modeling
tool available to students because of its educational value. Therefore, it was imple-
mented as a plug-in to Visual Paradigm as a multi-stage transformation of models
at the same level of abstraction. The general idea of model-to-model transformation
is not new, but the meta-models are original and fit for purpose.

The rest of the paper is structured as follows. Section 2 discusses existing
guidelines for writing ‘effective use-cases’ and approaches for translating textual
specifications into activity diagrams. Section 3 presents the proposed solution and
Section 4 the way of its evaluation. The last Section 5 concludes the work.

2 RELATED WORKS

Since the concept of use-cases emerged, many authors have tried to define effective
ways of their specification, e.g., [1, 3, 14]. Recommendations include, among others,
some general suggestions like ‘use a simple grammar’. Some propose more specific
solutions in the form of use-case templates, e.g., [1, 14]. These books were the



774 B. Hnatkowska, M. Cebinka

inspiration for defining assumptions about the use-case specification considered in
the transformation. The details are presented in the next section.

In [13], the authors propose a semi-automatic approach to generate use-case
scenarios based on parametrized use-case patterns. The proper use-case pattern
should be selected by the system analyst depending on the use-case goal. The
generated use-case specification contains the main flow and extensions. The steps
are uniquely identified. Alternative flows are denoted by letters, e.g., ‘a’. Steps
within a particular alternative flow are numbered separately. Another way of step’s
identification has been proposed in [18]. Actions from the main flows are rewritten in
alternative scenarios instead of being reused. The substituted actions in alternative
flows are identified with prim, which is not very readable. On the other side, the
RSL proposed in [18] allows definition of pre- and post condition for use-cases. Our
approach to step identification will use a method similar to [13]. As confirmed in the
experiment described in [24], the application of step identifiers to describe variation
points are best understood by different stakeholders (better results in comparison
to tags, specific sections, or advice use-cases). As it is done in the RSL [18], we
are going to allow defining pre- and post-condition for use-cases and invocation of
another use-cases.

Transformation of a textual use-case specification to an activity diagram is the
subject of many papers. Some of them assume that the textual specification does not
use any specific template and is written in free natural language, e.g., [10, 12]. The
authors follow typical steps for NLP processing such as text tokenization, parts-of-
speech tagging, stemming and lemmatization, type dependencies, and information
extraction to perform the transformation. The first solution [10] is defined for En-
glish, the second [12] for Arabic. They look for specific sentence patterns, e.g., SVO
(subject verb object), for which transformation rules are applied. The transforma-
tion rules are defined in natural language. Unfortunately, in both cases no example
or implemented tool is presented.

The NLP approach has been used in [16], but here the use-case is assumed
to follow a specific template defined in a table, including pre- and post-conditions,
main flow, alternative flows, and unique identifiers for the steps. The transformation
rules generating a sequence diagram are defined as a mixture of natural language
and pseudo-code sentences. The proposed method will use a very similar template
for use-case specification. NLP techniques do not produce satisfactory results in
terms of diagram correctness and completeness.

A use-case specification template, like that described in [16], is also used in [5].
However, some of the well-defined rules for use-case specification are not applied, e.g.,
sometimes the subject of action is unknown, ‘if’ statements are allowed. The input
(use-case specification) and output (activity diagram) of the method are formally
defined – the formal definitions form a kind of meta-model. Transformation rules
are defined informally, in natural language, based on patterns found in the text.
The transformation helps to detect possible errors in the use-case specification in
the early modeling stages. Identified errors include the reference to a non-existent
step identifier or the absence of an alternative flow. The transformation method



Activity Diagram Generation Based on Use-Case Textual Specification 775

proposed in this paper has the same features.
The activity diagram shown in [5] does not contain partitions. It consists of

activity nodes labeled with a step number and a verb (action) optionally followed
by processed objects (given in parentheses). In our approach we will use partitions,
but information about the data flow is omitted (it can be partially retrieved from
the action name).

A slightly different template is proposed in [11]. An example of a textual use-case
specification is defined at the subfunction level. It focuses on exceptions, neglecting
alternative flows. Transformation rules are defined in pseudo-code, but the authors
do not mention their implementation even in a prototype tool.

In the paper [23], which is a systematic review of transformation approaches
between user requirements and analysis models, the authors identify constraints on
requirements specification satisfaction of which is necessary to keep the transforma-
tion correct. They include, among others, the following recommendations:

• use simple grammar,

• use active rather than passive voice,

• use the same verb for the same action,

• do not use pronouns,

• use specific constructs to model the control flow of events (GOTO STEP [num-
ber], CON [statement], IF-THEN, WHILE-ENDWHILE, REPEAT [number]
UNTIL, DO-UNTIL).

The RUCM approach to use-case specification [22] also defines a set of keywords
for specifying control structures in a scenario:

• conditional (IF THEN ELSE),

• concurrent (MEANWHILE),

• condition checking (VALIDATES THAT),

• iteration (DO-UNTIL),

• stop (ABORT or RESUME).

Another set of control structures is defined in [18]. There are conditions (−⟩
cond), invocations (−⟩ invoke), and final statements (success/failure). The RSL
allows a single use-case to have many multiple flows whose actions, if necessary,
should be linked by a special statement (‘rejoin’).

The proposed approach will also use a set of keywords to model the control
flow. The list of control structures is limited (we have excluded IF THEN ELSE, as
this structure is not recommended in e.g. [3], and MEANWHILE – no concurrent
activities are supported at this time). The keywords are slightly different.

Unfortunately, the activity diagram generated in the RUCM method does not
have partitions and has ill-defined conditions (on the decision nodes instead on the
branches itself). The transformation rules are defined in natural language (in tables)
referring to meta-models defined internally in the aToucan tool.



776 B. Hnatkowska, M. Cebinka

The papers [9, 8] are further examples of studies in which the activity diagram
is either generated at a very general level (in [9] it consists of only one activity) or
violates syntax rules (in [8] it has ill-defined guards and looks rather like a flow-chart
than an activity diagram).

A meta-model representing use-cases is also defined in [17]. As the authors
claim, such a meta-model can have many different representations, including activity
diagrams. The authors have defined in a table how various elements of the meta-
model can be presented (transformed) by the elements of activity diagram. In
this solution, neither decision nor merge nodes are used to represent control flows.
Instead, the authors propose to use guards directly on control flows. There are no
partitions on the activity diagrams. The authors also do not consider iterations.

An extended version of the meta-model from [17] is presented in [19]. This meta-
model is used to represent parametrized patterns of use-cases. The logic of these
patterns is demonstrated with activity diagrams. The diagrams include so called
‘insertion points’ where other pattern instances can be included. We decided that
it is too early to consider parametrized use-case specification in the transformation
process.

Three tools that generate an activity diagram from a textual use-case textual
were found and thoroughly checked. That were: Visual Paradigm (VP) [21], Case-
Complete [2] and Enterprise Architect (EA) [4]. All limit their interest to the control
flow. Action pins can be generated by EA, but they must be explicitly defined for
steps. None of them can generate swimlanes.

VP assumes that the scenario is defined in pseudocode (with if then, while,
jump statements), which breaks the recommendation for writing efficient use-cases.
The generated activity diagram rather resembles a flowchart with conditions defined
nearby the branch symbol – compare Figure 1.

CaseComplete supports most of the good practices defined for textual use-case
specification [1, 3, 14]. The only problem found is the inability to define nested
alternative flows (alternatives for alternatives). The steps in main flow as well in the
extensions are identified by numbers, however the numbers in the alternative flows
are not unique (they always start with 1). It is possible to define many alternative
scenarios for a single step. The loop definition requires a specific statement, i.e.
‘continues’, followed by the step number from the main flow. Similarly, the fact that
a scenario (sub-scenario) ends should be directly noted by the verb ‘end’.

The activity diagram generated by CaseComplete tool looks much better than
that the one generated by Visual Paradigm. The tool does not process the text of the
specification in any way – actions in the activity diagram contain whole sentences
from the scenario along with the step number. Loops in the activity diagram are
presented indirectly as links to steps. To model many alternative flows starting
in the same branch, CaseComplete uses a fork symbol with many outgoing arrows
with guards (see Figure 2). Unfortunately, the guards are always taken from the
trigger of the alternative scenario, which can lead to semantically incorrect activity
diagrams (see Figure 3). According to the diagram, the user first selects a card, and
then the condition that user selects bank transfer is checked.



Activity Diagram Generation Based on Use-Case Textual Specification 777

Figure 1. Visual Paradigm – an example of activity diagram generation [7]

Figure 2. CaseComplete – an example of activity diagram generation with a loop and
many alternative flows



778 B. Hnatkowska, M. Cebinka

Figure 3. CaseComplete – an example of an improperly generated activity diagram

Enterprise Architect generates an activity diagram from a structured use-case
specification. The structured editor is a little bit cumbersome, especially when a use-
case has multiple scenarios. The tool allows to define many alternatives starting in
the same step. The name of the alternative is taken as a guard. As in CaseComplete,
it is impossible to define an alternative to an alternative scenario. It is impossible
to define loops within the specific scenario level (main, alternative). Loops are
not generated when the alternative scenario contains no action beyond information
where to join the main scenario. In consequence, the activity diagram presented in
Figure 11 cannot be generated. The generated diagrams do not have merge nodes,
which results in semantics errors (the activity ‘System asks about the payment
method’ cannot be started without tokens in all incomming branches) – see Figure 4
as an example.

Figure 4. Enterprise Architect – an example of an improperly generated activity diagram



Activity Diagram Generation Based on Use-Case Textual Specification 779

3 PROPOSED SOLUTION

3.1 Assumptions

The purpose of the research is to propose a transformation from a textual use-case
specification to its presentation as an activity diagram. This subsection collects the
main assumptions about the input and output of the transformation method.

Textual use-case specification should be consistent with the template defined
in the next subsection. It should allow definition of the main flow of events along
with alternative flows in structured natural language (English) (Scenario Plus Frag-
ments [1]). It should be possible to define alternative flows to alternative flows (one
nesting level), and loops in any scenario levels.

Sentences that are part of the use-case specification should follow the recom-
mendations found in the literature, among others:

1. Use-cases are written from the user perspective (the user goal level).

2. Actions are defined using the VSO pattern [3] in the active voice – it is clear
who or what performs the action [3, 14].

3. Steps have unique identifiers.

4. Every alternative scenario requires a detectable condition to be defined [1].

5. Use-case inclusions or extensions are written as casual actions.

6. Specification is technology neutral [1, 14].

The original semantics of the use-case specification should be preserved during
the transformation. The activity diagram should describe an event flow, not a data
flow. Its syntax must conform to the UML 2.5 specification [20]. Branches are the
only control structure considered. Actors should be organized into swimlanes.

3.2 Use-Case Textual Template

This section describes a proposed template for textual use-case specification.
The template consists of three tables describing:

1. General information about the use-case.

2. Main flow of events.

3. Alternative flows of events – it there are no alternative flows, the table is empty.

The type of each table must be defined in its first row (Main Use Case, Main
Flow, Alternative Flow).

The first table (T1 ) additionally contains the name of the use-case and option-
ally – the use-case pre- and post-conditions (see Table 1).

The second table (T2 ) describes the main flow of events (main scenario). The
table is divided into many columns (one per acting entity, i.e., actor or system).



780 B. Hnatkowska, M. Cebinka

Main Use Case

Name Borrow book
Precondition Librarian is logged in
Postcondition Book is marked as borrowed

Table 1. General use-case description

Activities are organized within numbered rows (their identifiers are given in the
first column). They can be subdivided into numbered steps (actions). If there is
only one action in a row, its number can be omitted. It is assumed that the numbers
in this table start at 1 and are increased by 1 in each row (see Table 2). However,
the numbers serve for identification purpose only. The ordering of actions is inferred
from their positions in the template – preceding actions are executed before their
successors. Actions can only be assigned to one agent (actor or system) in one row.

Main
Flow

Librarian System

1 Librarian wants to register a book
borrowing to a specific reader.

2 System asks for reader ID and book ID.

3 Librarian enters reader ID and
book ID.

4 1. System verifies the reader ID exists.
2. System verifies that the book ID ex-
ists.

5 System assigns the book ID to the
reader ID.

Table 2. Main flow of events – an example

Actions are represented by statements in English written according to the SVO
template. The statements should be written in the simple present tense. The only
exception is the first action in an alternative flow, which should be written in the
simple past tense. It is treated as a trigger for the alternative scenario.

Five types of statements are supported, from which repetitions, conditional, and
goto statements must contain specific phrases described by regular expressions (the
solution is case-insensitive):

• Conditional statements in the present tense: {verifies | validates}[that | the].

• Conditional statements in the past tense: {verified | validated}[that | the].

• Repetitions: {repeats until}.

• Goto statement: {goto step}.

• Casual statements.



Activity Diagram Generation Based on Use-Case Textual Specification 781

Casual statements can contain any verb followed by the name of an active entity
(actor or system) except those mentioned above, e.g., ‘verifies’, ‘repeats’. In par-
ticular, it can be the verb ‘run’ or ‘call’ followed by the name of another use-case.
This construction can be used to denote relationships between use-cases.

The goto, conditional, and repetition statements are linked with activities/steps
of the same or other scenarios. Each goto statement must be followed by the iden-
tifier of an existing step.

Alternative scenarios, if any, must be described in a table identified by the
term ‘Alternative flow’ – see Table 3. The rows in this table represent activities.
The first column identifies the activity of the main scenario to be affected. The
step identifiers are numbered according to the pattern X.Y (first level alternative
scenarios) or X.Y.Z (second level alternative scenarios – alternative scenarios to
alternative scenarios), where:

• X – a number being a reference to an action identifier from the specific activity
of the main flow, e.g., 2.

• Y – a letter identifying a thread within the scenario, e.g., a.

• Z – a letter describing a step identifier in the sub-sub scenario, e.g., a, b, c.

The entire alternative scenario should be placed in a single column assigned to
a specific actor; however, actions may refer to other actors listed somewhere (as
column names).

Alternative
Flow

Librarian System

4 1. a. System verified that the reader ID does not exist.
2. a. System informs that the reader ID does not exist.
3. a. System verifies that the reader ID is a number.
4. a. Goto step 2.

4 2. b. System verified that the book ID does not exist.
3. b. System informs that the book ID does not exist.
4. b. Goto step 2.

4 3. a. a. System verified the reader ID is not a number.
3. a. b. System informs the reader ID is not a number.
3. a. c. Goto step 2.

Table 3. Alternative use-cases description – an example

Three alternative scenarios are defined in Table 3. All refer to activity 4 from
the main flow (Table 2). The first alternative scenario replaces steps 2–4 with their
new versions 2. a.–4. a. Then, processing moves to activity 2 from the main flow.
Similarly, the second alternative scenario introduces a new thread ‘b’ consisting of
steps 4–6. The last row introduces an alternative flow to the first alternative flow
(containing step 4. a). After two steps ‘a’ and ‘b’, the flow returns to activity 2 of
the main flow.



782 B. Hnatkowska, M. Cebinka

An alternative scenario requires a detectable condition to be defined elsewhere.
At that moment, only binary conditions are supported. Such a condition must be
defined after the verb ‘verifies’ or ‘validates’. This makes the specification slightly
longer, but it is still flexible and readable. For example, it is not impossible to define
an extension in the way suggested in [3], because there is no condition defined here
in the main flow:

4. User has the system saved the work so far
. . .
4. a. Save fails
. . .

Instead, the specification should look like this:

4. User has the system saved the work so far
5. System verifies that the save was successful
. . .
5. a. System verified that the save has failed
. . .

The definition of a loop requires the presence of both a conditional statement
and an alternative scenario with a ‘goto’ action. It is not very convenient, but
such specification was supported by the meta-model defined. An example of such
a construction is given in Table 4 and Table 5.

Main Flow

Actor System

1 Action 1

2. Action 2

3. 1. Repeats until condition

4. Action 3

Table 4. Main flow with repetition statement

Alternative
Flow

Actor System

3 1. a. Goto step 1.

Table 5. Alternative flow for repetition statement

3.3 Transformation Process

The transformation is a multi-stage process. It goes through three meta-models (see
Figure 5):



Activity Diagram Generation Based on Use-Case Textual Specification 783

1. M1 – Use-case template meta-model,

2. M2 – Activity diagram meta-model,

3. M3 – Visual Paradigm (VP) meta-model.

The textual use-case specification is read into an instance of the M1 meta-model.
The M1 meta-model is an object-oriented representation of tables and their rows.
Its instance is translated to an instance of the activity diagram meta-model (M2 )
and then translated to an instance of the meta-model M3. The last meta-model
is used to facilitate the implementation of the activity diagram visualization in the
Visual Paradigm tool. Meta-models and transformation rules are defined in the
subsections below.

Figure 5. Transformation workflow

3.4 Meta-Models

M1 is the first meta-model in the chain of model transformations (see Figure 6).
This model is an object-oriented representation of the use-case textual template.
The UseCase class contains the main data about the use-case, i.e. its name, pre-
and post-conditions if they are presented. It contains a collection of Row instances
each of which has a unique identifier. The row represents a singular step. The
Identifier has the following attributes:

• mainId – activity identifier, e.g., 1, within the main flow of events;

• stepId – action identifier, e.g., 1, within the activity; can be inferred;

• altStepId – an optional letter, e.g., ‘a’, describing a plot within the alternative
flow;



784 B. Hnatkowska, M. Cebinka

• identifierId – an optional number or letter (for sub-scenarios) describing a step
identifier within a specific plot, e.g., 1 or ‘b’.

Each row contains data about the actor performing the action, the text describ-
ing the action (originalText) and its shorter version (without numbers), and the
type of scenario to which the row belongs to (main, alternative or alternative to
alternative).

If the action contains a goto statement, an instance of the GoTo class is created.
It stores the identifier to the target row.

Figure 6. M1 – Use-case template meta-model

For the flows from Tables 6 and 7, the instance of the M1 meta-model will
look as shown in Figure 7. As can be seen, no knowledge inference is performed
during parsing tables with text. As the result, two identical identifiers are created
(i1 and i4 ), even though they intentionally represent the same entity.

Main Flow

Actor System

1 1. System verifies the reader ID
exists

Table 6. Main flow with conditional statement

M2 is a meta-model that serves as a representation of a simplified description
of activity diagrams – see Figure 8. An activity diagram is a graph consisting of
nodes. The abstract class Node is the root for all considered node types: ActionNode,
MergeNode, and DecisionNode.

The nodes are described by:

• text – name of the action,

• actor – name of the actor performing the action,



Activity Diagram Generation Based on Use-Case Textual Specification 785

Alternative

Flow

Actor System

1 1. a. System verified that the
reader ID does not exist.
2. a. Goto step 1. 1.

Table 7. Alternative flow with conditional statement

Figure 7. An example of M1 meta-model instance

• isEnd – Boolean equal to true if the node is a final node.

The meanings of Identifier and ScenarioType are the same as in M1.
Concrete nodes keep references to their successors. The DecisionNode class

stores up to two such references for two possible branches the guards of whose are
kept in the Edge class instances. This class additionally has the attribute isLoop
set to true when its instance starts a loop.

The M3 is the target meta-model for displaying activity diagrams in the Visual
Paradigm. The M3 meta-model is very similar to the M2 meta-model – compare
Figure 9. The abstract Node class has been replaced by the abstract Element class,
whose attributes refer to the tool API.



786 B. Hnatkowska, M. Cebinka

Figure 8. M2 – Activity diagram meta-model

The list of concrete classes inherited from the Element class has been extended
to include FinalNodeElement and InitialNodeElement classes representing final and
initial nodes, respectively. The same happened to the list of strings representing
guards stored by a DecisionNodeElement instance – now the strings are stored in
one place for both outgoing branches.

The Diagram meta-class has remained the same. It now stores a reference to
a swimlane object which is split into one or more partitions. The Partition instance
groups together the elements (actions) performed by a specific actor.

3.5 Transformation Rules

This section gathers transformation rules between meta-model instances. The rules
have unique identifiers that determine their order. Those with lower identifiers are
run first. Rules are defined in natural language mixed with pseudo-code. Some of
them will be illustrated with examples.

3.5.1 M1 to M2 Transformation Rules

Rule 1 – Map UseCase to Diagram. Create an instance of Diagram class for
the instance of UseCase class and copy the attributes.

Rule 2 – Map Rows to Nodes. Each r: Row with repetition or conditional sen-
tence in the present tense in shortText is mapped to a a instance of the Deci-



Activity Diagram Generation Based on Use-Case Textual Specification 787

Figure 9. M3 – Visual Paradigm meta-model

sionNode class; rows with other types of sentences are translated to instances of
the ActionNode class.

Attribute values are copied: a.actor = r.actor , a.text = r.shortText ,
a.scenarioType = r.scenarioType. If r contains a sentence with repetition, the
attribute isLoop is set to true.

Rule 3 – Create successors nodes in positive scenarios. Create an instance
of the ActionNode class with an empty identifier and set it as the predecessor
for the first node. This action will mimic the initial state.

For each goto: GoTo find:

• row identifier (sourceId) to which goto belongs,

• node source with the sourceId identifier,

• node target with the identifier that goto points to.

Set source.next = target .

For each a: ActionNode set the next attribute to the corresponding action cre-
ated from the succeeding source row (if any).

For each d: DecisionNode create an instance e of the Edge class with the guard
set to a new string taken from d.shortenText . The part before and containing
‘verifies’ is cut off. For example, for the sentence ‘System verifies the book ID
exists’ the guard will be set to ‘The Book ID exists’. Next, d.nextTrue = e and
the e.next attribute is set as it is described above for a.next .

Rule 4 – Create successors nodes in negative scenarios. For each n: Node
containing a conditional statement in the past tense, get the identifier and
extract the targetId it points to. Find the decision node d with targetId.



788 B. Hnatkowska, M. Cebinka

Create an instance e of the class Edge with the guard set to ‘Else’. Then,
d.nextFalse = e and the e.next = n.

Rule 5 – Create merge nodes. For each node n that is a successor to more than
one another node, create an instance m of the MergeNode class. Create an empty
identifier except of altStepId which is generated. All n attributes are copied to
m. The successors’ next or nextTrue attribute is set to m, and m.next = n.

Rule 6 – Create actions based on decision nodes. For each d: DecisionNode
not being a loop create an instance a of the ActionNode. Create an empty
Identifier object and link it with a Copy all the attributes from d to a (including
identifier); set a.next = d.

Rule 7 – Delete unnecessary actions. For each a: ActionNode with a condi-
tional sentence in the past tense or a goto statement, find its predecessor p. Set
p.next = a.next if p is an action. If p is a decision node, set the appropriate
p.nextTrue.next = a.next or p.nextFalse.next = a.next . Remove a.

Rule 8 – Find final nodes. For each n: Node we set isEnd = true if n.next is
empty (for actions) or n.nextTrue or n.nextFalse is empty (for decisions).

An example of the transformation rules applied for the M1 instance shown in
Figure 7 is presented in Figure 10.

3.5.2 M2 to M3 Transformation Rules

The M3 meta-model is slightly different from the M2 meta-model. Therefore, the
list of transformation rules is quite short. We limit the presentation to those which
are not connected with the API of Visual Paradigm and for which the transformation
is not trivial.

Rule 9 – Map DecisionNodes to DecisionNodeElements. For each d: De-
cisionNode create a new instance de of the DecisionNodeElement class. Set
de.trueGuard = d.nextTrue.guard if d.nextTrue exists, de.falseGuard =
d.nextFalse.guard if d.nextFalse exists.

Rule 10 – Create initial/final node. Find a node n with an empty identifier.
Create an instance i of the InitialNodeElement class. Set i.next = n.next .

Create a list of nodes l with the attribute isEnd set to false. If the list contains
any object, create a final node f . For each n in the list set its next field to f
(if n is an action node), nextTrue = f (if n is a decision node and n.nextTrue is
empty), and nextFalse = f (if n is a decision node and n.nextFalse is empty).

Rule 11 – Create Swimlane and Partitions. Create a new instance of the
Swimlane class and assign it to the diagram instance. Group the nodes for each
actor. Create a partition for each actor. Assign instances of the Element class
to the partition belonging to the actor the source node points to. Initial state,
decision nodes, merge nodes are assigned to the same partition to which its
preceding element belongs. The final node is assigned to the first partition that
contains a state leading to the final state (non-deterministic choice).



Activity Diagram Generation Based on Use-Case Textual Specification 789

Figure 10. An exemplary M1 to M2 instance transformation

4 SOLUTION EVALUATION

4.1 Test Cases

The method was initially tested by eight test cases (four positive and four negative).
The positive test cases were adapted from the external resources, mainly from [1, 3].
The use cases were chosen to cover all elements that can be generated, starting from
a simple flow (case 1), through alternative flows (case 2), to loops (case 3), and
multiple actors (case 4).

Negative test cases were created by injecting errors (e.g. reference to non-existent
action) to positive cases to check the tool’s robustness to inconsistent specifications.

4.2 Validation Setup

The solution was implemented as a plug-in to the Visual Paradigm (VP, v. 16.2).
The plug-in is available at the link [6].

One of the co-authors defined a use-case diagram with textual use-case speci-
fications in a VP project. He also run the generation. The generation results (for
positive test cases) were examined by the second co-author. The elements checked



790 B. Hnatkowska, M. Cebinka

included:

• Consistency of the textual use-case specification with its original version.

• Correctness of the generated diagram at the syntax and semantics level.

For negative test cases, two elements were checked:

• Location of error injection in the textual specification.

• The error message displayed by the tool.

The tool was able to generate correct diagrams for all positive test cases. An ex-
ample activity diagram for the use-case specification defined in Tables 1, 2 and 3,
is given in Figure 12. Another activity diagram created based on Tables 6 and 7 is
given in Figure 11. The VP project with exemplary use-case scenarios and generated
diagrams can also be downloaded [6].

Figure 11. Activity diagram generated from the specification given in Tables 6 and 7

The tool is able to correctly identify the following possible mistakes:

• No use-case name.

• No actor name in the second row.

• No step identifier in the first column.

• Reference to non-existence action identifier.

• Starting an alternative flow with a reference to a sentence not containing the
verb ‘verifies’.

The tool generates the diagrams correctly, but they may not look readable. The
automatic diagram layout does not work well enough.



Activity Diagram Generation Based on Use-Case Textual Specification 791

Figure 12. Activity diagram generated from the specification given in Tables 1, 2 and 3

5 CONCLUSIONS

This paper presents an approach to activity diagram generation based on a textual
use-case specification. This approach requires the use-case specification to follow the
template defined in Section 3. The template was proposed based on the literature
overview and is adapted to the general editor available in Visual Paradigm.

The generated diagram is syntactically correct and complies with UML 2.5 syn-
tax. It also contains necessary data.

The proposed transformation process refers three meta-models. The second
meta-model is the most important because its structure constraints the transforma-
tion. An example of such a constraint is that a decision node can only have two
outgoing branches at that moment. This may be inconvenient, but all scenarios can
be specified.

The transformation method is supported by an implemented plug-in for Visual



792 B. Hnatkowska, M. Cebinka

Paradigm. The plug-in is available for free, and the community version of VP can
be freely used for non-commercial projects.

Due to the frequent changes in the textual specifications created, automating
the process will save the time of activity diagram creation. The tool is also able to
identify basic errors in scenarios. This feature can be used for checking the textual
specification correctness and completeness (against formal errors).

The advantages of the implemented plug-in affecting the readability and flexi-
bility of the solution compared to other tools are:

• Use-case textual template:

– The scenarios must be written according to the recommended rules – compare
to [21].

– All scenarios are collected in one place (page) – compare to [2, 4].

– It is possible to define alternative flows for alternative flows – compare to
[2, 4].

– It is possible to define goto statements in any level of scenarios – compare
to [2, 4].

• Activity diagram:

– Diagrams are UML 2.5 compilant (syntax level) – compare to [2].

– Semantics of the textual specification is always preserved – compare to [4, 21].

– Actions are grouped into partitions – compare to [2, 4, 21].

– Loops are modeled with decision/merge nodes – compare to [2, 4, 21].

– Loops are visible directly. No links to steps are used to model them – compare
to [2].

In the future, it is planned to extend the scenarios with the ability to define
inline loops, e.g., the actor repeats steps 3–5 until the condition is met, and to define
more than one alternative scenario for one step. As it comes to activity diagrams,
the addition of data flow is also under consideration (at least on request) and the
extension of the keyword list with the ability to express the fact that a specific
branch has been completed.

REFERENCES

[1] Adolph, S.—Bramble, P.—Cockburn, A.—Pols, A.: Patterns for Effective
Use-Cases. Addison-Wesley Professional, 2003.

[2] CaseComplete. Available at: https://casecomplete.com/.

[3] Cockburn, A.: Writing Effective Use-Cases. Addison-Wesley Professional, 2000.

[4] Enterprise Architect (Version 15.2). Available at: https://www.sparxsystems.com/.

https://casecomplete.com/
https://www.sparxsystems.com/


Activity Diagram Generation Based on Use-Case Textual Specification 793

[5] Liu, S.—Sun, J.—Liu, Y.—Zhang, Y.—Wadhwa, B.—Dong, J. S.—
Wang, X.: Automatic Early Defects Detection in Use Case Documents. Proceedings
of the 29th ACM/IEEE International Conference on Automated Software Engineering
(ASE ’14), 2014, pp. 785–790, doi: 10.1145/2642937.2642969.

[6] Hnatkowska, B.: UseCase Specification to Activity Dia-
gram Generator. Available at: https://github.com/bhnatkowska/

UseCaseToActividyDiagramTransformation.

[7] How to Generate Activity Diagram from User-Story. Available at: https://www.

visual-paradigm.com/tutorials/user-story-to-activity-diagram.jsp.

[8] Iqbal, U.—Bajwa, I. S.: Generating UML Activity Diagram from SBVR Rules.
2016 Sixth International Conference on Innovative Computing Technology (IN-
TECH), IEEE, Dublin, Ireland, 2016, pp. 216–219, doi: 10.1109/intech.2016.7845094.

[9] Kamarudin, N. J.—Sani, N. F. M.—Atan, R.: Automated Transformation Ap-
proach from User Requirement to Behavior Design. Journal of Theoretical and Ap-
plied Information Technology, Vol. 81, 2015, No. 1, pp. 73–83.

[10] Maatuk, A. M.—Abdelnabi, E. A.: Generating UML Use Case and Activity Di-
agrams Using NLP Techniques and Heuristics Rules. International Conference on
Data Science, E-Learning and Information Systems 2021 (DATA ’21), ACM, 2021,
pp. 271–277, doi: 10.1145/3460620.3460768.

[11] Mustafiz, S.—Kienzle, J.—Vangheluwe, H.: Model Transformation of
Dependability-Focused Requirements Models. 2009 ICSE Workshop on Modeling in
Software Engineering, 2009, pp. 50–55, doi: 10.1109/mise.2009.5069897.

[12] Nassar, I. N.—Khamayseh, F. T.: Constructing Activity Diagrams from Ara-
bic User Requirements Using Natural Language Processing Tool. 2015 6th Interna-
tional Conference on Information and Communication Systems (ICICS), IEEE, 2015,
pp. 50–54, doi: 10.1109/iacs.2015.7103200.

[13] Ochodek, M.—Koronowski, K.—Matysiak, A.—Miklosik, P.—
Kopczyńska, S.: Sketching Use-Case Scenarios Based on Use-Case Goals
and Patterns. In: Madeyski, L., Śmia lek, M., Hnatkowska, B., Huzar, Z. (Eds):
Software Engineering: Challenges and Solutions. Springer, Cham, Advances in
Intelligent Systems and Computing, Vol. 504, 2017, pp. 17–30, doi: 10.1007/978-3-
319-43606-7 2.

[14] Övergaard, G.—Palmkvist, K.: Use-Cases: Patterns and Blueprints. Addison-
Wesley Professional, 2005.

[15] Reggio, G.—Leotta, M.—Ricca, F.—Clerissi, D.: DUSM: A Method for
Requirements Specification and Refinement Based on Disciplined Use Cases and
Screen Mockups. Journal of Computer Science and Technology, Vol. 33, 2018, No. 5,
pp. 918–939, doi: 10.1007/s11390-018-1866-8.

[16] Thakur, J. S.—Gupta, A.: Automatic Generation of Sequence Diagram from Use
Case Specification. Proceedings of the 7th India Software Engineering Conference
(ISEC ’14), ACM, 2014, Art. No. 20, pp. 1–6, doi: 10.1145/2590748.2590768.

[17] Śmia lek, M.—Bojarski, J.—Nowakowski, W.—Ambroziewicz, A.—
Straszak, T.: Complementary Use Case Scenario Representations Based on Do-
main Vocabularies. In: Engels, G., Opdyke, B., Schmidt, D. C., Weil, F. (Eds.):

https://doi.org/10.1145/2642937.2642969
https://github.com/bhnatkowska/UseCaseToActividyDiagramTransformation
https://github.com/bhnatkowska/UseCaseToActividyDiagramTransformation
https://www.visual-paradigm.com/tutorials/user-story-to-activity-diagram.jsp
https://www.visual-paradigm.com/tutorials/user-story-to-activity-diagram.jsp
https://doi.org/10.1109/intech.2016.7845094
https://doi.org/10.1145/3460620.3460768
https://doi.org/10.1109/mise.2009.5069897
https://doi.org/10.1109/iacs.2015.7103200
https://doi.org/10.1007/978-3-319-43606-7_2
https://doi.org/10.1007/978-3-319-43606-7_2
https://doi.org/10.1007/s11390-018-1866-8
https://doi.org/10.1145/2590748.2590768


794 B. Hnatkowska, M. Cebinka

Model Driven Engineering Languages and Systems (MODELS 2007). Springer, Berlin,
Heidelberg, Lecture Notes in Computer Science, Vol. 4735, 2007, pp. 544–558, doi:
10.1007/978-3-540-75209-7 37.

[18] Śmia lek, M.—Nowakowski, W.: Presenting the Requirements Specification Lan-
guage. Chapter 2. In: Śmia lek, M., Nowakowski, W.: From Requirements to Java in
a Snap: Model-Driven Requirements Engineering in Practice. Springer, Cham, 2015,
pp. 31–65, doi: 10.1007/978-3-319-12838-2 2.

[19] Śmia lek, M.—Ambroziewicz, A.—Parol, R.: Pattern Library for Use-Case-
Based Application Logic Reuse. In: Lupeikiene, A., Vasilecas, O., Dzemyda, G.
(Eds): Databases and Information Systems (DB & IS 2018). Springer, Cham, Com-
munications in Computer and Information Science, Vol. 838, 2018, pp. 90–105, doi:
10.1007/978-3-319-97571-9 9.

[20] OMG Unified Modeling Language (OMG UML), Version 2.5, 2015. Available at:
https://www.omg.org/spec/UML/2.5/PDF.

[21] Visual Paradigm. Available at: https://www.visual-paradigm.com/.

[22] Yue, T.—Briand, L. C.—Labiche, Y.: An Automated Approach to Transform
Use Cases into Activity Diagrams. In: Kühne, T., Selic, B., Gervais, M. P., Terrier, F.
(Eds.): Modelling Foundations and Applications (ECMFA 2010). Springer, Berlin,
Heidelberg, Lecture Notes in Computer Science, Vol. 6138, 2010, pp. 337–353, doi:
10.1007/978-3-642-13595-8 26.

[23] Yue, T.—Briand, L. C.—Labiche, Y.: A Systematic Review of Transformation
Approaches Between User Requirements and Analysis Models. Requirements Engi-
neering, Vol. 16, 2011, pp. 75–99, doi: 10.1007/s00766-010-0111-y.

[24] Santos, I. S.—Andrade, R. M. C.—Santos Neto, P. A.: Templates for Textual
Use Cases of Software Product Lines: Results from a Systematic Mapping Study and
a Controlled Experiment. Journal of Software Engineering Research and Develop-
ment, Vol. 3, 2015, Art. No. 5, 29 pp., doi: 10.1186/s40411-015-0020-3.

Bogumi la Hnatkowska is Professor Assistant in software en-
gineering at the Wroc law University of Science and Technology.
She received her M.Sc. degree and her Ph.D. degree in computer
science in 1992 and 1997, respectively. Her main scientific in-
terests include but are not limited to software development pro-
cesses, modeling languages, model driven development, model
transformations, and quality of the software products. She is
member of program committees of several international confer-
ences. She has over 100 publications in international journals
and conference proceedings from different areas of software en-
gineering.

https://doi.org/10.1007/978-3-540-75209-7_37
https://doi.org/10.1007/978-3-319-12838-2_2
https://doi.org/10.1007/978-3-319-97571-9_9
https://www.omg.org/spec/UML/2.5/PDF
https://www.visual-paradigm.com/
https://doi.org/10.1007/978-3-642-13595-8_26
https://doi.org/10.1007/s00766-010-0111-y
https://doi.org/10.1186/s40411-015-0020-3


Activity Diagram Generation Based on Use-Case Textual Specification 795

Mateusz Cebinka received his Bachelor degree and his M.Sc.
degree in computer science in 2019 and 2020, respectively, both
from the Wroc law University of Science and Technology, Poland.
He has worked for three years as Java developer in the financial
sector and currently at a company building IoT and biotechnol-
ogy software.


