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Abstract. Motor activity data allows for analysis of complex behavioral patterns,
including the diagnosis of mental disorders, such as depression or schizophrenia.
However, the classification of actigraphy signals remains a challenge. The main
reasons are small datasets and the need for sophisticated feature engineering. The
recent development of AutoML approaches allows for automating feature extraction
and selection. In this work, we compare automatic and manual feature engineering
for applications in mental health. We also analyze classifier evaluation methods for
small datasets. The automated approach results in better classification, as measured
with several metrics, and in a shorter, cleaner code, providing software engineering
advantages.
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1 INTRODUCTION

Depression, formally known as Major Depressive Disorder (MDD), and schizophre-
nia, are among the most common mental disorders [3]. According to the WHO,
depression is the single largest cause of disability, affecting 7.5% of the global popu-
lation [4]. Schizophrenia, while being less common, results in serious disability and

https://doi.org/10.31577/cai_2021_4_850


Manual and Automated Feature Engineering 851

a very significant risk of suicide, up to a 37-fold increase in comparison to the general
population [5]. The common element of those two psychiatric disorders is presence
of abnormal activity patterns as one of the distinguishing symptoms [6, 7, 8, 9].

The daily activity behavioral patterns, however, are problematic as a clinical
diagnosis tool, since they require constant monitoring for an extended period of time
by a medical professional. The recent advancements in Internet of Things (IoT)
sensors, especially wearable technologies, can be a solution to this problem [10].
The major advantages of this approach are low cost, convenience to the patient, and
providing objective measurements. Actigraph IoT devices, very similar to watches
and often combined with watch functionality, can be used to record the continuous
1D signal with the wearer’s activity, based on the accelerometers built into them.
Data from such sensors has been applied in the mental health domain to support the
diagnosis of bipolar disorder [11], ADHD [12], depression [1] and schizophrenia [2].
We focus on the last two since datasets for classification have been published for
them.

Statistical approaches have been used in this area in the past, but they can be
improved. Some were performed before IoT devices became widely available, and
almost all of them were limited to simple statistical analysis, such as calculating
linear correlation, performing statistical tests, and calculating p-values, e.g. [6, 8].
They also extracted statistical features but without formal mathematical justifica-
tion. More recent developments focus on using machine learning to automatically
perform diagnosis [13, 14].

From a machine learning perspective, the task is a binary classification of time
series, i.e. assign a “healthy” or “sick” class to a given signal. A naive approach
would be to feed the data directly to a classifier, but it results in very long, dense
vectors of variable length, which is unsuitable for typical classification algorithms.
While neural networks such as Gated Recurrent Unit (GRU) or Long-Short Term
Memory (LSTM) can work with it, they are known to require a significant amount of
data to train, and available datasets are very small. For those reasons, the approach
taken by most papers is a classical 2-step process: extract statistical features and
use a regular classifier for tabular data [2, 13, 15].

This approach can be performed manually, where researchers choose features
themselves. However, this requires extensive knowledge of many areas (e.g. psychi-
atry, statistics, signal processing), a long trial-and-error phase, and often relies on
the subjective decisions of the scientist. Automated ML approaches seek to fix those
problems by automating either feature extraction [16] or the entire process of clas-
sification [19, 20]. We focus on the former, i.e. automated extraction of meaningful
statistical features from signals for classification.

We use Depresjon [1] and Psykose [2] datasets, for diagnosis of depression and
schizophrenia, respectively. In both cases, they contain 24 h motor activity signals
measured with actigraph watches. The sampling frequency is 32 Hz, movements over
0.05 g are recorded, and for each minute total activity count is stored, so the out-
put is in gravitational acceleration units per minute. Authors perform exploratory
data analysis, observing, e.g. an overall lower activity for depressed patients, or con-
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siderably lower standard deviation of activity for schizophreniacs, compared to the
control group. The important characteristic of both datasets is a very low number
of samples, in comparison to the sizes typical for machine learning datasets: 55 in
Depresjon and 54 in Psykose. This undermines the statistical assumptions underly-
ing the typical test-validation-training division, that some papers seem to take for
granted. We explore this in greater depth, and, similarly to the authors of Psykose,
recognize the need for more sophisticated testing approaches, showing that naive
measurements lead to grossly overestimated performance estimates.

The research hypothesis for this paper is: a software engineering approach to
ML problems in the classification of time series for mental disorder diagnosis using
AutoML feature extraction tools gives results on par with the manual approach
while requiring less knowledge, work, and time.

The rest of the paper is organized in the following way. In Section 2 we perform
an overview of other papers related to time series classification for mental disorder
diagnosis. In Section 3 we outline manual and automated approaches to feature
engineering, machine learning algorithms used for evaluation, and discuss evaluation
methods, problems with the most common approaches, and potential solutions. In
Section 4 we provide the results of our experiments and discuss the results. We also
show what additional data insights automated methods provide. Section 5 contains
the overall conclusions.

2 RELATED WORK

Analysis of accelerometer data for medical applications is also known as actigra-
phy and has been extensively researched. However, traditional analyses carried out
mostly by psychologists or psychiatrists are purely statistical. In [6], just 3 simple
features are used: MESOR (mean daily activity), amplitude, and acrophase (tim-
ing of the activity peak), and they are compared between depressed patients and
controls. While [11] applies machine learning, the main focus is on extracting and
comparing simple features from activity signals between conditions and controls, e.g.
MESOR, mean activity during 10 most active hours (M10), mean activity during
5 least active hours (L5) or acrophase.

Solutions that apply ML techniques for mental disorder classification from actig-
raphy data first extract features from activity signals and then use tabular classifi-
cation algorithms. However, the features extracted are still simple, there are only
a few and their choice heavily relies on the researcher’s experience. The approach
presented in [12] relies on only 4 domain-specific features: L5, diurnal skew (skewness
for daylight hours), relative circadian amplitude (amplitude scaled to range [0, 1]),
and vulnerability index. In [15] only the most basic statistical features are extracted
from the signal, such as mean, variance, or interquartile range. Authors of [13] pro-
pose feature extraction additionally in the frequency domain, using power spectral
density (PSD), calculating, e.g. mean, variance, entropy, or spectral flatness in the
frequency domain. This seems quite rare, despite the popularity of spectral features
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in signal processing. The method presented in [14] uses just 3 features for depression
classification: mean activity level, standard deviation, and proportion of zeros (frac-
tion of minutes with zero activity). All works described above use the Depresjon
dataset; for schizophrenia classification, we failed to find any paper apart from the
Psykose dataset paper [2], in which baselines are presented, using mean, standard
deviation, and proportion of zeros.

Automated feature extraction from time series has been described in papers
accompanying software libraries, e.g. tsfresh [16, 29]. Automated techniques have
been used for classification of audio data [22] or assessing the fault severity of indus-
trial gearboxes [21]. In computational medicine applications are sparse and focus
on EEG or ECG data, focusing exclusively on frequency domain features, based on
Fourier or wavelet transforms [24, 23]. To the best of our knowledge, there are no
applications of automated feature extraction for mental disorder diagnosis.

The problem of classifier evaluation is well-grounded in the ML community.
Multiple techniques are described in [25] and [26], including popular methods such
as holdout and cross-validation, but also more sophisticated bootstrap-based al-
gorithms such as 0.632 estimator. The problem of properly measuring classifier
performance on mental disorder datasets, because of their small sample size, has
been mentioned in [2], but only simple cross-validation is suggested.

To sum up, the existing works concerning the classification of actigraphy time
series use only manual feature engineering. Works from other areas suggest that
automated feature engineering from time series works well and has great potential
in the mental health domain. In this work, we explore this area, using AutoML in
the classification of mental disorders based on actigraphy signals.

3 METHODS

This section is organized as follows. In Subsection 3.1, manual feature extraction is
described, while in Subsection 3.2 we outline the automated approaches. In Subsec-
tion 3.3 we briefly describe the steps between feature extraction and classification
phases. In Subsection 3.4, the classification algorithms used are briefly described.
In Subsection 3.5, the evaluation techniques are discussed, and they are compared
with those used in other works in Subsection 3.6.

3.1 Manual Feature Engineering

To fairly compare manual and automated approaches, a good set of properly dis-
criminative features has to be extracted from the datasets. As both Depresjon and
Psykose feature the same kind of signal, with the identical method of measurement,
we propose using the same set of features for both. For more details on the datasets
see Section 4.1.

Manual feature engineering is highly interpretable and therefore choosing par-
ticular features should be properly justified. Moreover, domain knowledge should
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be applied to properly preprocess data, e.g. eliminate redundant features. To this
end, interpretation has been provided next to all chosen features in 1. It should be
noted that we found no such detailed justification for choosing particular features
in any related paper, and often there is no justification at all.

We extracted basic statistical features from time domain signals based on pre-
vious articles using Depresjon and Psykose datasets [13, 15, 2]. Additionally, since
the actigraphy data is a signal, we included frequency domain features [13]. We
used Welch’s method to estimate the power spectral density (PSD) and extract fea-
tures from it. In both domains we extracted statistical features such as minimum,
maximum, mean, variance, skewness, or interquartile range. Entropy has also been
calculated in both domains. We also included the proportion of zeros in the time
domain and spectral flatness in the frequency domain.

Justifications provided in Table 1 for features calculated in both domains relate
to the time domain. For the frequency domain, it is hard to provide intuitive in-
terpretations. Instead, the reason to include them is that those statistical features
provide an overall description of the shape of the power spectral density distribu-
tion.

Feature Justification

Minimum May be higher than 0 for patients with sleep problems, typical for de-
pression and schizophrenia

Maximum Highest activity, related e.g. to sports or physical activity; high values
are more likely for healthy controls

Mean Measure of overall activity, lower for depressed patients

Median Similar to mean, but better suited for asymmetrical distributions

Variance Bipolar depression and schizophrenia may lead to higher variance due
to psychotic episodes

Kurtosis Measures heaviness of tails of distribution, e.g. presence of outliers like
mood swings in bipolar depression

Skewness Distribution may be positively skewed for depressed patients with lower
activity

Coefficient
of variation

Combines variability (important for detecting mood swings) and mean
activity (important for detecting depressive episodes)

Interquartile
range (IQR)

Combines Q1 and Q3, describes dispersion around median

Trimmed
mean (10%)

Like mean, but less sensitive to outliers

Entropy Measure of uncertainty and randomness, may indicate psychotic behav-
ior in schizophrenia

Proportion
of zeros

High percentage of zeros, especially during daytime, may indicate hy-
persomnia (oversleeping) typical for depression

Spectral
flatness

Describes how noise-like is the activity, this may indicate randomness
typical for psychosis or paranoia in schizophrenia

Table 1. Manually extracted features
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Activity signals have a lot of variation and noise, but we are interested in the
overall long-term effects to detect the mental disorder. For this reason, we perform
experiments with resampling data in the time domain before feature engineering,
replacing the signal with the mean activity for each hour, same as in [13]. This
should be particularly effective with features based on minimal values since for raw
signals the minimum is always 0 (there is always a period when someone does not
move).

We perform experiments on 3 subsets for each dataset: full 24 h data, night hours
only (from 21:00 to 8:00) and day hours only (from 8:00 to 21:00), similarly to [13].
This is because depression and schizophrenia especially affect sleep patterns [13, 3,
27], which should be more clearly visible in night-only data.

3.2 Automated Feature Engineering

Automated approaches in machine learning are gaining popularity, as they greatly
simplify the parts or even the whole pipeline of data processing, from feature ex-
traction to classification and tuning. Here we focus only on automated feature
engineering, since automating this part is arguably the most important, while we
still retain the flexibility of choosing different approaches to further features process-
ing, selection, and choosing classification algorithms. Additionally, automating this
part is relatively easy, compared, e.g. to hyperparameter tuning. The most notable
advantages of the automated approach are:

• little domain knowledge is required – many, often sophisticated, feature calcu-
lation algorithms are already built-in;

• discovering new features – a wide range of possible features is evaluated, instead
of only those defined by a particular expert;

• shorter, cleaner code – particularly important to real-world applications, where
code maintenance is a considerable burden;

• quantitative way of feature selection – the subjectivity of feature engineering is
replaced with well theoretically grounded, mathematical process.

For Python programming language, the most well-known library for automated
feature extraction from time series is tsfresh (Time Series FeatuRe Extraction based
on Scalable Hypothesis tests) [16, 29]. Its main goal is to provide an easy-to-use
tool for feature extraction and selection using statistical tests.

In the tsfresh library (version 0.18.0), over 70 basic features are extracted in
time and frequency domains. They range from simple statistical features such as
minimum, maximum, mean, variance, or quantiles, through lesser-known ones like
absolute energy, absolute sum of changes and counts below/above mean, to so-
phisticated features like Lempel-Ziv complexity, wavelet transform or time reversal
asymmetry statistic. Many of those basic features are then parametrized (e.g. au-
tocorrelation is calculated for multiple lag values), resulting in about 800 features.
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Notably, tsfresh already calculates all features that we chose manually in the pre-
vious section, except for proportion of zeros. In this step, functions for calculating
custom features can be added, so it is easy to create a half-automated approach,
using both manual and automated feature extraction.

After extraction, automated feature selection is performed. In tsfresh “relevant”
variable is defined as feature X that is not independent of target variable Y , there-
fore hypothesis testing is used for feature selection. A nonparametric statistical
significance test is performed independently for each feature, measuring predictive
power. For binary classification by default this is the Mann-Whitney U test (for
continuous features) or the Fisher’s exact test (for binary features) [17]. Then the
Benjamini-Yekutieli procedure [18] with α = 0.05 is used to reject hypotheses (i.e.
remove features). It is used for two reasons: it does not assume hypothesis inde-
pendence and can control the false discovery rate (FDR, equal to α), which would
otherwise be a considerable problem with testing such a high number of hypotheses.
This way, irrelevant or redundant features are not included in the final set.

Considerable thought has been given to scalability and efficiency. Feature extrac-
tion and statistical testing are fully parallelized, and intermediate calculation results
are shared and reused. There are 3 profiles for feature extraction settings: mini-
mal (extracting only the dozen most commonly useful features), efficient (extracting
about 800 features), and comprehensive (extracting a massive number of features,
with almost all possible parameters). This emphasis on efficiency is important even
for small datasets in the mental health domain since actigraphy measurements are
very long (5–20 days, see Section 4.1) and feature extraction may take a very long
time.

3.3 Feature Selection and Processing

After feature extraction (both manual and automated), we additionally perform
two steps: univariate feature selection with variance thresholding and standardiza-
tion (subtracting the mean and dividing by standard deviation). Features with low
variance do not discriminate well and therefore are not particularly useful for clas-
sification. Standardization, on the other hand, is required by regularized logistic
regression using L1/LASSO regularization [26] and by SVM [30].

For feature selection, we scale the data to range [0, 1], to be able to directly
compare variances of features with different scales. Then features with variance
lower than 0.05 are rejected.

Calculations for those two steps are performed using the training set only. For
example, the variance of each feature is calculated using training data, features are
selected for elimination and then removed from both training and test data. This
ensures that the model is not tuned based on the test set, i.e. we avoid data leakage
(using knowledge from test data during training). For details on the procedure for
training/test split see Section 3.5.4.
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3.4 Classification Algorithms

For evaluating feature extraction approaches, we have chosen 3 popular algorithms:
logistic regression (LR) (with ElasticNet regularization [31], i.e. both L1 and L2),
Support Vector Machine (SVM) with RBF kernel, and Random Forest (RF).

Those particular algorithms have been chosen since in this way we have one
linear classifier and two very different nonlinear classifiers. Additionally, all of them
are popular in the classification of medical data: LR due to simplicity, kernelized
SVM gives very good results for high-dimensional problems with a low number
of samples typical for this domain, and RF tends to give good results with little
hyperparameter tuning required [26].

We use grid search for hyperparameter tuning. We tune:

• LR:

– C – regularization strength, the strength is directly proportional to C; we
check values: [0.001, 0.01, 0.1, 0.5, 1, 2, 5, 10, 25, 50, 100, 500, 1 000].

– l1 ratio – how much of the regularization is L1 and how much is L2; we check
values from 0 to 1, spaced equally by 0.05.

• SVM:

– C – regularization strength, the strength is inversely proportional to C; it is
equal to the squared L2 regularization; we check 50 points spaced evenly on
a log scale (base 10) from 10e−3 to 10e3.

– γ – RBF kernel parameter; we check the same values as for C.

For RF, we set the number of trees to 500 (following [26]) and use the default
values for other hyperparameters.

For all 3 algorithms we additionally tune the class weighting:

• equal – no weighting;

• class-balanced – weights inversely proportional to class frequencies;

• subsample-balanced – only for RF, class-balanced separately for each bootstrap
sample.

For details on those parameters, please refer to the Scikit-learn documenta-
tion [32].

3.5 Performance Evaluation

Estimating the generalization performance of classifiers is a nontrivial task, which
has to take into consideration multiple factors, e.g. dataset size and dimensionality,
type of classifier, possible effects of outliers, and avoiding data leakage from test data
to model training. For this reason, there are multiple methods available, suitable
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for different situations. Relevant papers that we have examined used 3 popular
and simple approaches to estimating generalization performance: holdout, cross-
validation (CV), and bootstrap-based Out-Of-Bag (OOB).

Since the terminology in this area can be ambiguous, we will use the following
definitions. The dataset is the entirety of data available. It is divided into training
data, used for training and validating the model, and test set, used to estimate the
generalization performance of the classifier. The test set is not used until the very
end when we test the production-ready classifier on it. Training data is split into
train set and validation set, where the train set is used to calculate the classifier’s
parameters, and its performance is checked on the validation set, which serves as
a basis for hyperparameter tuning and model selection.

3.5.1 Holdout Method

Holdout method has been used in Psykose dataset baselines [2] and in [13]. In
this approach, a random subset is chosen as a test set, and the rest is the training
data. In [13] it is 30% of the data, and in [2] experiments are performed for sizes
from 10% to 90%. The theoretical justification of this approach is that randomly
choosing the test set is representative of the future samples and that it follows
approximately the same distribution as the test set. However, while this method is
popular in machine learning [25], especially in computer vision and natural language
processing, it assumes a sufficiently large dataset. This assumption is important
both to satisfy the condition of similar distribution of training and test data, and to
keep enough data in the training set to train a classifier with high enough capacity,
without significant risk of overfitting. This is not the case for Depresjon and Psykose
datasets, which have 55 and 54 samples, respectively. Taking 30% of the data for
testing results in only 16–17 samples, which is not nearly enough, especially since we
have high-dimensional data with many features, possibly even d >> n (n – number
of samples, d – number of dimensions/features). Since the underlying assumptions
of this method are not met, we recommend refraining from using it in this domain.

3.5.2 Cross-Validation (CV)

Multiple papers [1, 12, 14, 2] use cross-validation (CV) approach, where the data
is divided into k folds, and each fold acts as a test set and the rest of the data is
merged into training data. This process is performed for each fold, so the mean test
metrics and their standard deviations can be reported. The extreme case of k = 1
is called Leave-One-Out CV (LOOCV), where just a single sample is a test set at
a given time.

Authors of [1] use 10-fold CV, in [12] 4-fold CV is used, and two works [14, 2]
utilize Leave-One-Out CV (LOOCV).

The bias and variance of the error estimate depend on k. LOOCV is an unbiased
estimator of the true prediction error [26]; however, it is typically pessimistic [26].
For small datasets such as Depresjon or Psykose high variance may give misleading
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results, and following [26] we recommend using 5-fold CV with stratification (due
to class imbalance). This number of folds combined with stratification has a few
desirable properties (the numbers provided are for Depresjon and Psykose datasets):

• each test set is quite large, compared to the overall size of the dataset (11 sam-
ples), therefore each fold will give a reasonable estimate of the classifier perfor-
mance;

• training set is large enough (44 samples) to train classifiers to recognize both
classes;

• both training and test set have enough samples of both classes to allow variability
for metrics (such as accuracy or recall): 4–5 patients and 6–7 controls for the
test set, 18–19 patients and 25–26 controls for the training set;

• this number of folds is a compromise between bias and variance in estimating
classifier performance [26];

• this number of folds is enough to measure how sensitive the classifier is to changes
in test set distribution (standard deviation of metrics on test folds).

However, due to the small dataset size, the results obtained with this method
may be pessimistic. For hyperparameter tuning nested cross-validation can be used,
where cross-validation is again used on the training set, so we have “outer” test folds
and for each, we use subsequent “inner” validation folds for hyperparameter tuning.
For inner folds, there are 2 important possibilities: LOOCV and a high number
of folds. LOOCV is unbiased and leaves as much data for training as possible,
but results in a very high number of evaluations, which may be problematic even for
small datasets if the hyperparameter grid is large. This may be the case for classifiers
sensitive to regularization, e.g. SVM. A high number of folds, on the other hand,
e.g. 10-fold or 15-fold cross-validation, reduces the estimation variance and greatly
reduces the computational complexity.

3.5.3 Bootstrap Methods

In [15] the Out-Of-Bag (OOB) has been used. This method is an example of
bootstrap-based methods. Those methods are especially useful for small datasets,
where resampling alleviates some of the problems with the small sample number.
The classic OOB method generates n bootstrap samples (usually 100–200 [26]); each
sample has the same size as the dataset and elements are drawn with replacement.
Due to the latter, usually only about 63.2% points in each sample are unique [25].
Classifier instances are trained on those samples, while the test results are calculated
separately for each sample, predicting it using classifiers that did not have it in the
test set.

A more sophisticated approach is the 0.632 estimator. There the classifier in-
stances are trained bootstrap samples and the original training set is used as the
test set; this At estimate is highly optimistic [25, 26]. Another approach is to check
the accuracy for each point in the dataset on the bootstrap samples where it was
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not included; this Al estimate is pessimistic. Those two can be averaged, resulting
in the 0.632 estimator:

A0.632 = 0.632 · Al + 0.368 · At.

3.5.4 Used Methods and Recommendations

For our experiments, we choose nested cross-validation with stratified 5-fold CV for
testing (outer loop), and LOOCV for hyperparameter tuning and validation (inner
loop). We optimize hyperparameters for the highest accuracy.

As suggested in [1, 2] we calculate multiple metrics: balanced accuracy [33]
(instead of regular accuracy due to class imbalance), precision, recall, specificity,
Matthews correlation coefficient, F1 score, and ROC AUC.

We do not use the holdout method because of the arguments in Section 3.5.1.
The nested cross-validation approach has multiple advantages:

• simplicity – especially important in conjunction with the automated feature
engineering;

• ability to calculate test mean and standard deviation – provides a measure of
performance bounds and classifier’s robustness;

• high control over bias and variance of test and validation estimates – number
of folds for inner and/or outer CV can be changed for different sized datasets,
providing a high degree of control over results;

• it is easy to apply automated feature engineering – it can easily be applied for
current training data only.

We refrain from using bootstrap methods since they are problematic to use with
automated feature engineering. It is unclear how features should be generated in
this case; we present two possible implementations, each of which has some critical
drawbacks.

Firstly, we could use the whole dataset to calculate features before generating
bootstrap samples. This means that, for example, statistical tests in tsfresh use all
samples, therefore have higher statistical power, since all available samples from the
dataset are used. This can result in rejecting some features based on this knowledge.
However, in bootstrap the same samples are later used as test samples for some
bootstrap samples, therefore resulting in data leakage. This is unacceptable since it
makes results overly optimistic.

On the other hand, features can be calculated for each bootstrap sample sepa-
rately. On average, bootstrap samples contain 36.8% of duplicate samples, which
will make automated feature engineering libraries not work correctly, since they as-
sume points uniqueness. For example, in tsfresh, it is assumed that the number
of samples n, used for statistical tests, is equal to the dataset size. The higher
the n, the higher the statistical power, which has a considerable impact on fea-
ture selection. However, since the real number of points is much lower, the results
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are wrong. Moreover, the correlations of features would be overall high, since cal-
culation from the same points would result in the same values, which would lead
to uninformative features. If the points are made unique before calculating fea-
tures, on the other hand, the method is no longer bootstrap, since this would be
equal to drawing without replacement and with n lower than the original dataset
size.

3.6 Performance Evaluation in Related Works

Direct comparison of our results with those of most other papers using Depresjon
or Psykose datasets is not possible because our evaluation procedure described in
Section 3.5.4 differs from them. In addition, as we describe above, contrary to
most other works, we report direct classification scores based on the classification of
individual subjects, while the majority of papers classify extracted subsets of data.
We argue that our approach is the most sound from the methodological point of
view.

The overall goal of the classification of time series in mental health is the di-
agnosis of an individual patient. This means that in the end, we expect the label
healthy/sick to be assigned to each sample that we perform the prediction for.
Therefore, we are also ultimately interested in performance metrics calculated from
those final predictions per patient. Because of the very small number of samples,
this kind of evaluation may be very harsh, especially if a demanding testing proce-
dure with multiple test sets, such as cross-validation, is used. Of course, this does
not disqualify approaches where another, larger intermediate dataset is generated
to use algorithms requiring a larger amount of data for training. For example, if
the original time series is cut into 24-hour parts and each part is classified as either
depressed or healthy, then also another method is required to obtain a final, single
prediction per patient.

In the original Depresjon paper [1] the baselines are provided only for the task of
classifying individual days, i.e. depressed vs non-depressed. No method is presented
for individual patient prediction. The authors of [13] propose a classification of
individual hours, divided into three subsets: full 24 hours data, only night hours,
and only day hours. Metrics are only calculated for each subset, but no method
is presented for extracting a final prediction for the patient. In the case of one
work [15] the description was so unclear that we could not understand the exact
methodology, but based on the number of samples mentioned (about 4 thousand)
we assume that authors classified individual hours.

Work [14] performs daily classification, but ultimately outputs the final predic-
tion per subject using majority voting based on individual days’ predictions. It uses
LOOCV, so it is similar to our approach and we can compare results. However, only
mean values of the metrics are reported, without standard deviation.

In the Psykose dataset paper [2], the baselines are also provided only for the
daily classification, with no method for individual subject prediction.
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4 EXPERIMENTS

4.1 Datasets

We used Depresjon [1] and Psykose [2] datasets. Both datasets have been gathered
in the same way: actigraph watches were handed out to patients with the condition
and healthy controls, and measurements were gathered continuously for multiple
days.

Both datasets are imbalanced in terms of class distribution: Depresjon has
23 conditions and 32 controls, while Psykose has 22 conditions and 32 controls.
Length of measurement varies between subjects: between 5 and 20 days for De-
presjon and between 8 and 20 days for Psykose. However, for both datasets, the
majority of subjects have measurements varying between 12 and 14 days: 39 out
of 55 for Depresjon and 46 out of 54 for Psykose. The distribution of lengths of
measurement is similar in the condition and control groups. In both datasets there
are missing values, but they constitute a very small percentage of data, typically at
most 1 hour per patient during the whole measurement duration.

4.2 Data and Code Availability

Datasets can be downloaded from:

• Depresjon: https://datasets.simula.no/depresjon/,

• Psykose: from https://datasets.simula.no/psykose/.

Our code for the reproduction of the results has been made publicly available at
https://github.com/j-adamczyk/Mental_disorder_TS_feature_engineering.

4.3 Experimental Setup

All experiments have been conducted for both datasets in the same way. The first
step is feature extraction, performed for each time series separately. We first fill
missing values with the mean value of a given subject’s activity. Then, for manual
feature extraction only, we resample the data with a 1-hour frequency. After this, we
create 3 subsets from each time series: full 24 h data (whole time series), night data
(from 21:00 to 8:00), and day data (from 8:00 to 21:00). Then we extract features
and merge the data, gathering rows into tables ready for classification. We used
the following feature extraction settings: manual (features described in Table 1),
automated with “minimal” tsfresh settings and automated with “efficient” tsfresh
settings. Therefore in the end we have 9 tables for each dataset (3 methods, 3 parts
for each).

The next step is the classification itself. As mentioned in Section 3.5.4, we
use a nested CV, with a 5-fold CV for testing and LOOCV for hyperparameter
optimization and model selection. In the outer loop, we calculate the metrics on

https://datasets.simula.no/depresjon/
https://datasets.simula.no/psykose/
https://github.com/j-adamczyk/Mental_disorder_TS_feature_engineering
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test sets, reporting the mean and standard deviation after all 5 folds. In the inner
loop, the procedure depends on the experiment.

For manual feature extraction and for automated feature extraction with “mini-
mal” settings we only perform variance thresholding and standardization before op-
timizing hyperparameters with grid search. For automated feature extraction with
“efficient” settings during initial tests we ran into problems with tsfresh’s feature
selection algorithm. The Benjamini–Yekutieli procedure with FDR set to default
0.05 often results in rejecting all features since the training sets are very small here.
Based on tsfresh documentation, we consider two options for dealing with this prob-
lem:

• increasing FDR – after variance thresholding, but before standardization we
use tsfresh’s feature selection based on Benjamini-Yekutieli procedure with in-
creasing FDR, starting with 0.05 and increasing by 0.05 until at least 1 feature
“relevant” (according to this procedure) is selected;

• selecting the top N features – instead of using only “relevant” feature we take
the table with p-values and take N features with the lowest p-values, i.e. the
most important according to the statistical tests.

For the latter, we consider N = 5 and N = 10 since the initial experiments indicated
that those values give good and stable (in terms of standard deviation) results, better
than with higher N . This feature selection is performed after variance thresholding
but before standardization.

4.4 Results

Results for Depresjon and Psykose are given in the tables below. We report each
subset (full 24 h, night, day) for each dataset in a separate table. In each table, for
each metric, the best score is marked with bold text. We define the best metric
score as the highest mean test value, and in the case of equal means, we choose the
one with a lower standard deviation.

We performed 90 experiments in total (2 datasets, 3 subsets each, 5 feature
engineering variants, 3 classifiers). Therefore, due to space constraints, we report
only the best classifier for each feature variant. They were selected based on both the
highest metrics and lowest standard deviation. Typically, there was no ambiguity
since one classifier outperformed the other two by 5% or 10% on all metrics.

In tables, the first column denotes the feature engineering method: “M” (man-
ual), “AM” (automated, “minimal” settings), “AE” (automated, “efficient” set-
tings). For “AE” we also mark the variant: FDR (increasing FDR), N = 5 (top
N with N = 5), N = 10. In the third column, there is information about the
type of chosen classifier. Metrics are: balanced accuracy (B. acc.), F1 score (F1),
precision, recall, specificity (spec.), ROC AUC (AUC), and Matthews Correlation
Coefficient (MCC). All metrics except for MCC range from 0 to 1, whereas MCC
ranges from −1 to 1. All numbers have been rounded to 2 decimal places. We
denote the standard deviation by the number after the ± sign.
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Method Clf. B. Acc. F1 Precision Recall Spec. AUC MCC
M LR 0.76± 0.16 0.73± 0.18 0.73± 0.21 0.77± 0.16 0.76± 0.25 0.77± 0.16 0.54± 0.32
AM RF 0.73± 0.06 0.68± 0.07 0.83± 0.15 0.60± 0.11 0.87± 0.12 0.73± 0.06 0.52± 0.14
AE, FDR SVM 0.74± 0.14 0.67± 0.18 0.77± 0.20 0.60± 0.17 0.88± 0.12 0.74± 0.14 0.50± 0.29
AE, N = 5 SVM 0.68± 0.07 0.56± 0.12 0.85± 0.20 0.43± 0.12 0.94± 0.08 0.68± 0.07 0.45± 0.17
AE, N = 10 RF 0.71± 0.09 0.61± 0.16 0.81± 0.19 0.51± 0.19 0.90± 0.08 0.71± 0.09 0.47± 0.18

Table 2. Depresjon, full 24 h data

Method Clf. B. Acc. F1 Precision Recall Spec. AUC MCC
M LR 0.67± 0.13 0.52± 0.28 0.78± 0.22 0.49± 0.26 0.85± 0.16 0.67± 0.13 0.36± 0.28
AM RF 0.74± 0.07 0.69± 0.08 0.81± 0.17 0.64± 0.14 0.84± 0.18 0.74± 0.07 0.52± 0.15
AE, FDR LR 0.68± 0.14 0.59± 0.22 0.67± 0.22 0.62± 0.34 0.74± 0.13 0.68± 0.14 0.68± 0.14
AE, N = 5 SVM 0.68± 0.07 0.57± 0.12 0.85± 0.20 0.43± 0.12 0.94± 0.08 0.68± 0.07 0.45± 0.17
AE, N = 10 SVM 0.68± 0.08 0.57± 0.17 0.83± 0.15 0.50± 0.25 0.87± 0.12 0.68± 0.08 0.44± 0.12

Table 3. Depresjon, night data

4.5 Discussion

Classifiers that achieved the highest mean metrics results on subsets of datasets are:

• Depresjon:

– full 24 h data: manual, LR;

– night data: automated “minimal”, RF;

– day data: automated “efficient”, top N = 5, RF; the best results.

• Psykose:

– full 24 h data: automated “efficient”, top N = 10, LR;

– night data: automated “efficient”, FDR, LR; the best results;

– day data: automated “efficient”, top N = 5, RF.

In almost all cases, across almost all metrics, the automated approach outper-
forms the manual, often by a considerable margin. The only exception is Depresjon
full 24 h data, where the manual approach has the highest mean values of the met-
rics. However, it has very high standard deviations, over 0.16 for all metrics, which
makes it highly unreliable. On the other hand, the automated method with “min-
imal” settings often achieved only slightly lower results, while getting much lower
standard deviation, e.g. for balanced accuracy 0.73± 0.06 compared to 0.76± 0.16,
or for AUC 0.73± 0.06 compared to 0.77± 0.16.

Method Clf. B. Acc. F1 Precision Recall Spec. AUC MCC
M LR 0.73± 0.13 0.58± 0.31 1.00± 0.00 0.46± 0.27 1.00± 0.00 0.73± 0.13 0.53± 0.28
AM RF 0.72± 0.03 0.65± 0.07 0.80± 0.16 0.60± 0.17 0.84± 0.15 0.72± 0.03 0.49± 0.08
AE, FDR RF 0.74± 0.05 0.70± 0.04 0.85± 0.19 0.64± 0.14 0.83± 0.21 0.74± 0.05 0.54± 0.13
AE, N = 5 RF 0.81± 0.06 0.78± 0.10 0.87± 0.11 0.76± 0.22 0.87± 0.12 0.81± 0.06 0.68± 0.08
AE, N = 10 RF 0.77± 0.03 0.72± 0.05 0.89± 0.14 0.64± 0.14 0.90± 0.13 0.77± 0.03 0.60± 0.07

Table 4. Depresjon, day data
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Method Clf. B. Acc. F1 Precision Recall Spec. AUC MCC
M RF 0.80± 0.09 0.76± 0.11 0.86± 0.20 0.72± 0.11 0.88± 0.17 0.80± 0.09 0.64± 0.19
AM SVM 0.80± 0.02 0.75± 0.05 0.82± 0.09 0.72± 0.11 0.88± 0.06 0.80± 0.02 0.62± 0.01
AE, FDR SVM 0.83± 0.07 0.79± 0.08 0.83± 0.14 0.78± 0.13 0.88± 0.11 0.83± 0.07 0.68± 0.14
AE, N = 5 SVM 0.81± 0.08 0.77± 0.10 0.85± 0.20 0.73± 0.07 0.89± 0.17 0.81± 0.08 0.64± 0.19
AE, N = 10 LR 0.89± 0.06 0.86± 0.08 0.83± 0.15 0.92± 0.10 0.85± 0.13 0.89± 0.06 0.77± 0.13

Table 5. Psykose, full 24 h data

Method Clf. B. Acc. F1 Precision Recall Spec. AUC MCC
M RF 0.91± 0.12 0.88± 0.15 0.92± 0.16 0.87± 0.17 0.94± 0.11 0.91± 0.12 0.82± 0.23
AM SVM 0.91± 0.06 0.89± 0.08 0.89± 0.09 0.92± 0.16 0.91± 0.07 0.91± 0.06 0.83± 0.10
AE, FDR LR 0.93± 0.03 0.92± 0.04 0.89± 0.09 0.96± 0.08 0.91± 0.07 0.93± 0.03 0.86± 0.07
AE, N = 5 SVM 0.89± 0.07 0.86± 0.09 0.89± 0.14 0.87± 0.17 0.91± 0.11 0.89± 0.07 0.80± 0.12
AE, N = 10 SVM 0.88± 0.08 0.85± 0.09 0.91± 0.11 0.82± 0.16 0.94± 0.07 0.88± 0.08 0.78± 0.14

Table 6. Psykose, night data

The lower standard deviation for the automated approach is a clearly visible
pattern across all experiments. Sometimes differences are truly large, for example for
Depresjon day data, F1 metric, the AE top N = 5 method achieved 0.78±0.10, while
the manual approach got 0.58± 0.31. In practice, using classifiers with a standard
deviation higher than 0.1–0.15 carries considerable risk, as they are highly unreliable.
The appearance of such high standard deviations in our results also signifies the
importance of using nested CV for evaluation.

Results vary considerably between full, night, and day data for both datasets.
For example, for best classifiers using Depresjon full 24 h and day data, the results
are 5–10% higher for day data. This makes sense from a psychological point of view,
as either circadian, nocturnal, or daily activity patterns may be the most significant.
This also means that segmentation into different parts of the day is an important
direction for feature extraction from actigraphy data. Such information is relevant
not only from a classification point of view but also for purely psychological analysis
of behavioral patterns of mental disorders.

For both datasets, the best results were achieved using automated feature engi-
neering. All 4 variants of automated feature engineering are among the best clas-
sifiers. This means that in future experiments with this method various scenarios
have to be considered. For different datasets and different subsets of data, the most
relevant features may differ considerably. While automated methods can and will
extract and select those features, the optimal selection method is not obvious.

Interestingly only the LR and RF classifiers achieved the best results. However,
the SVM got comparable results, with only a slightly lower mean, and often with very

Method Clf. B. Acc. F1 Precision Recall Spec. AUC MCC
M RF 0.81± 0.08 0.78± 0.10 0.82± 0.18 0.77± 0.02 0.85± 0.16 0.81± 0.08 0.64± 0.18
AM SVM 0.80± 0.06 0.76± 0.07 0.83± 0.14 0.72± 0.11 0.88± 0.12 0.80± 0.06 0.62± 0.12
AE, FDR LR 0.85± 0.03 0.83± 0.03 0.92± 0.10 0.77± 0.02 0.93± 0.08 0.85± 0.03 0.74± 0.09
AE, N = 5 RF 0.89± 0.07 0.87± 0.08 0.85± 0.12 0.90± 0.12 0.88± 0.12 0.89± 0.07 0.79± 0.13
AE, N = 10 RF 0.88± 0.07 0.86± 0.09 0.91± 0.11 0.82± 0.09 0.94± 0.08 0.88± 0.07 0.77± 0.14

Table 7. Psykose, day data
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low standard deviation. Therefore, all three types should be considered for future
experiments on this dataset. The good performance of LR, which is a relatively
simple, linear classifier, shows that proper feature engineering allows even simple
classification algorithms to achieve excellent results.

Overall results are better for the Psykose dataset, both in terms of higher mean
metrics and lower standard deviations, and are in general very good. The best
classifier for Psykose (night data, AE FDR, LR) clearly stands out, achieving great
results. No metric mean is lower than 0.86, and most are over 0.90; at the same
time, standard deviations are low, ranging between 0.03 and 0.09. This may mean
that there are very specific behavioral patterns of schizophrenics during their noc-
turnal activities. However, the usage of such patterns requires deeper analysis of
the features used – see Section 4.7 for discussion.

The fact that the best results are achieved with smaller subsets of data is very
beneficial from a practical point of view. This means that future subjects may not
need to wear the actigraph all the time, just during a part of a day. This makes
a diagnosis using this method less cumbersome and data easier to collect.

4.6 Comparison with Other Works

Recalling the results of analysis from Section 3.6, we were able to find only one other
paper with results provided per patient [14]. We use a weighted average from paper
for each metric, using the SMOTE variant for each classifier (as it was described as
the best variant). We also compare accuracy from the paper and balanced accuracy
from our results. It should be kept in mind that balanced accuracy is a harsher, but
more realistic metric for imbalanced datasets such as Depresjon.

For comparison with our results, we choose the classifiers that achieved the
highest mean metrics results on subsets of Depresjon: manual LR (full 24 h data),
automated “minimal” RF (night data), automated “efficient” top N = 5 RF (day
data). Results are gathered in Table 8. The best value for each metric is marked
with bold font.

Method Acc./B. Acc. F1 Precision Recall Spec. MCC
Garcia-Ceja et al., RF 0.73 0.73 0.73 0.73 0.72 0.44
Garcia-Ceja et al., DNN 0.69 0.69 0.69 0.69 0.65 0.35
Adamczyk&Malawski, M, LR 0.76 0.73 0.85 0.77 0.94 0.54
Adamczyk&Malawski, AM, RF 0.74 0.69 0.81 0.64 0.84 0.52
Adamczyk&Malawski, AE, N = 5, RF 0.81 0.78 0.87 0.76 0.87 0.68

Table 8. Comparison of results with [14]

Our approaches gave superior results in all cases. In particular, automated fea-
ture engineering with “efficient” settings, using top N = 5 and RF have better
results for all metrics than those achieved by either RF or DNN from [14]. The ver-
sion using “minimal” settings and RF also gave results comparable to RF and DNN
in that paper. This proves the usefulness of automated feature engineering. The
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automated approach is also simpler, requiring no additional intermediate datasets
or models.

4.7 Analysis of Extracted Features

Features that are extracted and selected using automated feature engineering do not
need to be analyzed separately, they can be just used directly. Results presented in
Section 4.4 have been obtained that way. However, we can also use the automated
approach to gain additional insights into useful features and include only some of
them, or just look into what domains provide the best discriminative qualities.

For such analysis, we count how many times different features have been used for
training classifiers using different automated approaches. We count how many times
different features have been chosen across all train/test folds (outer 5-fold CV loop).
Feature sets used for training classifiers are already after both variance thresholding
and feature selection. The only exception is the method using “minimal” settings,
where no additional feature selection is used, only variance thresholding. We review
all 4 variants of automated feature selection: AM, AE FDR, AE top N = 5, AE top
N = 10. Because of the space constraints, we select only a few example histograms
for Depresjon, full 24 h data in Figures 1, 2, 3 and 4. A full collection of plots can
be found in the appropriate notebook in the Github repository.

Below we explain the meaning of the less obvious features. The more detailed
explanations can be found in tsfresh documentation [34].

1. linear trend intercept – fits the linear regression to the raw values of time series
and returns the intercept value;

2. aggregated linear trend intercept, chunk of length N , aggregation function f –
similar to the above, but before regression it divides the time series into chunks
of size N and aggregates them with function f (min, mean or max), fitting the
linear regression to such preprocessed series;

3. count above mean – number of values above mean value of time series;

4. absolute energy – absolute energy of the signal, which is defined as a sum of its
squared values;

5. CID – an estimate of the complexity of the time series, based on either raw
(unnormalized) or normalized values [35], defined as:

CID(x) =

√√√√n−1∑
i=1

(xi − xi−1)2;

6. Lempel-Ziv complexity, N bins – an estimate of the complexity of the time
series. The complexity is defined as the number of dictionary entries (or sub-
words) needed to encode the time series when viewed from left to right. For this,
the time series is first binned into N bins. Then Lempel-Ziv compression is used:
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signal is converted into sub-words with different prefixes, and the number of sub-
words needed for this divided by the length of the time series is the complexity
estimate [34];

7. FFT absolute coefficient N – absolute value of coefficient N of 1D Fourier trans-
form;

8. Spectral Welch density coefficient N – coefficient N of the power spectral cross
density estimated using Welch’s method.

0 1 2 3 4 5
Feature count

median

mean

length

maximum

root_mean_square

sum_ alues

Selected feature counts, "minimal" settings, Depresjon, full 24h data

Figure 1. Feature counts, Depresjon, “minimal” settings, full 24 h data

Across all subsets of both datasets, the “minimal” settings features after vari-
ance thresholding were: median, mean, length, maximum. Additionally, root mean
square was used very often. Since “minimal” settings do not have many features,
this is not particularly surprising. Also, many of those features were selected by us
in the manual feature engineering and they have quite obvious psychological inter-
pretations. Interestingly the length of the time series was often used. We checked
the length distribution for both classes and there are no clear differences, so while
this feature can be considered “fair” for usage, it does not have the immediate psy-
chological interpretation. One possible explanation could be that subjects suffering
from mental disorders are less disciplined and less inclined to wear the actigraph for
more extended periods of time.
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Figure 2. Feature counts, Depresjon, “efficient” settings with increasing FDR, full 24 h
data
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Figure 3. Feature counts, Depresjon, “efficient” settings with top N = 5, full 24 h data

For each subset of datasets, the most commonly selected features across three
“efficient” variants have been gathered in Table 9. The features selected using
automated feature engineering are very different from those used by us in the manual
approach. The statistical features were not selected (tsfresh does calculate them
and could use them). Instead, we can roughly divide those features into two groups:
describing the complexity of the time series and the overall shape.

The complexity-related features include Lempel-Ziv complexity, CID (unnor-
malized), and spectral Welch density coefficient. The Lempel-Ziv complexity has
been selected only for Depresjon and the spectral Welch density coefficient only for
Psykose, while CID was used in subsets from both datasets. This means that while
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Figure 4. Feature counts, Depresjon, “efficient’ settings with top N = 10, full 24 h data

the complexity measures are very useful, the exact one to use is not obvious and
depends on the particular dataset.

Features concerning the overall shape of the time series are related mostly to
fitting the linear regression: on raw data or on aggregated data (often using 2 or 3
aggregation measures). Other features in this group include autocorrelation, partial
autocorrelation, and absolute energy. Linear regression intercept has been selected

Dataset Signal Complexity Features Signal Shape Features

Depresjon
full 24 h

– aggregated linear trend intercept: len 5 mean
and max, len 10 mean and max, len 50 mean;
linear trend intercept; count above mean

Depresjon
night

absolute energy; CID with-
out normalization; Lempel-Ziv
complexity with 2 bins

–

Depresjon
day

Lempel-Ziv complexity with 2
and 3 Bins

aggregated linear trend intercept: len 5 mean
and max, len 10 mean and max; linear trend
intercept

Psykose
full 24 h

absolute energy aggregated linear trend intercept: len 5 min,
mean and max, len 10 mean and max, len 50
mean; linear trend intercept

Psykose
night

absolute energy; spectral
Welch density coefficient 2

autocorrelation with lag 1; partial autocorre-
lation with lag 1

Psykose
day

FFT absolute coefficient 23;
spectral Welch density coeffi-
cient 2; CID without normal-
ization

aggregated linear trend intercept: len 5 min,
mean and max, len 10 min, mean and max,
len 50 mean; linear trend intercept

Table 9. Features most commonly extracted with automated feature engineering
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overall the most often of all features, and often many types of aggregation have
been used before fitting the regression line: min, mean, and max. This means that
analysis of the overall tendency in the subject’s activity is a well-discriminating
feature. The absolute energy aggregates the overall sum of activity, but since it
squares the values before summation, it puts more weight on activity peaks. We
expect both depressed or schizophrenic patients to have overall lower activity and
especially lower activity peaks, so this feature incorporates this knowledge into the
model. Autocorrelation and partial autocorrelation, both with lag 1, have been
chosen for Psykose night data only. This may extract information about short
period abnormalities in the subject’s activity, which may relate to psychotic episodes
in patients suffering from schizophrenia.

We can conclude that the features extracted automatically are all nonobvious
and advanced. For manual extraction, they would require very specific knowledge
from statistics, time series analysis, or signal processing, even to know about their
existence in some cases (e.g. CID, which is less known than others). Many features
were chosen reliably, often in all cases for a given subset or dataset, further im-
plying their importance. Applying automated methods for such feature discovery
is a promising way for psychologists or psychiatrists to enrich their analysis. Fur-
ther work in this area, especially domain interpretation of extracted features, would
require the help of medical professionals.

4.8 Software Engineering Aspects

The automated feature engineering turned out to be an easier to implement solution
than manual feature engineering. It required less work and domain knowledge. It
also resulted in a shorter, cleaner, easier-to-understand and maintain code. Those
qualities can be measured qualitatively and quantitatively.

In terms of qualitative analysis, the manual approach required more knowledge
and work. Firstly, it required to gain domain knowledge in actigraphy, psychol-
ogy, and signal processing, so we understood the problem and what features can
be extracted, and which ones may be the most useful for this particular problem.
Research into practical implementation and writing code for extracting those fea-
tures also took a considerable amount of time. The manual approach also requires
more temporary code for researching various libraries, their APIs, and testing our
implementation. While getting comparable results with both the manual and auto-
mated approaches is definitely possible, the latter requires considerably less work to
achieve them.

Qualitatively we can use code complexity measures to compare manual and
automated approaches. We choose three simple code complexity measures: physical
Lines Of Code (LOC), LOC including comments, number of functions and classes,
and number of function calls.

The Source Lines Of Code (SLOC) measure is one of the most commonly used
code complexity measures [36]. However, its definition is not consistent, and there
are many types of SLOC measures. Two major ones are physical SLOC (LOC) and
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logical SLOC (LLOC). We use the LOC measure, as its definition is less ambigu-
ous [36].

Precise definitions of this measure may vary, however. We make the following
assumptions about the code being compared:

• code uses the Python language with PEP8 code formatting standard [37]; in
particular, no lines are longer than 80 characters;

• we count only feature engineering related directly to the particular method, not
the code common for all methods;

• we include imports from external libraries;

• each function call uses 1 line unless it needs to be broken into multiple lines due
to 80 characters length constraint;

• function calls for library functions with multiple arguments may use keyword
arguments for readability;

• we do not count empty lines.

We also commented our code in multiple places for readability, understanding
complex library calls, and features being calculated. It was necessary for the main-
tainability of the created ML pipelines. Therefore, we also provide LOC including
comments, as this measure also takes into account the logical complexity of code
and the need for additional text for human understanding. This is a measure that
falls somewhere between LOC and LLOC measures. For docstrings documenting
functions and classes, we also follow PEP8, and we only count lines with actual
comments (not the lines with triple quotation marks marking the start and the end
of the multiline comment).

The number of functions and classes serves as a metric for code maintainability
burden. The more objects such as those, the more burden the code maintenance is,
especially in larger codebases. We only count classes and not their methods, since
all implemented classes use the standard Scikit-learn interface of fit/transform [32]
and in practice are used like transforming functions.

We also count the number of function calls required for the feature engineering
process. This measure takes into account external library calls, which increase code
complexity because code maintainers have to monitor API changes in those libraries.
They also typically require external documentation lookups during development,
constituting an additional development burden.

The exact lines of code used for comparison can be found in other files in the
Github repository linked in Section 4.2. Results are presented in Table 10, with
feature engineering methods marked similarly to the tables from Section 4.4, with
the lowest (best) metrics marked with bold font.

The automated feature engineering did not meet the advertised “one-line feature
engineering”. However, the code complexity across all metrics was significantly lower
for both automated approaches. The “minimal” settings provided the shortest, least
complex code.
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Approach LOC
LOC Incl. Functions Function
Comments and Classes Calls

M 68 90 6 35

AM 25 12 2 12

AE, FDR 47 61 3 21

AE, top N 48 61 3 26

Table 10. Code complexity measures

LOC and LOC include comments for automated approach with “efficient” set-
tings are longer, since they also require feature selection methods, either increasing
FDR or selecting top N features. For “minimal” settings, however, there is no such
need and therefore both of those metrics are significantly lower than for all other
approaches, especially compared to the manual one. Additionally, while the LOC is
about 3 times lower compared to the manual feature engineering, the LOC including
comments is about 7.5 times lower. The fact that the number of comments is this
much lower signifies the simplicity of the code using tsfresh – almost no comments
are required since the code boils down to simple reshaping of the input data and
calling the feature extraction function.

The manual approach also requires 2-3 times as many functions as the automated
one. It should be also noted that the number of custom functions grows linearly in
manual feature engineering, as more domain-specific features (not implemented in
libraries) need to be extracted. For the automated approach, the number remains
constant.

The number of function calls also takes into account individual library calls. For
manually extracting features this number is high because extracting each feature
requires calling either custom or external library functions and would also linearly
grow with the number of features. For automated methods with feature selection,
this number is much lower, but still a bit high, since this step requires additional
code. For the “minimal’ settings, however, the code is really short, consisting of
only feature extraction, and the overall number of function calls is about 3 times
lower than for the manual approach.

We can therefore conclude that the automated approach has considerable soft-
ware engineering advantages since it results in shorter, cleaner, easier-to-understand
code. This is especially important for psychologists or psychiatrists without high
programming expertise. It would also be much less burdensome to maintain in
larger codebases and practical deployments, making this an important advantage
for practical applications.

4.9 Code Example

For completeness sake, we include the code listing performing automated feature
extraction with tsfresh using “minimal” settings. Code for other approaches can be
found in the appropriate notebook in the Github repository.
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import pandas as pd
from t s f r e s h . f e a t u r e e x t r a c t i o n . s e t t i n g s \

import MinimalFCParameters
from t s f r e s h . t rans fo rmer s import FeatureAugmenter

# t s − pd . DataFrame with time s e r i e s , t s f r e s h ” f l a t ” format
# X − pd . DataFrame with e x t r a c t e d f e a t u r e s

i d s = t s [ ” id ” ] . unique ( )
X = pd . DataFrame ( index=id s )

augmenter = FeatureAugmenter (
d e f au l t f c p a r ame t e r s=MinimalFCParameters ,
column id=” id ” ,
co lumn sort=”timestamp” ,
column value=” a c t i v i t y ” ,
chunks ize=1, n jobs=4

)

augmenter . s e t t im e s e r i e s c o n t a i n e r ( t s )

# ex t r a c t a l l f e a t u r e s de f ined in d e f a u l t f c p a r ame t e r s
X = augmenter . trans form (X)

5 SUMMARY

The main objective of this paper was to compare manual and automated feature
engineering for the classification of time series in mental disorder diagnosis. For this
purpose, we have researched commonly used features and their domain interpreta-
tion, and the tsfresh library for automated feature extraction and selection, with
different possible approaches to using it. We also performed an analysis of perfor-
mance evaluation methods, suggesting the best methods for comparing classifiers on
small datasets typical for the mental health domain.

The automated approach proved to give very good results on both Depresjon
and Psykose datasets. The results were always comparable to the manual methods,
but often the metrics were higher or lower standard deviation, meaning a more
robust classification. We also compared qualitative metrics of code complexity,
showing that using automated feature engineering leads to shorter, cleaner, easier-
to-understand and maintain code compared to the manual methods.

We conclude that it is possible to reliably diagnose mental disorders such as de-
pression and schizophrenia based on features extracted from actigraphy signals. For
the best classifiers, multiple reported metrics are about 0.8 for Depresjon and 0.9
for Psykose, while having a reasonable standard deviation, about 0.05–0.1. These
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results are all achieved using good, highly discriminative features, extracted in an au-
tomated way.

There is a lot of possible future work in this domain. The results on both
datasets are very good, yet they may be improved. For example, we could conduct
further analysis of features discovered with automated methods or consult their
interpretation with medical professionals. This may potentially lead to discovering
reliable patterns in the activity of depressed or schizophrenic patients, which are
visible only using those advanced features. Also, the classification using only those
selected features could be conducted to analyze whether it would give better or more
reliable results than a purely automated approach.

Our results also signify the importance of feature selection; the methods used
here are relatively simple. Instead, more sophisticated methods such as genetic
algorithms or dedicated feature selection methods such as Boruta algorithm [38] can
be used to select relevant features after extraction with tsfresh. Another path of
research is the usage of classifiers working directly on time series, such as kNN with
Dynamic Time Warping (DTW) [39] or Time Series Forest [40]. Also, we can change
our approach and classify individual days, deploying different strategies for the final
classification of the subject, such as majority voting or Borda voting; this way we
could also use models requiring more data for training, such as recurrent neural
networks (RNNs, especially GRU or bidirectional variants) or neural networks with
an attention mechanism.

Therefore, we can conclude that the machine learning methods presented in this
work can be used to develop supportive diagnosis tools in psychology or psychiatry,
leading to an affordable, non-intrusive way of early diagnosis of mental disorders.
Automated feature engineering also makes the software engineering process easier
for non-technical professionals like psychologists or psychiatrists.
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