
Computing and Informatics, Vol. 40, 2021, 796–814, doi: 10.31577/cai 2021 4 796

NON-INTRUSIVE DATA INSPECTION
FOR MESSAGE-BASED SYSTEMS

Jakub Czajka

Institute of Computer Science
Faculty of Computer Science, Electronics and Telecommunications
AGH University of Science and Technology
Al. A. Mickiewicza 30
30-059 Kraków, Poland
e-mail: jakub.czajka1998@gmail.com

Jacek Otwinowski

The Henryk Niewodniczański Institute of Nuclear Physics
Polish Academy of Sciences
ul. Radzikowskiego 152
31-342, Kraków, Polska
e-mail: jacek.otwinowski@ifj.edu.pl

Jacek Kitowski

Institute of Computer Science
Faculty of Computer Science, Electronics and Telecommunications
AGH University of Science and Technology
Al. A. Mickiewicza 30
30-059 Kraków, Poland
e-mail: kito@agh.edu.pl

Abstract. Over the years, research into debugging distributed systems with mes-
sage passing communication has focused on verifying the implementation of func-
tionality, such as race condition detection, and not on the exchanged data. In
this paper we explore this previously undervalued approach. We present a new

https://doi.org/10.31577/cai_2021_4_796


Non-Intrusive Data Inspection for Message-Based Systems 797

component to gather exchanged messages. We create a simplified model of message
passing and the component’s design based on it. Then, we discuss how to utilise the
component to create tools which provide currently missing debugging information.
In the end, we implement the component as part of the O2 framework and conduct
benchmarks. We obtain promising results – the component does not decrease the
throughput.

Keywords: Message-based systems, message inspection, debugging distributed sys-
tems, ALICE O2 software, CERN, LHC

Mathematics Subject Classification 2010: 68W

1 INTRODUCTION

Distributed computing has seen significant growth in the last thirty years. Single-
node systems are no longer sufficient for all use cases. Instead, we utilize horizontal
scaling where performance is increased by adding computing nodes.

Popularization of multi-node systems required development of new communica-
tion techniques. Many approaches have been proposed over the years [1, 2]. They are
usually some combination of message passing and shared-memory. These categories
have been extensively studied [3] and offer strong software support.

As with any computer program, distributed systems need debugging tooling.
However, due to their scale and complexity, it is not easy to create such tools and
there exists no universal solution. Before implementation, we must make a series of
trade-offs, such as whether to focus on one, many or all the nodes and which metrics
accurately measure the performance of our system. Thus, usually the more tools we
have available for a system, the better.

Standard categories of software allow for creation of software designs. Instead of
writing components with similar functionality in different systems from scratch, we
create an abstract specification for it, based on a simplified model of our standard.
Then, we implement the component in a system according to this specification.

In this work we explore a previously undervalued approach to debugging dis-
tributed systems with message passing communication (message-based). It is based
on a component which gathers information exchanged inside such a system. It is
similar to a sniffer but it can be easily adapted to the data structures of the sur-
rounding system. Thus, it can serve a different set of purposes, providing currently
missing debugging information. We discuss how to utilise this information to create
new debugging tools. We also evaluate an exemplary implementation.

We begin by creating a simplified model of message passing communication.
Then we define desired properties of the complete component. Finally we apply
these properties to the model using appropriate communication protocols.



798 J. Czajka, J. Otwinowski, J. Kitowski

This work is part of the O2 software project – a framework for large scale dis-
tributed data analysis developed by the ALICE experiment at CERN [4]. The
component is meant to be part of the next iteration of the project [5] and will an-
alyze data from the Large Hadron Collider. It is used there as a base for a new
debugging tool to obtain and visualize (inspect) messages exchanged inside the O2

system.

2 STATE OF THE ART

The subject of debugging message-based systems has been studied extensively over
the years. However, the general theme of this research seems to be emulating stan-
dard debugging functionalities such as replay debugging [6, 7, 8, 9] and race condition
detection [10, 11]. Replay debugging is a debugging technique where program’s ex-
ecution is recorded and then played back in controlled conditions. Race condition
detection is an umbrella term for various methods of debugging race conditions in
parallel systems (e.g. distributed).

The primary focus of the above methods is not on the contents of messages
exchanged in the system. This leaves out an area for new solutions because the
goal of message passing is to transport information. Message-based systems are
characterized in part by what data their computational nodes communicate. Our
work attempts to fill in that gap by allowing the user to not only verify if their
system works, which can be done using exisiting solutions, but also whether it
correctly transforms the data.

Other existing approaches include general distributed systems debugging [12, 13]
and sniffers [14]. Once again, they differ from our idea of inspection in that they
are not primarily data-oriented. For example, sniffers may not unpack captured
messages to see their contents in the original data type. Thus, to our knowledge,
the combination of the focus on the contents of messages and the presented way of
achieving it, is our original contribution.

3 MESSAGE PASSING MODEL

In principle, a message-based system consists ofM computational nodes. We assume
that M is finite and does not increase over time. Thus, at the start it contains the
maximum, theoretical number of nodes.

A node has zero or more inputs and outputs. It receives messages from other
nodes or outside the system, performs a predefined action and possibly sends a mes-
sage forward. It runs on exactly one host. A host can run multiple nodes.

Messages are exchanged through communication channels. Each channel has one
input and one or more outputs. It can be unidirectional or bidirectional. In case
of bidirectional one-to-many connections, the nodes on the many side can indepen-
dently send values to the one side. The communication layer provides an interface
to send and receive messages but does not know their contents (encapsulation).



Non-Intrusive Data Inspection for Message-Based Systems 799

Communication through a channel is either synchronous or asynchronous. In
the synchronous approach, both ends of a channel must be active at the time of com-
munication. In the asynchronous approach, if the recipient is inactive, the message
is stored in its mailbox and can be retrieved later.

4 COMPONENT’S PROPERTIES

The following are traits which message inspection should exhibit. They ensure the
real-world applicability of the solution.

Minimal performance cost. Message passing is often used in high performance
systems. Thus, the design should minimize processing costs.

Non-intrusive. A component is non-intrusive if its usage is transparent from the
point of the overall system. It should be designed on top of the system and not
as part of it. Other components should not be aware whether it is active or not.

Remote control. Message-based systems are often run on large scale computers
(e.g. clusters) while the results are analyzed on local machines (e.g. laptops).
Message inspection should allow for remote control and collection of results.

Independent execution. Starting the component should not require recompila-
tion of the system. It should not expect to be launched at a specific point in
time (e.g. before the start of the system). Its shutdown should not negatively
impact the system.

5 DESIGN

Figure 1 shows an exemplary message-based system with 10 nodes and different
types of channels. It is a disjoint union of graphs. Such a characteristic is unlikely
to appear in real life and was added to highlight the flexibility of the design.

In the first step of the design we add a node, I (Figure 2, green color). It acts as
a sink, collecting the inspected messages. It then forwards the messages immediately
to the proxy (see next step). Thus, it should have an unidirectional, one-to-one input
from every other node (red color). For performance reasons we narrow this criteria
to nodes with at least one output because if a node does not have an output, it does
not produce data that can be inspected.

The sink and its channels are identical to those already present in the system,
which makes them non-intrusive. They are added at system’s launch to avoid re-
compilation. However, this could impact performance even if inspection does not
take place. Thus, by default, the nodes do not send their messages to the sink.
Instead, a special reconfiguration mechanism is used, which is explained later.

In the second step we add the proxy. It is a separate program (outside the
system) which acts as a broker between the user and the rest of the system. It
collects messages from the sink, orchestrates the reconfiguration mechanism and



800 J. Czajka, J. Otwinowski, J. Kitowski

Figure 1. Exemplary message-based system

Figure 2. Exemplary system with the sink

exposes an interface for the user to command these functionalities. It is discussed
in detail in Section 5.1.

Figure 3 shows the complete architectural diagram for a system with message
inspection. For simplicity, nodes 5–9 were hidden.

5.1 Protocols

Figure 4 shows a variation of the architectural diagram. It labels the communi-
cation protocols used for message inspection (rectangles). The connections inside
the original topology are hidden because their protocols are a characteristic of the
surrounding system. In the following, these protocols are described.

The sink is connected to the proxy using the PUSH-PULL protocol. Each time it
receives a message, it performs an action to push the data out of the system. The
proxy stores the messages locally. No decapsulation is required.



Non-Intrusive Data Inspection for Message-Based Systems 801

Figure 3. Complete architectural diagram

Figure 4. Architectural diagram with communication protocols

All the nodes (except the sink) are connected to the proxy using the XPUBLISH-
XSUBSCRIBE protocol, labeled XPUB and XSUB in Figure 4. It is a variant of the
PUBLISH-SUBSCRIBE protocol which additionally allows the subscribers to message
the publishers. It serves two purposes:

1. Reconfiguration. The proxy sends reconfiguration messages with identifiers of
nodes which should start sending copies of messages to the sink.

2. Identification. When the proxy is launched and the nodes subscribe to it, they
additionally send their identifiers (using XPUBLISH-XSUBSCRIBE’s characteristic).
The proxy then uses them in the reconfiguration messages.

The XPUBLISH-XSUBSCRIBE protocol fits here well because it distributes the recon-
figuration logic and does not require knowledge about the structure of the nodes.
In this way, we obtain an inspection mechanism which can reconfigure nodes and
stores the results locally.



802 J. Czajka, J. Otwinowski, J. Kitowski

The whole process can be controlled remotely through the HTTPS protocol. It
also allows collection of the inspected messages. The proxy runs the HTTPS server.
Table 1 describes its interface.

Endpoint Type Input Output

/nodes GET – Nodes’ identifiers.

/inspect POST Identifiers of nodes to reconfigure. –

/data GET – Inspected messages.

/stop POST – Stops the proxy.

Table 1. Interface of the HTTPS server

5.2 Verification

In this section, we verify whether the system meets our requirements. First, we
check if the new elements conform to the model. Then, we verify if the additional
requirements have been met.

The design adds the sink and the proxy. The proxy is not directly part of the
system so it does not violate the model. The sink and its channels are created using
the tools from the system. It executes an action for every message and does not
decapsulate them. Thus, it conforms to the model.

The message inspection mechanism requires the following changes in the code
of the nodes:

1. Subscribe to the proxy. It is a one-time operation, so it does not have a significant
performance cost.

2. Add a logical variable describing whether it should be sending messages to the
sink. On each reconfiguration message, update the variable accordingly. The
cost is linear to the number of reconfigurations.

3. On each non-reconfiguration message, check the variable from 2. to determine
if the message should be sent to the sink.

4. If the check from 3. is positive, additionally send a copy of the message to the
sink.

Any additional costs come mainly from the last two changes. However, these are
minimum number of additions required for a dynamic reconfiguration system. Thus,
the costs have been minimized.

Nodes of the system with the inspection mechanism receive one new input and
(at most) one new output. The new input is an external input which is used to
receive reconfiguration messages from the proxy. These reconfiguration messages
are treated as normal messages. The new output is a channel which conforms to the
model. Thus, the nodes do not know about the presence of the inspection mechanism
which makes it non-intrusive.



Non-Intrusive Data Inspection for Message-Based Systems 803

The design can be controlled remotely through the HTTPS interface. It can be
started without recompilation. Additionally, if the communication channels are
implemented such that the PUSH and XSUBSCRIBE sockets can start without the
PULL and XPUBLISH sockets on the other side, which is possible with some libraries
(e.g. ZeroMQ [16]), the inspection mechanism can be started at any time. On its
shutdown, the inspection of all the nodes should stop and the system should continue
to work correctly.

6 USING THE COMPONENT

Up to this point we have presented the component, the requirements it should meet
and its design. In this section we discuss scenarios how the component can be used
for debugging.

As stated earlier, the component differs from other available approaches in that
it is primarly data-oriented. The client (Figure 3), through the HTTPS protocol,
receives serialized objects, instead of e.g. raw network packets when using a sniffer.
They can then deserialize the object to gain access to the underlying data structure.

Having access to an object in its original data structure gives an additional layer
of insight into the data. It is now possible to verify how specific fields of the object
change as it is exchanged between the nodes. This can be used in complex end-to-
end tests which check if the data is transformed correctly. Such tests could inject
a message into the system, capture it on the output side and compare it with the
expected object.

The component can also help analyze the overall flow of the messages. It can
be used to implement a version of the traceroute program [17] for the message-
based system. This could be implemented using currently available instrumentation,
but a version using our component would provide users with more details. The
presentation aspect would be done on the client’s side, without negatively impacting
the perfomance of the distributed system.

In our implementation inside O2, which is discussed in Section 7, the component
was used to inspect messages from the system. Figure 5 shows an exemplary view
for the pt-histogram node. Thanks to the properties of the system, the client was
able to see the data in its original structure, which is inaccessible on a larger scale
with the instrumentation currently available.

7 APPLICATION

The message inspection design was implemented as part of the O2 framework. It
was later used for benchmarks.

7.1 O2 Software Package

The O2 software package is developed as part of the ALICE experiment at the
European Organization for Nuclear Research, known as CERN. The facility conducts



804 J. Czajka, J. Otwinowski, J. Kitowski

Figure 5. Usage of the component inside O2

research in areas related to particle physics. It uses accelerators to performs studies
on the subatomic scale.

A Large Ion Collider Experiment (ALICE) is one of the four main experiments
at CERN. It analyzes data from the ALICE detector located on the Large Hadron
Collider (LHC) accelerator. The detector was designed to study strongly inter-
acting matter at extreme energy densities, where a phase of matter called quark-
gluon plasma is formed. This phase is assumed to have existed just after the Big
Bang.

ALICE develops their own software to conduct the experiments. O2 is their
data analysis framework. It is a message-based system. Its goal is to provide
an abstraction for the common code to deliver platform agnostic functionality, such
as parallel data processing and online/offline data reconstruction (hence the name
Online-Offline, abbreviated to O2) (Figure 6).

7.2 LHC Run 3

For the last couple of years, LHC has been undergoing a hardware upgrade. This is
done in preparation for a new series of experiments, known as LHC Run 3, scheduled
to start in 2022 [15]. In the meantime, CERN’s experiments need to upgrade their
software to utilize the new hardware.



Non-Intrusive Data Inspection for Message-Based Systems 805

Figure 6. ALICE’s computing architecture in LHC Run 3

The hardware upgrade will increase the amount of data produced. For example,
the heavy ion rate will increase from 10 kHz to 50 kHz. ALICE expects to receive
100 times more Pb-Pb central collisions [5]. As a result, the initial throughput will
increase up to at least 3TB/s (Figure 6).

ALICE is adapting to meet this new demand. For example, it is transitioning
from a triggered to a continuous readout mode for data acqusition. However, the
biggest change is the blending of traditional roles of Offline and Online processing
phases which will now share the same algorithms.

As the ALICE’s software framework grows, its support for debugging needs
to increase as well. However, the new performance requirements mean that the
tools must be thought through not to introduce any unnecessary slowdowns. Our
component is one of the ways of achieving this vision.



806 J. Czajka, J. Otwinowski, J. Kitowski

7.3 Architecture of O2

ALICE’s computing architecture has two processing phases (Figure 6). The first
phase is synchronous and its goal is to reconstruct the events from the detector and
reduce the overall size of the data. The second phase then performs asynchronous
analysis of this data. O2 (and consequently our component) operates in the second
phase. However, as stated in the previous sections, its design is generic and therefore
the component could also be adjusted to work in the first phase as well.

O2 can be considered to have a three-layer architecture (Figure 7). The Trans-
port Layer is responsible for managing the nodes which O2 controls, called devices.
The O2 Data Model describes the communication protocol (e.g. possible formats
of a message). Finally, the Data Processing Layer binds the system together to
perform computation. It provides means to describe data flow between devices and
algorithms to execute.

Figure 7. Layered architecture of O2

FairMQ [18] is an actor-based library – it provides entities, called devices, which
communicate with each other. They work as state machines to execute user-defined
tasks. They can communicate locally or over the network. The library abstracts the
details with a unified API and provides implementations for various communication
backends (e.g. shared memory, ZeroMQ).

Our component operates within the Data Processing Layer. However, it also
uses concepts defined by the other layers. For example, it creates a new device – the
sink. Moreover, it must be data-agnostic and operate on all the current (and future)
formats of the O2 Data Model. This, combined with the need for little performance
impact (explained earlier) is the reason why the component must be non-intrusive.



Non-Intrusive Data Inspection for Message-Based Systems 807

7.4 Implementation Details

A generic message-based system forms the foundation of the design of the message
inspection component. However, real-world systems, such as O2, can have additional
characteristics. These can be exploited to improve the implementation.

O2 uses the FairMQ library for the Transport Layer (Figure 7). The library
provides an additional plugin mechanism which allows to execute a piece of code on
every node at runtime. We use it to subscribe to the XPUBLISH socket and handle
reconfiguration.

Not all aspects of the design were implemented. The most important one is the
decapsulation of messages. It should be done on the client’s side. However, it is
currently done in the sink instead.

There are other, smaller inefficiencies as well. For example, the inspection state
is checked through string, not logical, comparison. However, all this does not nega-
tively impact performance substantially, as shown in Section 7.5.

7.5 Benchmarks

Figure 8 shows the topology used in the benchmarks. The topology consists of the
following nodes:

• internal-dpl-clock. Produces artificial clock signal which dictates how other
nodes should work, similarly to an electric circuit. It is unimportant for message
inspection and is ignored.

• producer-0. Produces messages between 1 and 100000 bytes long of random
data at a rate of 10Hz.

• Dispatcher. Placed between the producer and the rest of the topology. It is
parametrized by p ∈ [0, 1]. It randomly filters out (ignores) (1− p) ·100% of the
messages from the producer.

• QC-TASK-RUNNER-taskN. Produce outputs which are to be inspected.

• QC-TASK-RUNNER-checkN. Produce no outputs and only send data to sinks.
Thus, they cannot be inspected.

• QC-CHECK-RUNNER-sink-QC task3-mo 0. Sinks which are not relevant for the
benchmarks.

• internal-dpl-injected-dummy-sink. Same as above.

• DataInspector. The sink. It does not have an input from every node with
output, as proposed in the design. However, in every case it was a deliberate
decision for reasons specific to O2.

The above topology is built from exemplary components provided with the de-
fault distribution of O2 (except for DataInspector which is our own addition). They
represent the things which are possible to achieve using O2. Thus, we feel that the
overall topology also represents a generic use-case of O2.



808 J. Czajka, J. Otwinowski, J. Kitowski

F
igu

re
8.

T
h
e
top

ology
u
sed

for
b
en

ch
m
ark

s



Non-Intrusive Data Inspection for Message-Based Systems 809

The goal of our benchmarks is to measure the performance impact of the data
inspector on the overall system. We do it by comparing number of messages ex-
changed between nodes in a period of time. Three cases are considered:

1. Turned off. The sink is not part of the system.

2. No inspection. The sink is added but no nodes are inspected.

3. Inspection. The sink is added and nodes are inspected.

The test cases are additionally determined by the p parameter from the Dispatcher.
In each test case, we execute analysis for t seconds and count messages received

by QC-TASK-RUNNER-task2 (A) and DataInspector (B). We look specifically at
QC-TASK-RUNNER-task2 because

1. it is a computational node (unlike the Dispatcher which serves more as a utility
node),

2. it lies on the inside of the topology (it has outputs other than to sinks).

This means that its throughput is crucial to the overall performance of the system.
Then, we calculate the throughput T = A/t which shows the performance of the
computational node. In the end, we compare these throughputs for the different
scenarios to see if the data inspection slows down the system.

It is important to note that almost all inspected messages are from Dispatcher.
QC-TASK-RUNNER-taskN produce many empty results which are ignored. However, it
should not have a significant impact and the results should still be relevant because
all the relevant data goes through Dispatcher.

Table 2 shows the results of the benchmarks. We consider multiple different
values of t and p. We measure A and B and then calculate T .

Case t (s) p A B T = A/t

1 30 0.1 28 0 0.933

2 30 0.1 28 0 0.933

3 30 0.1 28 30 0.933

1 30 0.5 143 0 4.767

2 30 0.5 143 0 4.767

3 30 0.5 143 145 4.767

1 30 1 298 0 9.933

2 30 1 299 0 9.967

3 30 1 299 301 9.967

1 180 1 1 799 0 9.994

3 180 1 1 799 1 801 9.994

Table 2. Results of the benchmarks

We compare tests with the same t and p but different state of message inspection
and we observe no change in throughput. Moreover, for test cases with the running
inspection, B is close to A which means that the inspection is working and that



810 J. Czajka, J. Otwinowski, J. Kitowski

proper measurements are done. Thus, we conclude that message inspection did not
bring any significant performance impact to our benchmarking system.

Performance of a well made distributed system should be a function dominated
by the performance of the individual nodes. This means that adding or removing
nodes should impact the overall performance in a predictable way (proportionally
to the performance of the node) and that using an unusual topology should not
unexpectedly alter the overall performance. This property allows to reason about the
overall performance having only information about the performance of the individual
nodes, as is the case in our benchmarks.

O2 is one such well made distributed system. Thus, the results of our bench-
marks, which show no performance degradation for individual nodes, translate to
solid performance of the overall system. Moreover, theoretically, our results should
also apply to any other possible O2 topology. However, in practice, this requires con-
firmation through more studies to eliminate any possible unexpected circumstances.

7.6 Threats to Validity

Although our analysis indicates that no performance loss should occur for any O2

topology, this was only a theoretical conclusion. In practice, unexpected circum-
stances can arise. This means that more specialized testing is needed to reach
a definitive conclusion.

One of these unexpected circumstances could be physical performance of the
underlying hosts. The benchmarks were conducted on one machine. Again, in
theory this should not be a concern as the communication libraries (e.g. FairMQ)
should hide any implementation details. Still, it would be interesting to try this
setup on a larger cluser.

Moreover, the benchmarks were conducted on only one topology. While the
topology represents a generic use-case of O2, as explained earlier, the inspection
mechanism should ideally be tested using other topologies as well. This would
remove any possible influences of the topology on the results.

The benchmarks also did not cover any edge cases, such as situations where large
amounts of data overwhelm the system. These situations can produce unexpected
behaviour which severly impacts the results. While they do not impact performance
in the average case, they should also be considered in a complete assessment.

The purpose of this work was more to present the ideas behind the component
rather than perform a fully fledged performance investigation. However, because
our results are promising, it means that more work can be beneficial. Our work
should serve as a good basic for this.

8 FUTURE WORK

The generic functionality of the presented component means that it can serve as
a base for future work. The final design is mainly concerned with required commu-



Non-Intrusive Data Inspection for Message-Based Systems 811

nication protocols and bringing the data to the user. Thus, next steps could include
interpreting this gathered information as part of debugging.

For example, as part of the implementation inside O2, an additional web-based
interface was created. It allows the user to manage (e.g. start, stop) the inspection
mechanism and view the results. Once captured, the messages are deserialized and
the user has the ability to see them in their original data type. The interface can
connect locally or remotely through the HTTP protocol.

Another interesting future work could involve creating a topology recreation
mechanism for systems with a deterministic contents of messages (for given inputs,
messages at every step of execution have the same data). The component would
store the state of the execution by remembering the inspected data. It would then
allow to recreate the execution and restart it at a particular moment by injecting
the messages back to their respective nodes.

9 SUMMARY AND CONCLUSIONS

The combination of distributed computing and message passing has become popular
over the years. These systems can be complex and much research has been done
into debugging them. However, this research has rarely focused on the analysis of
the messages.

In this work, we presented a new component to gather and view messages ex-
changed in a message-based system. We established a simplified model for the
message passing protocol, defined traits which the component should have and for-
mulated the design, including its practical elements in the form of communication
protocols. In the end, we implemented the component as part of the O2 framework
and conducted benchmarks.

The document presents a previously undervalued approach to debugging of
message-based systems. Our component is more concerned with the information
inside the messages rather than the mechanisms of their exchange. It can also
serve as a base for the development of future data-oriented components. This could
hopefully close the gap of data-oriented debugging tools.

The benchmarks measured throughput in analyses with and without message
inspection. Although, the scale of the tests was small, the results look promising.
We found no performance penalty when using message inspection.

The inspection mechanism can be implemented in a message-based system by
following the design. It can be started without recompilation and does not inter-
fere in the surrounding system (non-intrusive). It can serve as a foundation for
more complex debugging tools. We presented step-by-step how the design was cre-
ated. Thus, this paper serves also as a blueprint for how to design and document
generic components. These designs will continue to increase in value as software
development becomes more focused around components.



812 J. Czajka, J. Otwinowski, J. Kitowski

Acknowledgments

The authors are greatful to the ALICE experiment for offering us the opportunity
to implement and test the message inspection component. We thank O2 framework
experts from CERN, dr. Piotr Konopka, dr. Barthélémy von Haller and dr. Giulio
Eulisse for their involvement in the design and definition phases. We hope that
our work will be of great use and will serve as a foundation for future debugging
projects. JK is grateful for support from the subvention of the Polish Ministry of
Education and Science assigned to AGH University.

REFERENCES

[1] Magnoni, L.: Modern Messaging for Distributed Sytems. Journal of Physics:
Conference Series, Vol. 608, 2015, Art. No. 012038, doi: 10.1088/1742-
6596/608/1/012038.

[2] Nawaz, R.—Zhou, W.—Shahid, M.U.—Khalid, O.: A Qualitative Comparison
of Popular Middleware Distributions Used in Grid Computing Environment. 2017 2nd

International Conference on Computer and Communication Systems (ICCCS), 2017,
pp. 36–40, doi: 10.1109/CCOMS.2017.8075262.

[3] Calciu, I.—Dice, D.—Harris, T.—Herlihy, M.—Kogan, A.—
Marathe, V.—Moir, M.: Message Passing or Shared Memory: Evaluating
the Delegation Abstraction for Multicores. In: Baldoni, R., Nisse, N., van Steen, M.
(Eds.): Principles of Distributed Systems (OPODIS 2013). Springer, Cham, Lecture
Notes in Computer Science, Vol. 8304, 2013, pp. 83–97, doi: 10.1007/978-3-319-
03850-6 7.

[4] ALICE O2. https://alice-o2-project.web.cern.ch.

[5] Eulisse, G.—Konopka, P.—Krzewicki, M.—Richter, M.—Rohr, D.—
Wenzel, S.: Evolution of the ALICE Software Framework for Run 3. 23rd Interna-
tional Conference on Computing in High Energy and Nuclear Physics (CHEP 2018),
Section T5 – Software Development, 2018. EPJ Web of Conferences, Vol. 214, 2019,
Art. No. 05010, doi: 10.1051/epjconf/201921405010.

[6] Netzer, R.H.B.—Miller, B. P.: Optimal Tracing and Replay for Debugging
Message-Passing Parallel Programs. The Journal of Supercomputing, Vol. 8, 1995,
pp. 371–388, doi: 10.1007/BF01901615.

[7] Frumkin, M.—Hood, R.—Lopez, L.: Trace-Driven Debugging of Message Pass-
ing Programs. Proceedings of the First Merged International Parallel Processing Sym-
posium and Symposium on Parallel and Distributed Processing, 1998, pp. 753–762,
doi: 10.1109/IPPS.1998.670012.

[8] Claudio, A. P.—Cunha, J.D.—Carmo, M.B.: Monitoring and Debugging Mes-
sage Passing Applications with MPVisualizer. Proceedings 8th Euromicro Work-
shop on Parallel and Distributed Processing, 2000, pp. 376–382, doi: 10.1109/EM-
PDP.2000.823433.

[9] Lanese, I.—Palacios, A.—Vidal, G.: Causal-Consistent Replay Debugging for
Message Passing Programs. In: Pérez, J., Yoshida, N. (Eds.): Formal Techniques

https://doi.org/10.1088/1742-6596/608/1/012038
https://doi.org/10.1088/1742-6596/608/1/012038
https://doi.org/10.1109/CCOMS.2017.8075262
https://doi.org/10.1007/978-3-319-03850-6_7
https://doi.org/10.1007/978-3-319-03850-6_7
https://alice-o2-project.web.cern.ch
https://doi.org/10.1051/epjconf/201921405010
https://doi.org/10.1007/BF01901615
https://doi.org/10.1109/IPPS.1998.670012
https://doi.org/10.1109/EMPDP.2000.823433
https://doi.org/10.1109/EMPDP.2000.823433


Non-Intrusive Data Inspection for Message-Based Systems 813

for Distributed Objects, Components, and Systems (FORTE 2019). Springer, Cham,
Lecture Notes in Computer Science, Vol. 11535, 2019, pp. 167–184, doi: 10.1007/978-
3-030-21759-4 10.

[10] Cypher, R.—Leu, E.: Efficient Race Detection for Message-Passing Pro-
grams with Nonblocking Sends and Receives. Proceedings of the Seventh IEEE
Symposium on Parallel and Distributed Processing, 1995, pp. 534–541, doi:
10.1109/SPDP.1995.530730.

[11] Netzer, R.H.B.—Brennan, T.W.—Damodaran-Kamal, S.K.: Debugging
Race Conditions in Message-Passing Programs. Proceedings of the SIGMETRICS
Symposium on Parallel and Distributed Tools (SPDT ’96), 1996, ACM, pp. 31–40,
doi: 10.1145/238020.238033.

[12] Bates, P.C.: Debugging Heterogeneous Distributed Systems Using Event-Based
Models of Behavior. ACM Transactions on Computer Systems, Vol. 13, 1995, No. 1,
pp. 1–31, doi: 10.1145/200912.200913.

[13] Aguilera, M.K.—Mogul, J. C.—Wiener, J. L.—Reynolds, P.—
Muthitacharoen, A.: Performance Debugging for Distributed Systems of
Black Boxes. ACM SIGOPS Operating Systems Review, Vol. 37, 2003, No. 5,
pp. 74–89, doi: 10.1145/945445.945454.

[14] Ansari, S.—Rajeev, S.G.—Chandrashekar, H. S.: Packet Sniffing: A Brief
Introduction. IEEE Potentials, Vol. 21, 2003, No. 5, pp. 17–19, doi:
10.1109/MP.2002.1166620.

[15] LHC Run 3. https://lhc-commissioning.web.cern.ch/schedule/

LHC-long-term.htm.

[16] ZeroMQ. https://zeromq.org.

[17] Traceroute. https://linux.die.net/man/8/traceroute.

[18] FairMQ. https://fairrootgroup.github.io/FairMQ/latest/index.html.

https://doi.org/10.1007/978-3-030-21759-4_10
https://doi.org/10.1007/978-3-030-21759-4_10
https://doi.org/10.1109/SPDP.1995.530730
https://doi.org/10.1145/238020.238033
https://doi.org/10.1145/200912.200913
https://doi.org/10.1145/945445.945454
https://doi.org/10.1109/MP.2002.1166620
https://lhc-commissioning.web.cern.ch/schedule/LHC-long-term.htm
https://lhc-commissioning.web.cern.ch/schedule/LHC-long-term.htm
https://zeromq.org
https://linux.die.net/man/8/traceroute
https://fairrootgroup.github.io/FairMQ/latest/index.html


814 J. Czajka, J. Otwinowski, J. Kitowski

Jakub Czajka is a graduate of computer science at the Insti-
tute of Computer Science of the AGH UST. During his study,
he received many awards for excellent grades. He has previously
worked at the BE-CO Department at CERN. In 2021 he wrote
his engineering thesis titled “Framework for Distributed Big Vol-
ume Data Analysis from LHC ALICE Experiment (CERN) Us-
ing O2 Software Package”. Currently, he works at the Amazon
Development Center in Gdańsk.

Jacek Otwinowski is Associate Professor at the Henryk Nie-
wodniczński Institute of Nuclear Physics Polish Academy of Sci-
ences (IFJ PAN). Author of more than 400 publications in the
field of particle and nuclear physics. His research interests cover
the origin of particle mass, properties of nuclear matter at ex-
treme conditions, particle detection and computing in high en-
ergy physics. He participated in the GSI HADES and FAIR
Panda experiments. Since 2007, he has been working on the
CERN ALICE experiment with the main focus on high momen-
tum and mass hadron measurements at the LHC. He is also

involved in the ALICE detector and software developments including fast interaction trig-
ger and data quality assessment. He is Deputy ALICE Team Leader in the IFJ PAN,
ALICE Collaboration Board and Technical Board Member, and Member of the Polish
Physical Society. In 2021 he received the Polish Minister of Higher Education and Science
Individual Prize for the outstanding achievements.

Jacek Kitowski is Full Professor of computer science. Head
of the Computer Systems Group at the Institute of Computer
Science of the AGH UST and Senior Researcher at ACK CY-
FRONET-AGH. Author or co-author of over 350 scientific pa-
pers. His topics of interest include large-scale computations,
multiprocessor architectures, high availability systems, distribu-
ted computing, grid/cloud services and grid/cloud storage sys-
tems, knowledge engineering. He has participated in many na-
tional and international projects, he was involved also in H2020
group of projects: EOSC, EGI and RFCS. Director of Polish

Consortium PL-Grid. Polish representative to CERN Computing RRB (WLCG). Leader
of AGH-ALICE (CERN) collaboration. Member of ACM and of the Polish Information
Processing Society.


