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Abstract. Bespoke Cost Monitoring software collates data on the performance of
all aspects of the ATLAS experiment’s High Level Trigger software. These data are
exported for subsequent analysis offline, and are used to understand the resource
usage of the individual trigger selections in terms of the amount of CPU time and the
amount of raw detector data which was required to perform the selection. For the
LHC’s Run 3, the ATLAS High Level Trigger is re-implemented in a multi-threaded
framework with both intra-event and inter-event algorithm parallelism. We will
describe some of the complications and considerations which arise from monitoring
event metrics in a highly parallel environment.
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1 INTRODUCTION

The ATLAS experiment [1] at the LHC is a multipurpose particle detector designed
to record physics events for a wide range of measurements and searches. It consists
of inner and muon tracking detectors, electromagnetic and hadronic calorimeters,
and uses magnetic fields produced by solenoid and toroid magnets. The detector
records the signals produced by the collisions delivered by the LHC at a rate of 40
MHz (for proton-proton data taking). Physics data is collected during time periods
called Runs. Between them, upgrade break takes place called “Long Shutdown”. Two
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Runs already took place: Run 1 (2009–2013) and Run 2 (2015–2018), the Run 3 is
expected to start in 2022 and last until 2025.

The ATLAS experiment was not designed to record all of collisions results, as
most of the recorded data is not interesting for physics analysis. The ATLAS Trigger
system (architecture is presented in the Figure 1) aims to select the data created by
interesting collisions in real time. The first-level trigger is implemented in hardware
and uses a subset of the detector information to accept events at a rate below 100 kHz
during Run 2. The L1 rate is limited by the hardware, hence it is expected to stay
the same for Run 3. The Level-1 trigger is followed by a software-based trigger,
High Level Trigger (HLT), with target average rate 1.5 kHz for Run 3, depending
on the data-taking conditions. An extensive software suite [2] is used for real and
simulated data reconstruction and analysis, for operation and in the trigger and
data acquisition systems of the experiment.

The HLT runs on a large computing farm of CPUs. During the shutdown be-
tween data-taking periods, the machines are being upgraded in order to achieve
higher processing efficiency. However, estimations of HLT resources usage are also
required to inspect if the new software will be able to process the data with a desired
frequency. The Trigger system is equipped with such tools to predict the software
performance in advance of collisions.

1.1 Trigger Menu

The HLT filtering process consists of selection steps, referred to as chains. Each chain
has defined physics thresholds that are required to consider an event as interesting
for physics analysis. The chains are defined in the Trigger Menu, different menus
are prepared for different data taking types (heavy ion, proton-proton physics).

In each step, a series of physics reconstruction algorithms are executed in order
to retrieve the details of the recorded event. Afterwards, the chains are tested to
check if the given criteria of the chain were fulfilled. If not, further algorithms will
not be executed and the event is rejected. The steps of the chain are processed until
either the chain rejects the event at the end of a step, or passes the final step and
hence passes the event.

The order of algorithms within a chain relies on an early-rejection mechanism.
The early steps should be the most selective and rejective. If a step fails, steps that
depend on it are removed and, as a consequence, many chains will be rejected. This
way the computing resources usage can be reduced.

1.2 Cost Monitoring

During online data taking or data reprocessing monitoring data is collected in addi-
tion to physics data. One of the available monitors is the Cost Monitor that enables
data-driven CPU usage predictions. The “cost” stands for the execution time of
algorithms or events, based on which the resources estimations can be performed
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Figure 1. Functional diagram of the ATLAS Trigger and Data Acquisition system in
Run 3 [3]. Details of the components can be found in [4].

in advance of collisions. In the Trigger development phase, it can be used to spot
problematic resource usage and optimize the HLT software.

When collecting the data, 10% of all the events are monitored by the Cost
Monitor. With the HLT execution reaching up to 100 kHz rate, up to 10 kHz of
monitoring data is recorded. Statistics relating to the execution of the algorithm
and its request for raw detector data are saved to perform the offline analysis: start
and stop timestamps, requested data size, and status flags.

The Cost processing is based on a separate HLT output data stream containing
recorded Cost Monitoring details. After processing the monitoring data a ROOT [5]
file is produced with a set of histograms illustrating the execution performance of
different Trigger areas, for example, algorithms, chains, threads occupancy, or the
read out system. A set of Comma Separated Value files is created from the monitor-
ing histograms with different available summaries presenting alternate overviews of
the resource usage. The result can be displayed on the TriggerCostBrowser website,
equipped with tools to enable easy browsing of the summary tables. The process
and result structure was described in detail in [6].
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1.3 Multithreaded Framework

The HLT software is based on top of the Athena [7] framework, which is also used
in the ATLAS Collaboration to perform physics simulation, reconstruction and data
analysis. It is based on Gaudi [8], inter-experiment framework providing the foun-
dations for High Energy Physics data processing applications.

Both Athena and Gaudi were designed for single threaded operations. Since that
time the computing market has changed to favoring multi-core processors for higher
processing efficiency. The same is not true for memory; the prices are oscillating over
the last years and no longer matching the decreasing trend. The observed trends are
presented in Figures 2 a) and 2 b). These changes encourage a concurrent framework
approach with shared memory rather than single threaded processing.
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Figure 2. a) CPU frequency and logical core count trends are presented based on data [9].
b) illustrates memory price trends between 1975 and 2019, based on data [10].
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During Run 1 and 2 chains and their algorithms were executed linearly using
a single-threaded approach. The results of algorithm executions were cached and
could be reused in the future if required by other chains to minimize the computing
costs.

For Run 2 the way of executing HLT software was upgraded to support a multi-
processing approach with Athena instances being forked after initialization. The
processes shared the memory at the OS level as long as the pages stayed the same.
In case of any change in execution between forks, each one received its own copy of
that page. The memory management of Athena in Run 2 was described in [11].

For Run 3 both Athena and Gaudi are redesigned to support both the multi-
process and multi-threaded mode. The new version of Athena, AthenaMT [12] is
based on Gaudi Hive [13] with a concurrent task scheduler based on Intel Thread
Building Blocks (TBB) [14].

Figure 3. Schematic flowchart describing concurrent event processing in AthenaMT. Each
shape corresponds to a type of algorithm and each colour corresponds to data associated
with one event. Data flow is represented by arrows.

The High Level Trigger was re-implemented in the new concurrent Athena frame-
work. Instead of processing a single chain at a time then caching a result, a step is
now executed only once, for all of the chains with the same input. The processing is
parallel both inter-event (multiple events can be processed in parallel), intra-event
(algorithms for one event can be executed in parallel provided they have needed in-
put), and also in-algorithm (algorithms can use multithreading specific operations,
for example concurrent loops). A schematic example of concurrent events processing
in HLT is shown in Figure 3.
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2 COST MONITORING IN ATHENAMT

The multi-threading redesign changes also affected the Cost Monitoring. An algo-
rithm execution can no longer be associated with only one chain, which required
revising the way the Cost data is created.

Which chains actually executed the algorithm (i.e. chains which were not already
rejected in an earlier step) can be determined based on the navigation data generated
during the execution of the HLT. After each algorithm execution the summary with
a result is created and, in the end, saved in the output data stream file for further
physics analysis. Based on these results the Cost “Chain Summary” is created by
checking if a navigation item of algorithms of the chain was created for the processed
event.

In AthenaMT the execution time is the same for all chains that include a given
algorithm. In the past if the algorithm result was cached, the second execution time
was 0 – cached result was used. This created an illusion of “free” chains, that used
only cached results when in fact the cost was spread between other chains that were
executed earlier. The new approach is more reliable showing the true cost of the
chain.

Table 1 presents a comparison of Run 2 and Run 3 Cost Monitoring results for
two chains: selections A+B and A+C in the order of execution. In the Run 2 Cost
Summary the execution time of the A + C chain (executed later than the A + B
chain) is only 50 ms – cached A result from the first executed chain was used and
only C selection result had to be obtained. In AthenaMT the real execution time
of a chain is shown. In the A + C chain the A execution is no longer hidden as
a result of caching and the chain execution time does not depend on the order of
the chains.

If the order was switched, the results for Run 2 would be different: 250ms for
A + C chain and 100ms for the A + B chain. The new Cost Monitoring framework
is resistant to such changes.

Algorithm Execution Time [ms]
Selection A 200
Selection B 100
Selection C 50

Chain Execution Time Per Event Execution Time Per Event
in Run 2 [ms] in Run 3 [ms]

Selections A + B 300 300
Selections A + C 50 250
Total measured time 350 350

Table 1. Representative numbers of mean execution time of two chains containing selec-
tions: A+B and A+C recorded by the Cost Monitoring in Run 2 and Run 3 HLT frame-
work.
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On the other hand, with the new way of measuring execution time of chains,
the sum can be higher than the time of execution of the event. Knowing that two
chains can execute one algorithm, the sum of all the execution times of the chains
will not be equal to the total time of execution of the algorithms. The new changes
make time of the chain more accurate when comparing to each other. For a global
HLT Cost analysis, the time and number of calls for each algorithm are the most
important.

2.1 Saving Cost Monitoring Data

The new AthenaMT framework defines a number of processing slots. Incoming
events are assigned to an available slot and they will occupy it until the processing
of the event is finished. Each slot has its own data store, where the details of the
monitored event are saved. Cost Monitoring data from all of the slots is saved to
the same output data stream file.

However, during online data taking and reprocessing, additional details can be
saved to the Master Slot (set in configuration, by default Slot 0). When the event
processed by this slot is monitored by Cost Monitoring, data about events from
other slots is collected also into the data store of the Master Slot. The data saving
mechanism is illustrated on Figure 4.

Figure 4. Diagram illustrating Cost Monitoring data saving mechanism with additional
data saved to the master slot. Three cases are possible (presented on the diagram from
left to right): master slot is monitored, non-master slot is monitored or both master and
non-master slots are monitored.

This mechanism is used for thread monitoring in order to retrieve details of what
is happening in other slots during current event processing. Events are processed
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at the same time on different slots (mentioned in the Section 1.3 intra event paral-
lelism). With the full information we are able to compare the threading performance
of the HLT process over all slots and assigned threads.

The information about the source slot is also saved to the output data stream,
necessary for the Cost Processing. Events originated in non-Master Slots that are
saved in Master Slot’s data store should be ignored for other monitors, for example
for algorithms and chains. Otherwise, the same data would be processed twice (the
third case on the Figure 4) and the monitored event rate would be higher than 1
in 10. In order to avoid the data bias, the thread monitoring uses only the Master
Slot saved data.

2.2 Thread Monitoring

Thread monitoring is a new feature possible inside a multi-threaded HLT implemen-
tation. Its purpose is to give an overview of the multi-threading efficiency for given
forks, event slots and threads configuration. The event execution time is not only
determined by all the algorithms execution duration but also by “framework time”.
It is defined as the time a thread spent outside of scheduled algorithms while waiting
for an algorithm to be dispatched.

By looking at how much time it took to process an event (from the earliest
algorithm executed on any of the threads for this event to the latest) and the sum
of all the execution times of algorithms on each individual thread, the time spent
on executing algorithms and on framework related operations can be determined.
Algorithms from other slots whose execution spans the global start and stop of the
master thread add a degree of uncertainty to this measurement, this component is
computed separately as unmonitored time. The three values: algorithm, framework
and unmonitored time are illustrated on Figure 5. The way they are computed is
described by Equations (1), (2) and (3).

eventTime = globalStart − globalEnd, (1)

unmonitoredTime = (globalStart − threadStart) + (threadEnd − globalEnd), (2)

frameworkTime = eventTime − unmonitoredTime − algorithmTime. (3)

Figures 6 and 7 show the fraction of framework and algorithm time. It is ob-
served that in long events, algorithm time dominates whereas in short events the
fraction is closer to being equal, testifying to the good performance of the early
rejection system. The framework time is consistent in all events. Different time of
processing an event depends on the actual event details. The algorithms are only
executed when the conditions are fulfilled and the chain was not rejected earlier.
The mean framework time should stay the same for a given configuration, only the
algorithm time varies. Analysing the distribution of algorithm time per event and
framework time per event, the best configuration can be identified.



ATLAS Trigger Performance Monitoring 841

Figure 5. Graphic interpretation of event, unmonitored and framework time for Thread 2
based on the flowchart in Figure 3. During the time of the event window all algorithms
are monitored (not only algorithms that are running for the given event).

a)
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b)

c)

Figure 6. a) Measured framework time for sample of events. b) Example of measured
framework time on one thread as fraction of the monitored event time window. c) The
fractional time showed as a function of the monitored event time window. Three peaks can
be observed on the plots 6 b) and 6 c) – one when thread performs framework operations
40 % of the time during short events processing (approximately 100 ms). The other two
correspond to long events (approximately 300 ms and 3 000 ms) when the framework time
takes a minor fraction of the event time window. For some of the events included in the
data sample the framework time takes 100 %, what is happening when the event does not
fulfill requirements to trigger any of the algorithm executions. Based on the plot 6 a), it can
be observed that for all events the framework time is stable and its mean value equals to
20 ms, despite fluctuations in framework fraction time. The plots were created with a small
2018 data sample that was preloaded into the HLT farm and processed repeatedly. [15]
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a)

3 INTERPRETING THE COST RESULTS

Cost Monitoring was written into the Trigger infrastructure in order to perform
detailed offline studies of the system’s performance. Based on Cost data collected
during the data taking, one can not only estimate CPU resources but also access
the details of the HLT execution. The Cost summaries cover executed algorithms,
chains, sequences (groups of algorithms), data requests and the aforementioned
thread occupancies. One additional summary covers the global parameters of the
HLT execution, including mean processing time of the event, number of active events
within a given period of time, or number of algorithm calls in the event.

In the following paragraphs the contents of some of the summaries will be dis-
cussed. Starting with the “Algorithm Summary”, different algorithms and their
parameters can be analysed, including:

• Number of calls per event.

• Mean time of execution per event.

• Total algorithm execution time and what fraction of total HLT walltime it is.

• How often the algorithm was called and how often algorithm was executed in
an event.

• If the algorithm requested any data and if these data were cached locally or
fetched over the network.

An example of “Algorithm Summary” table is presented in Figure 8.
The expensive algorithms can be identified by a long algorithm total time. Not

only the measured time is important but also what percentage of the total time the
execution took.
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b)

Figure 7. a) Example of measured time of all the algorithms executed on the thread as
fraction of the monitored event time window. b) The fractional time showed as a function
of the monitored event time window. Three peaks can be observed in the plots – one when
thread processes algorithms 60 % of total time, which happens for short events (approxi-
mately 100 ms), when the event data does not fulfill the requirements to trigger execution
of time consuming algorithms. The other two peaks represent long events (approximately
300 ms and 3 000ms) when algorithm processing takes majority of the total time. The
peaks correlate with recorded times of algorithm execution per event. For some of the
events included in the data sample the algorithm processing takes 0 % of the time, which
is happening when the event does not fulfill requirements to trigger any of the algorithm
executions. The rest of the time is spent for so-called “framework time”. The plots were
created with a small 2018 data sample that was preloaded into the HLT farm and processed
repeatedly. [15]

The reasons for poor algorithm performance could be multiple algorithm calls
per event or the time spent waiting for data caused by a high rate of data requests
from the read-out system. The number of chains that executed the algorithm should
be also checked. A chain-algorithm mapping available on the website can be used to
directly access associated chains’ summaries. Naturally, some of the algorithms will
be more expensive than the others, the computational cost of each selection must
be balanced against the available resources and the physics goals of the ATLAS
collaboration.

Another important summary to take into the account performing Cost analysis
is the “Chain Summary” containing details about execution of chains, including:

• Number of events in which chain was active.

• Execution rate of chain.
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Figure 8. Representation of Algorithm Summary table available on TriggerCostBrowser
website containing details about the algorithm executions. They include number of events
in which algorithm was activated, number of algorithm calls per event, rate of algorithm
calls, rate of events in which algorithm was executed, algorithm call duration or total time
of algorithm execution. Created based on reprocessing 2018 proton-proton collision data
with the latest HLT software. [15]

• Mean time spent for this chain per event.
• Total chain execution time and what fraction of total HLT walltime it is.
• How many algorithms were called by chain on average.

The table also shows information about group of the chain, which tells the
signature the chain belongs to. Using that feature signature experts can analyze the
cost of chosen groups. An example of “Chain Summary” table is presented in the
Figure 9.

The Chain Summary is created using collected details about the execution
of the algorithms. In the concurrent HLT framework, chains executions overlap
and they share the same algorithms. Using chain-algorithm mapping presented in
Figure 10 related algorithms can be explored and the most expensive ones identi-
fied.

Lastly, many studies are performed with different threading configurations.
Based on the Cost metadata of the test, displayed on the website, the experts can
analyse performance of the HLT with different forks, threads and slots combinations.
The saved information include algorithm, framework and unmonitored time. In the
future, also additional details about the machines HLT was run on will be saved to
the metadata. The tested combinations include pure multi-processing (many forks,
one thread and slot), pure multi-threading (one fork, many threads and slots) and
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Figure 9. Representation of Chain Summary table available on TriggerCostBrowser web-
site containing details about the chain executions. They include groups the chain belongs
to, number of events in which chain was activated, chain execution rate, number of al-
gorithm calls that chain made and chain duration. Created based on reprocessing 2018
proton-proton collision data with the latest HLT software. [15]

Figure 10. Representation of Chain Item Summary on TriggerCostBrowser website that
lists all algorithms related to a particular chain. In this example a jet reconstruction
chain is presented. Each algorithm displays its class and the number of calls that it made
(“AllChains calls”). Created based on reprocessing 2018 proton-proton collision data with
the latest HLT software. [15]
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mixes approaches along with hyper-threading. The threading configurations does
not affect the Cost framework, only the recorded Cost results.

4 SUMMARY AND FUTURE DEVELOPMENTS

The Cost studies help to validate the HLT software by comparing expected and
measured Trigger performance. Based on global mean time per event one can use
the maximum input data rate to the Trigger to calculate the number of CPUs needed
(in terms of total HEPSPEC benchmark [16] performance), also taking into account
processor efficiency when using a farm with mixed processor types.

The Cost Monitoring framework should be validated before the data taking
during Run 3 and integrated into the workflow of processing new data. Every day
summaries will be produced, therefore the HLT will be well monitored. Also, it
needs to be maintained for offline analysis performed by developers until the end of
Run 3. Many tests of HLT are performed in order to find the best multi-threading
configuration and acquire a good overview of components of the system. Some of
the tests are executed on different machines on the HLT computing farm to obtain
unbiased performance measurement and compare it to the parameters measured
during Run 2.

The TriggerCostBrowser website is maintained and improved. New features,
including summary comparisons or more metadata of Trigger execution, are added
to ensure a good user experience and high accessibility. The website is also migrated
to the new hosting platform.
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