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Abstract. In this paper we consider the combinatorial optimization problem known
as workflow scheduling. We compare three encoding schemes of varying density:
one-hot, binary, and domain wall, and test their performance against two well-
known hybrid quantum-classical algorithms: Quantum Approximate Optimization
Algorithm (QAOA) and Variational Quantum Eigensolver (VQE). In an attempt to
obtain the best results possible, we investigate various parameters of the algorithms
and test out other state-of-the-art improvements, such as dedicated QAOA mixers.
Ultimately, we prove that, despite its popularity, one-hot encoding is not always
the best, and using a denser encoding scheme, such as binary or domain wall, can
allow for solving larger instances of workflow scheduling. Additionally, combining
the above-mentioned encodings with dedicated QAOA mixers reduces the number
of infeasible solutions, leading to better results.
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1 INTRODUCTION

With the growing popularity of quantum computers and algorithms, we are at an age
when real-life applications of quantum computing are finally becoming feasible. Re-
cent research in the field of quantum optimization has been quite promising, with
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achievements in fields such as biology [15, 18], resource distribution [8], machine
learning [11], or finance [17]. In this paper, we focus on the popular combinatorial
optimization problem that is workflow scheduling [4].

The goal of workflow scheduling is to assign a series of tasks to some avail-
able resources while meeting certain Quality of Service (QoS) requirements (such
as a predefined time limit) and minimizing the overall cost. In our previous work,
we formally defined workflow scheduling and solved it using the D-Wave quantum
annealer, achieving quite promising preliminary results for small graphs of tasks fit-
ting entirely on the computer architecture [28]. In this paper, we present the results
for the same type of problem, but solved with alternative, variational algorithms
designed for gate-based quantum devices. We focus on the two most popular algo-
rithms: Variational Quantum Eigensolver (VQE) [20] and Quantum Approximate
Optimization Algorithm (QAOA) [6]. In particular, the goal of this paper is to
present and compare the possible improvements provided by variational algorithms.
First, we investigate different problem encodings [10, 2] as more space-efficient meth-
ods of representing our problem. We also check the ability to limit the search space
to the feasible subspace with QAOA mixing operators [12, 31]. We show that these
methods allow us for encoding larger workflow problems and reduce the number of
infeasible solutions.

The paper is organized as follows: in Section 2 we briefly describe the related
work. Section 3 provides an overview of the variational algorithms used in this
paper. The definition of the workflow scheduling problem can be found in Section 4.
Next, in Section 5 we describe the selected encoding schemes and the appropriate
QAOA mixing operators. Section 6 describes the experiment design and Section 7
presents the results. We conclude in Section 8.

2 RELATED WORK

Quantum optimization and scheduling are a recent and promising field of research,
mainly focusing on the usage of the D-Wave quantum annealer. A possible method
of solving the job shop scheduling problem using D-Wave is shown in [30], how-
ever, it has strong limitations in terms of scalability. A good example of a hybrid
optimization method combining quantum and classical computers for this problem
is presented in [13]. In our previous work we approached the solution of simple
workflow scheduling problems using the D-Wave quantum annealer [29]. In this
paper, we investigate an alternative variational approach for gate-based quantum
devices that allows for experiments encoded in different ways, which can sometimes
result in higher order cost functions. The architecture of gate-based devices, in
contrary to the available quantum annealers, is not limited to quadratic problems.
Our work was motivated by the recent results showing the trade-off between space
efficiency and circuit depth [10, 7, 3]. Other approaches proposed in recent years
include domain wall encoding [2, 3] and minimal encoding [27]. The introduction of
dedicated QAOA mixing operators (also known as mixers) [12, 31] can be used to
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limit the configuration space to some feasible subspace in order to avoid configura-
tions representing incorrect states. This approach can also be used in combination
with different encoding schemes [2]. In our opinion, all presented solutions seem to
be promising in solving optimization problems. To the best of our knowledge, the
results of applying these methods to the workflow scheduling problem have never
been discussed before. Therefore, in this paper, we present results of our research
on that topic.

3 VARIATIONAL ALGORITHMS OVERVIEW

The Variatonal Quantum Eigensolver (VQE) algorithm [20] is a hybrid quantum-
classical algorithm used to find the smallest eigenvalue of a given Hamiltonian and
the corresponding eigenvector. Its main application is in solving large chemical
problems, such as the problem of finding the ground state energy of molecules. VQE
is an alternative to the QPE (Quantum Phase Estimation) algorithm [1], but with
the advantage of smaller circuit depths, which is especially important for the current
NISQ era of quantum computing. An overview of VQE is presented in Figure 1.

Figure 1. An overview of VQE. The classical optimizer (marked with orange) adjusts the
parameters of the quantum component (marked with blue) to minimize the energy of the
system. The figure is based on [20] under the Creative Commons Attribution 4.0 license.

The main parts of the VQE algorithm are:

1. preparing the |ψ⟩ state with the parametrized circuit (ansatz ),

2. calculating the expectation value ⟨Hi⟩ of each Pauli term using separate quantum
circuits (quantum modules) which consist of Rx and Ry rotations, allowing for
measurements in the Z-basis,
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3. adding all the expectation values on a classical computer,

4. optimizing the parameters of the ansatz using a classical routine, based on the
expectation value sum.

The Quantum Approximate Optimization Algorithm (QAOA) [6] main applica-
tion is to solve combinatorial optimization problems. QAOA relies on two operators:
the cost Hamiltonian,

U(C, γ) = e−iγC =
m∏

α=1

e−iγCα , (1)

and the mixing Hamiltonian (or mixer),

U(B, β) = e−iβB =
n∏

j=1

e−iβσx
j (2)

where γ and β are angles, m is the number of constraints in the problem, and n is the
number of qubits. The initial state |s⟩ is the superposition over the computational
basis states,

|s⟩ = 1√
2n

∑
z

|z⟩. (3)

Based on the above, a quantum state dependent on angles γ and β is defined as

|γ, β⟩ = U(B, βp)U(C, γp) . . . U(B, β1)U(C, γ1) |s⟩ (4)

where p is a parameter describing the number of repetitions of the U(B, γp)U(C, βp)
sequence, and thus the number of angles to be optimized. For a good approximation,
the angles γ and β should be small and the algorithm should have a long running
time, therefore a large p is expected. An overview of QAOA is shown in Figure 2.

To sum up, the main parts of the QAOA algorithm are:

1. preparing an initial state by applying the Hadamard gate on each qubit,

2. applying a sequence of U(C, γi)U(B, βi) gates p times,

3. measuring the circuit on a quantum computer in the computational Z-basis,

4. using a classical optimization subroutine to find the new angles (β1, γ1, . . . , βp,
γp),

5. stopping the algorithm once the optimization objective is met.

4 DEFINITION OF WORKFLOW SCHEDULING PROBLEM

The groundwork for the formal definition of workflow scheduling used in this paper
was laid in [29]. That definition focused specifically on one-hot encoding. In this
section, we present a more general encoding-independent definition.
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Figure 2. An overview of QAOA. The classical optimizer (marked with orange) adjusts
the parameters of the quantum component (marked with blue) to minimize the energy of
the system. The metaparameter p defines the length of the quantum circuit.

An instance of the workflow scheduling problem consists of N tasks andM types
of machines (within each type, the number of machines is unlimited). The execution
of a given task on a particular type of machine is associated with a specific cost and
running time. The tasks have to be completed within a deadline d, while maintaining
a specific order that is defined in the form of a directed acyclic graph (DAG). This
graph needs to be decomposed into R paths that lead from the starting node to
the final node, and each path has to be accounted for separately in the objective
function.

Formally, the definition relies on the following constants:

• N – the number of tasks,

• M – the number of machines,

• R – the number of paths,

• d – the maximum number of time units allocated to the completion of all the
tasks,

as well as the following matrices:

• C(i, j) – the cost of executing task i on a machine of type j,

• T (i, j) – the number of time units required to execute task i on a machine of
type j,

• S(k) – the number of slack variables for path k,
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• P (i, k) – a binary matrix of the form:

P (i, k) =

{
1, if task i is lies on path k,

0, otherwise.
(5)

The output of a quantum algorithm will typically assume the form of a one-
dimensional binary vector. This vector can then be decoded and converted into two
matrices:

• the solution matrix X, which has the form:

X(i, j) =

{
1, if task i is executed on a machine of type j,

0, otherwise,
(6)

• the slack matrix Y , where Y (k, l) denotes the value of the lth slack on path k.

For simplicity, the elements of the above-mentioned matrices C(i, j), T (i, j),
S(k), P (i, j), X(i, j), and Y (k, l) will be denoted as ci,j, ti,j, sk, pi,j, xi,j, and yk,l,
respectively.

4.1 Objective Function

The objective of workflow scheduling is to minimize the cost of executing a series of
tasks. We express it as1

Ocost(X) =
N∑
i

M∑
j

ci,jxi,j. (7)

4.2 Constraints

While our goal is to minimize the objective function, there are also certain con-
straints that have to be met, namely the time constraint and the encoding feasibility
constraint.

4.2.1 Time Constraint

The time of execution does not have to minimized like the cost, but it does need to
be kept below a deadline d, meaning we need to enforce the inequality

N∑
i

M∑
j

ti,jxi,j ≤ d. (8)

1 The notation
∑N

i means a sum over the range [0, N). Unless specified otherwise, it
can be assumed that all sums in this paper exclude the upper bound.



Variational Quantum Algorithms for Workflow Scheduling 903

The mechanism used to convert the inequality into an equality is based on slack
variables. The slacks are additional non-negative variables in the solution vector
that declare an offset added to the obtained value. Each path in the task ordering
DAG has its own slack variables, since each path can complete in a different amount
of time. For storing slack variables, we chose the binary encoding

∑sk
l 2lyk,l, where

sk is the number of bits needed to store the slack that corresponds to the kth path.
The equality takes the form

N∑
i

M∑
j

pi,kti,jxi,j +

sk∑
l

2lyk,l = d ∀k ∈ R. (9)

After converting it into a function, the constraint assumes the form

Otime(X, Y ) =
R∑
k

(
d−

(
N∑
i

M∑
j

pi,kti,jxi,j +

sk∑
l

2lyk,l

))2

. (10)

This function will assume the value of zero if the inequality from Equation (8) is
satisfied, and otherwise the penalty grows quadratically.

4.2.2 Feasibility Constraint

Another constraint given in the workflow scheduling problem is the feasibility con-
straint, whose role is to make sure that each task is assigned to a valid machine
type. This constraint is encoding-dependent, and it will be discussed in more detail
in Section 5, while its specific implementations for each of the considered encodings
can be found in [21].

4.3 Optimized Function

The full function takes the form

O(X, Y ) = A ·
N∑
i

M∑
j

ci,jxi,j +B ·
R∑
k

(
d−

(
N∑
i

M∑
j

pi,kti,jxi,j +

sk∑
l

2lyk,l

))2

+ C ·Oencoding(X) (11)

where A, B, and C are integer constants, to which we will later refer as weights.
These weights correspond to execution cost, execution time constraint and feasibility
constraint, respectively. The larger a weight for the given constraint is, the more
we want our model to find solutions that satisfy it. Therefore, an important aspect
of solving an optimization problem is to find such values for these weights that the
optimal solution returns the smallest possible value of the optimized function.
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5 ENCODING SCHEMES

Gate-model quantum machines are based on quantum bits (qubits), while many
optimization problems involve discrete variables rather than binary. Such variables
include integers but can include other problem representations as well, e.g. contin-
uous variables or multiple mutually exclusive options. An example of a discrete
variable in the workflow scheduling problem might be the index of a machine on
which a certain task should be performed, as discussed in Section 4. In this section,
we consider a specific example of such task-machine pairing, which is summarized
in Table 1.

Task Machine Type

0 0
1 3
2 2
3 1

Table 1. An example of task-machine pairing (note: the tasks and the machines are both
indexed from 0)

Three different methods of encoding these discrete variables into qubits will
be presented in this section. For each of those methods, we have to establish two
functions:

• a binary function that takes an encoded bit string and validates if this string
represents a specific category, e.g. “Does this bit string represent Machine 2?”,
by returning 1, if the answer is positive and 0, if it is not,

• a function that ensures a bit string contains a valid encoding – it should reach its
minimum when faced with a valid encoding and return higher values otherwise.

Both of those functions are necessary for implementing the objective function and the
constraints in most optimization problems. The specific objective and constraints
needed for workflow scheduling were described in the previous section.

5.1 One-Hot Encoding

One-hot encoding is commonly used in different areas of research, including statis-
tics, machine learning, or even digital circuits. It relies on the concept of dummy
variables. A dummy variable can take the value of 0 or 1, indicating the absence or
presence of some categorical quality. The example from Table 1 has been mapped
to one-hot encoding in Table 2. Each row can contain only a single 1 throughout
the five one-hot columns: Run on M0, Run on M0, Run on M0, Run on M0, and
Run on M0. For consistency, let us collapse those columns back into one, as shown
in Table 3. The placement of this single 1 indicates the category, i.e. the bit string
00001 can be translated to mean Run on M4. Any string that does not follow this
pattern, such as 00000 or 01011, does not correspond to any valid state.
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Task Run on M0 Run on M1 Run on M2 Run on M3 Run on M4

0 1 0 0 0 0
1 0 0 0 1 0
2 0 0 1 0 0
3 0 1 0 0 0

Table 2. An example of one-hot-encoded task-machine pairing

Task Machine Type

0 10000
1 00010
2 00100
3 01000

Table 3. An example of a one-hot encoded task-machine pairing, simplified

5.1.1 Bit String Interpretation

As mentioned at the beginning of this section, for every encoding we need to have
a way of telling if a given state represents a specific category. The interpretation
of one-hot-encoded strings is very straightforward. In order to evaluate if string s
represents the ith state, we simply have to look at the ith bit in s, that is

fone-hoti(s) = si. (12)

5.1.2 Bit String Feasibility

The second function needed for each encoding is used for penalizing invalid vectors.
The function should reach its minimum, typically equal to 0, when applied to valid
states, and otherwise it should return higher values. For one-hot encoding, this
function is defined as

gone-hot(s) =

(
1−

n∑
i

si

)2

(13)

where n is the number of states.

5.2 Binary Encoding

The idea behind binary encoding is very simple: each numerical category is encoded
as a binary string, as shown in Table 4.

5.2.1 Bit String Interpretation

Although binary encoding seems straightforward at first, its interpretation is much
harder than that of one-hot encoding. The function answering the question “Does
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Task Machine Type

0 010 = 0002
1 310 = 0112
2 210 = 0102
3 110 = 0012

Table 4. An example of a binary encoded task-machine mapping

this vector match the ith machine type?” assumes a different form for each value of
i. Its general form is defined as

fbinaryi(s) =
N∏
j

(
1−

(
sj − bi,Nj

)2)
(14)

where N = ⌈log2 n⌉ is the number of bits in s and bi,N is the N -bit binary-encoded
equivalent of i [10].

Considering our Run on M3 example again, this function would assume the form

fbinary310=0112
(s) =

(
1− (s0 − 0)2

) (
1− (s1 − 1)2

) (
1− (s2 − 1)2

)
, (15)

which can be simplified to

fbinary310=0112
(s) =

(
1− s20

) (
1−

(
s21 + 2− 2s1

)) (
1−

(
s22 + 2− 2s2

))
=
(
1− s20

) (
2s1 − s21

) (
2s2 − s2

2
)
. (16)

Since s0, s1, and s2 can only assume the values of 0 and 1, we can safely apply the
identity si = s2i and remove the squares, resulting in

fbinary310=0112
(s) = (1− s0)s1s2. (17)

It is easy to notice that each part of this product assumes the value of 0 if the
specific bit in vector s does not match the expected value, and otherwise it assumes
the value of 1. Therefore, the result of this function is 1 if every bit matches the
specific state and 0 if there is at least one bit that differs.

The functions for the remaining mappings from Table 4 are

fbinary010=0002
(s) = (1− s0)(1− s1)(1− s2),

fbinary110=0012
(s) = (1− s0)(1− s1)s2, (18)

fbinary210=0102
(s) = (1− s0)s1(1− s2).

5.2.2 Bit String Feasibility

A big advantage of binary encoding is that it is much denser than one-hot encoding.
If the number of feasible states n is equal to 2N , there are no states that are infeasible
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on the basis of encoding. Otherwise, if the number of states is not a power of two,
we need to include a clause penalizing such invalid states.

In order to write this function, we need to compare the bit string in question to
each of the infeasible states. In our example from Table 2, we established the five
possible values for the Machine type column. The number of bits needed for this
encoding is N = ⌈log2 n⌉, which in our specific example is equal to 3. Since 23 = 8,
there are three states that are not made use of: 101, 110, and 111.

In order to penalize one of those states, we have to take all of the infeasible con-
figurations specific to our problem, apply the formula established in Equation (14),
and sum the results, which formally is defined as

gbinary(s) =
∑
i∈W

fbinaryi(s) (19)

where W is a set containing the infeasible states. This function will return a 1 for
an infeasible state, and for any feasible state it will return a 0.

In our example, after applying the same simplifications as in Equation (17), this
function would assume the form

gbinary(s) = fbinary5(s) + fbinary6(s) + fbinary7(s)

= s0(1− s1)s2 + s0s1(1− s2) + s0s1s2. (20)

5.3 Domain Wall Encoding

Unlike the previous two encodings, which are derived from classical computer sci-
ence, domain wall encoding originates from physics [2]. Domain walls are an in-
terface that occurs between neighboring magnetic domains, in which the magnetic
moments of atoms gradually reorient themselves across a finite distance. In a do-
main wall encoded vector S, a wall occurs at index i if si−1 = 1 and si = 0. Since
this encoding derives meaning from pairs of neighboring bits rather than the bit
values directly, it allows for the saving of one bit. Therefore, in order to encode n
values, n − 1 bits are needed. Additionally, we consider two virtual sentinel bits
with fixed values: s−1 = 1 and sn = 0.

The example from Table 1 is translated to domain wall encoding in Table 5.
The two virtual sentinel bits are marked with a light gray color.

Task Machine Type

0 100000
1 111100
2 111000
3 110000

Table 5. An example of domain wall encoded task-machine pairing, note: the far-left and
far-right bits are constant
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5.3.1 Bit String Interpretation

In order to determine if a given state represents a specific machine type, we need to
calculate the difference of subsequent bits as defined in

fdomain-walli(s) =


1− s0, if i = 0,

si − si+1, if 0 < i < N − 2,

sN−1, if i = N − 1.

(21)

Looking at the example from Table 5, for Machine type 0, we would look at
the difference 1 − s0, whereas for Machine type 1 we would look at the difference
between s1 and s2. When this formula is used on a vector with only one domain wall,
it returns either a 1, indicating that the represented machine type does indeed match
the type in question, or a 0 if it does not. However, for a vector with more than
one domain wall (an invalid domain wall vector), Equation (21) might also return
the value of −1, which needs to be handled in a separate way, either by squaring
the value of fdomain-walli(s), or by excluding invalid vectors via another constraint or
a QAOA mixer.

5.3.2 Bit String Feasibility

The number of walls in a domain wall encoded vector has to be odd. In a valid
vector, there is exactly one wall. Therefore, to penalize invalid vectors, we can
simply count the number of walls, as defined in

gdomain-wall(s) = (1− s0)
2 +

N−1∑
i

(si − si+1)
2 + sN−1

2. (22)

For each encoding in Table 5, the above function would yield the value of 1
because there is only one domain wall, while for an infeasible solution, it would
yield a greater value, e.g. for the state 1010, the number of walls is equal to 3.

5.4 Encoding and Workflow Scheduling

In order to implement the encoding-dependent objective function defined in Equa-
tion (11), two things need to be done. Firstly, the one-dimensional state returned by
the quantum computer has to be translated into the X matrix from Equation (6).
This is done via the f function defined for each encoding in Equations (12), (14),
and (21) respectively. Similarly, the Y slack matrix also has to be unflattened. Sec-
ondly, as mentioned in Section 4.2.2, the encoding-dependent Oencoding(X) clause
is necessary to implement the full objective function. This formulation is directly
related to the g penalty function defined for each encoding in Equations (13), (19),
and (22) respectively – we simply need to apply this function to the encoding of each
task’s machine separately and sum the results. The specific implementations used in



Variational Quantum Algorithms for Workflow Scheduling 909

this paper are discussed in more detail in [21], along with the specific formulations
of the QAOA mixers that are briefly described in the next subsection.

5.5 QAOA Mixers

As described in Section 3, a QAOA circuit uses two operators: the cost operator
defined in Equation (1), which depends on the optimization objective and the encod-
ing, and the mixing operator defined in Equation (2). The idea behind the latter is
to preserve the feasible subspace and to provide transitions between configurations
that belong to this subspace.

The default mixing operator used in QAOA is the X mixer defined as

HX =
N∑
i

Xi (23)

where Xi is the Pauli X operator acting on the ith qubit. This operator acts as
a simple bit flip, allowing for transitions between any state and its neighbors [12].

Using the default QAOA mixer has its drawbacks, as this mixing strategy may
cause the system to appear in an incorrect state. Figure 3 a) presents the state
transitions performed by the X mixer originating from the valid state of 00100.
None of the states produced by this mixer is valid. This could be handled via
additional constrains or via post-processing, however, it can also be mitigated with
a dedicated mixer.

a) One-hot encoding with X mixer b) One-hot encoding with
XY mixer

c) Domain wall encoding with
dedicated mixer

Figure 3. State transitions depending on encoding and mixer, note: invalid states are
marked with red

5.5.1 One-Hot Encoding

For one-hot encoding, the feasible subspace is quite limited. The only feasible states
are the ones that include exactly a single 1. Instead of the default mixer, one-hot
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encoding is commonly used in combination with the dedicated XY mixer, defined
as

HXY =
N−1∑
i

(XiXi+1 + YiYi+1) (24)

where Xi and Yi are Pauli operators acting on the ith qubit [12, 31]. This operator
works similarly to the Swap gate – it turns the state |01⟩ into |10⟩ and vice versa,
while the states |00⟩ and |11⟩ remain unchanged. The state transitions performed
by this mixer can be seen in Figure 3 b). Unlike the graph in Figure 3 a), in this
case all of the resulting states are valid.

5.5.2 Domain Wall Encoding

In a valid domain wall vector, there is exactly one wall. The dedicated mixer for
domain wall encoding proposed by Chanellor [2] relies on this concept – given a valid
state with exactly one wall, the mixer will only travel to states that are created by
moving the wall by one bit in either direction. The mixer is defined as

Hmixerdomain wall
=

N−1∑
i

(Zi−1 Xi −Xi Zi+1). (25)

This mixer flips the ith qubit only when it is in direct neighborhood of a domain
wall, i.e. if the values of the qubits at indices i− 1 and i+1 are different, otherwise
it does not introduce any change to the qubit. The mechanism is presented in
Figure 3 c).

6 EXPERIMENT DESIGN

In this section, we discuss the design of our experiments. Firstly, we focus on
the various experiment parameters, including the chosen algorithms and classical
optimizers, the method used for initial point selection, and the selected QUBO
(Quadratic Unconstrained Binary Optimization) parameters. We conclude the sec-
tion by introducing the specific instances of workflow scheduling that will be used
in our experiments.

6.1 Optimization Algorithms

In previous works focusing on quantum workflow scheduling, the main focus has
been VQE [26]. We chose to also consider QAOA. The inclusion of QAOA opens up
the door for including custom mixers in our computations. This lead us to arrive at
the following combinations:

• QAOA with different mixers:

– the default X mixer and encodings:
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∗ one-hot,
∗ domain wall,
∗ binary,

– a custom encoding-dependent mixer and encodings:

∗ one-hot (XY mixer),
∗ domain wall (domain wall mixer),

• VQE with encodings:

– one-hot,

– domain wall,

– binary.

6.2 Classical Optimizers

Although Qiskit offers numerous classical optimizers2, previous research on workflow
scheduling has focused on a single optimizer, specifically Spsa [26]. We chose to
compare a few different optimizers to see whether any of them are preferable. The
following optimizers were taken into account:

• Cobyla, gradient-free [22, 23, 24],

• Powell, gradient-free [25],

• Nelder-Mead, gradient-free [16],

• L-Bfgs-B, gradient-based [32].

Our choice of optimizers was backed by findings from literature, as well as per-
sonal experience. Cobyla and L-Bfgs-B have been found to be fast even in noisy
environments [14]. Research also suggests that Spsa, Powell, and L-Bfgs-B are
all effective even in noisy environments, while Cobyla and Nelder-Mead were
found to handle noise worse [19]. Spsa was excluded from these tests due to its run
time being very long.

6.3 Initial Point Selection

The importance of the initial point is an issue overlooked in literature and in previous
research. We considered two approaches here: we could either look for a single point
that renders the best result, or we could repeat the experiment enough times to be
able to disregard the influence of randomization on our results. The first approach
did not seem to be a good choice for two reasons. Firstly, finding a good initial point
is a tedious and partly manual process. Secondly, reporting on a single best result
is not fully honest and realistic. This point cannot be reused for other problems,

2 https://qiskit.org/documentation/apidoc/qiskit.aqua.components.

optimizers.html

https://qiskit.org/documentation/apidoc/qiskit.aqua.components.optimizers.html
https://qiskit.org/documentation/apidoc/qiskit.aqua.components.optimizers.html
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and it does not reflect on the quality of the solution, since it is the result of reverse
engineering.

6.3.1 Reusing Initial Points

While there is no indication that these initial points can be reused as the size of the
problem grows, or that they are universally efficient regardless of the chosen classical
optimizer, there is a way these values can be reused to improve one’s results. The
basic idea for both QAOA and VQE is that we can make more informed guesses
for the initial point as the depth of the circuit grows. This approach is most often
discussed for QAOA and its parameter p [10], however, it has also been suggested
that it could be an efficient way to improve the results of VQE as the number of
repetitions increases.

6.4 Initial State

The initial state is another parameter passed to QAOA. By default, the initial state
is a superposition of all possible configurations, however, often it is preferable to
replace that with a custom vector. Most notably, when custom QAOA mixers are
used, it is necessary to pass the superposition of all the feasible states. This way, the
mixer can remain in the feasible subspace and only consider valid vectors. In our
case, this superposition contained all the correctly encoded machine combinations
with every possible slack variable value.

6.5 QUBO Parameter Selection

The definition of workflow scheduling from Equation (11) includes three clauses.
The first clause is the objective function, and the other two include penalties. Each
clause has its respective weight, and by manipulating these weights we can alter the
ordering of the energies of the possible configurations. This ordering has to follow
two main principles:

• the optimal solution has to have the lowest energy,

• the energy of each correct solution has to be lower than that of an incorrect
solution.

While these two principles generate a valid ordering, there are additional tweaks
that can be implemented. Before we discuss them, let us define the following mutu-
ally exclusive types of solutions to the workflow scheduling problem:

• the optimal solution – a solution that represents a valid mapping which fits
within the deadline and has the lowest possible cost,

• a correct solution – a solution that represents a valid mapping and fits within
the deadline (note: this metric does not include the optimal solution),
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• a semi-optimal solution – a solution identical to the optimal solution, but with
an invalid slack configuration,

• a semi-correct solution – a solution identical to some correct solution, but with
an invalid slack configuration,

• an incorrect solution – a solution that is not optimal, correct, semi-optimal,
or semi-correct, meaning it either corresponds to an invalid configuration or it
exceeds the deadline.

These metrics were specifically designed to add up to the number of total solu-
tions (100%) returned from the experiment. The reason for highlighting these semi-
solutions is that they cannot really be considered to be correct, since their energies
includes a penalty for a seemingly exceeded deadline. The deadline is not actually
exceeded, as it is just the slacks that give this impression, but the algorithm has no
way of distinguishing between them. While the semi- solutions are not really de-
sired, they are still preferable to incorrect solutions – a semi- solution corresponds
to an actual correct configuration, so from a practical perspective it is quite sensible.

In a perfect setting, we would want the optimal and semi-optimal solutions to
have the lowest energies, followed by correct and semi-correct solutions. The energies
of incorrect solutions should be higher, preferably with feasible configurations having
energies lower than infeasible solutions. This ordering is presented in Figure 4.

Figure 4. A one-dimensional visualization of the ideal ordering of solution energies

However, this ideal ordering is not possible due to the penalties affecting the
semi- solutions, which make it impossible to distinguish between solutions that
exceed the deadline and solutions that are semi-correct or semi-optimal. Therefore,
we initially settled on an approach that shall be referred to as the naive ordering,
in which we do guarantee that the energies of optimal and correct solutions are the
lowest, however, all other solutions remain mixed with each other. This ordering is
shown in Figure 5.
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Figure 5. A one-dimensional visualization of the naive ordering of solution energies

Eventually, we tried further manipulating the A, B, C weights from Equa-
tion (11) to increase the gap between the correct solutions and the rest, but this was
not particularly effective. Finally, we settled on an ordering, which will be referred
to as the feasibility-jump ordering. This ordering guarantees the lowest energies for
optimal and correct solutions and the highest energies for incorrect and infeasible
solutions. In the middle, we have a mix of semi- solutions as well as incorrect feasible
solutions. This ordering is illustrated in Figure 6.

Figure 6. A one-dimensional visualization of the feasibility jump ordering of solution en-
ergies

This ordering was possible due to the feasibility constraint from Equation (11)
having a separate weight, C. By sending those infeasible configurations away from
the rest, we found some improvement in the results. In Section 7 we will discuss the
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results for one-hot encoding for two sets of weights implementing the naive ordering
and the feasibility-jump ordering.

6.6 Result Evaluation Metrics

Different metrics can be used for evaluating the obtained results. A good metric is
necessary not only for assessing the quality of a solution, but also when using the
p-reusing trick described in Section 6.3. In this method, one needs to select the best
solution for a specific p and then the optimal point of this solution is used as the
initial point for p+ 1.

The following metrics were taken into consideration:

• the number of correct/optimal/feasible solutions,

• the average energy between all solutions,

• the energy of the most frequent solution,

• the highest energy from among the found solutions,

• the lowest energy from among the found solutions.

Finally, we settled on the “average energy between all solution” approach, al-
though this metric is certainly not perfect, as the standard deviation also appears
to affect the results tremendously.

6.7 Considered Workflows

Three different workflows were considered: a single small problem to be tested
against each encoding, and two large problems designed to test the capabilities of
the two denser encodings.

The small problem consists of three machines and three tasks. Its DAG is shown
in Figure 7 a). This problem required 13 qubits for one-hot encoding and 10 qubits
for binary and domain wall encoding.

Two larger problems were used for tests of binary encoding and domain wall
encoding. Both problems consisted of 4 tasks and both used the same DAG (shown
in Figure 7 b)), however, each used a different number of machines and different cost
and time matrices. The problem used to test binary encoding consisted of 4 tasks
and 4 machines. It required 7 slack variables and 15 qubits overall. The problem
used for domain encoding was slightly smaller due to the encoding being less dense –
it contained 3 machines instead of 4. The number of slack variables needed for this
problem instance was 6 and the total number of qubits was 14.

The full definitions of all three problem instances can be found in [21].
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a) Smaller b) Larger

Figure 7. Solved problems

6.8 Implementation and Hardware

In our implementation, we used the open-source SDK for working with quantum
computers, Qiskit3. The most important components used in this work were the
implementations of VQE and QAOA, as well as those of the classical optimizers
described in Section 6.2. To run the code, we used Qiskit’s quantum simulation
feature and in some cases we also relied on their quantum computer noise mod-
els.

Our implementation involved modelling the QUBO formulation of the considered
problem in each of the three encodings. The Qiskit implementations of VQE and
QAOA both accept the Ising Hamiltonian form of the optimized problem, therefore
it was necessary for us to transform the QUBO formulation into an Ising Hamilto-
nian. Qiskit provides such a functionality, but only for functions of order that is at
most quadratic, and since our implementation for binary and domain wall encoding
required objective functions of higher orders (as can be seen in Section 5), we im-
plemented our own small library for transforming QUBO’s into Ising Hamiltonians.
Furthermore, the QAOA mixing operators for one-hot and domain wall encoding
were also implemented on our own.

The experiments were conducted on the Prometheus supercomputer4 (the HP
Apollo 8000 platform) at the Academic Computer Centre Cyfronet AGH with
the usage of the PLGrid infrastructure.

3 https://qiskit.org
4 https://www.cyfronet.pl/en/computers/15226,artykul,prometheus.html

https://qiskit.org
https://www.cyfronet.pl/en/computers/15226,artykul,prometheus.html
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7 EVALUATION OF THE RESULTS

In this section, we describe the results obtained from the experiments described pre-
viously. For each of the three encodings, the QAOA and VQE algorithms were both
tested. In addition, for the encodings with a dedicated mixer available, QAOA was
tested with a custom and a default mixer separately. In our case, only binary encod-
ing did not have a custom mixer, which means that we tested eight combinations of
encodings and algorithms. Then, for each such pair, we tested four different optimiz-
ers, and for each encoding-algorithm-optimizer triple, we repeated the experiment
with the p/reps parameters ranging from 1 to 3.

Therefore, for the smaller problem instance we ran 8·4·3 = 96 experiments, while
for the larger problem, since one-hot encoding was omitted, we ran 5 · 4 · 3 = 60
experiments. Each experiment was repeated 1000 times to get the most reliable
averages. Additionally, it is worth mentioning that every repetition measures the
quantum circuit 1024 times, which is defined via the shots 5 parameter.

7.1 Smaller Problem

The smaller problem instance can be seen in Figure 7 a).

7.1.1 QAOA

In order to make the encoding comparison plots easier to read, the QAOA algorithm
is compared in separate plots (Figure 8), regardless of the mixer used, and the
VQE algorithm is compared in separate plots (Figure 9). The results obtained
using the same optimizer are labelled with one color. For each optimizer used with
a given encoding, there is only a single box plot drawn, as the results for all p/reps
parameters are merged together. Sample outliers were also removed to make the
plots more readable.

The performance of the QAOA algorithm for various encodings is shown in
Figure 8. The percentage of optimal solutions was not used here, as it was not
satisfactory, and it is easier to draw conclusions from the other solution metrics.
The analysis of correct solution percentages was also not presented, as it did not
provide any additional valuable information.

When comparing both the incorrect and the feasible solution percentages for
QAOA with a default mixer, it can be concluded that one-hot encoding – which
is the most popular encoding used in literature for solving optimization
problems – performed the worst out of the three possible encodings.
The newly proposed domain wall encoding and the well-known, yet less popular,
binary encoding performed significantly better, e.g. for the Cobyla optimizer, the
percentage of feasible solutions increased around 10 times when compared to one-
hot encoding. The difference between the performance of domain wall and binary
encoding used with a default mixer was not as significant.

5 https://qiskit.org/documentation/apidoc/execute.html

https://qiskit.org/documentation/apidoc/execute.html
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Applying a custom mixer to the QAOA algorithm resulted in signifi-
cantly decreasing the percentage of incorrect solutions. In this variant, the
performance of one-hot encoding and domain wall encoding is comparable, so it can
be concluded that one-hot encoding should be always used with a custom mixer, as
it uses the largest number of qubits out of the three compared encodings, and there-
fore it has many infeasible states. What is worth noting, is that, when used with
custom mixers, both one-hot and domain wall encoding outperformed
binary encoding.

The most important conclusion that can be drawn from analyzing the percentage
of feasible solutions is that the custom mixer implemented in the problem actually
worked and therefore, when used, all the results are feasible.

7.1.2 VQE

The incorrect solution percentages and correct solution percentages, as obtained
by the VQE algorithm using different encodings are presented in Figure 9. When
considering the performance of VQE, it can be again seen that one-hot encoding
performed the worst, while domain wall and binary encoding both performed bet-
ter. The biggest difference between the two can be seen for the Nelder-Mead
optimizer, for which the median of incorrect solution percentages decreased from
around 95% to around 50% for domain wall encoding, and even to around 30% for
binary encoding.

An incorrect solution percentage analysis can lead to a conclusion that domain
wall and binary encoding performed similarly, however, when comparing the correct
solution percentages, it turns out that binary encoding performed better. For each of
the four optimizers, the median of correct solution percentages for binary encoding
was higher than for domain wall encoding. The biggest difference can be seen for
the Powell optimizer, for which the percentage of correct solutions raised from
around 7% to 12%.

To sum up the results for the smaller problem instance, for QAOA it is domain
wall encoding with a custom mixer and the Powell optimizer that performed the
best – with a median of incorrect solutions at around 5% and a median of correct
solutions at around 7%. Notably, one-hot encoding with a custom mixer performed
only slightly worse. For VQE, it was definitely binary encoding with the Powell
optimizer that performed the best – with the median of incorrect solutions at around
0% and the median of correct solutions at around 12%. Thus, it can be observed
that the VQE algorithm performed better than QAOA and that applying
a custom mixer for a specific encoding in QAOA yields better results.

7.2 Larger Problem

The larger problem instance can be seen in Figure 7 b). It was designed to fit on the
publicly available 15-qubit Ibmq 16 Melbourne machine. For one-hot encoding,
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b) Feasible solutions

Figure 8. Smaller problem instance: An incorrect and feasible solution comparison be-
tween the three encodings with QAOA
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one-hot domain
wall

binary one-hot domain
wall

binary one-hot domain
wall

binary one-hot domain
wall

binary

encoding

0

20

40

60

80

100

pe
rc

en
ta

ge
 o

f i
nc

or
re

ct
 so

lu
tio

ns
 [%

]
COBYLA L-BFGS-B NELDER-MEAD POWELL

a) Incorrect solutions

one-hot domain
wall

binary one-hot domain
wall

binary one-hot domain
wall

binary one-hot domain
wall

binary

encoding

0

10

20

30

40

50

pe
rc

en
ta

ge
 o

f c
or

re
ct

 so
lu

tio
ns

 [%
]

COBYLA L-BFGS-B NELDER-MEAD POWELL

b) Correct solutions

Figure 9. Smaller problem instance: An incorrect and correct solution comparison be-
tween the three encodings with VQE
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it was impossible to design a larger problem instance, since the small problem already
occupied 13 qubits.

7.2.1 QAOA

A comparison of incorrect solution percentages for QAOA with both the default and
the custom mixer with binary and domain wall encoding is presented in Figure 10 a).
The first thing to notice is that for QAOA with a default mixer in every case it was
binary encoding that performed better, e.g. for L-Bfgs-B the median percentage
of incorrect solutions dropped by about 10%.

Next, it can be seen that using a custom mixer for QAOA with domain
wall encoding significantly improved the results. For example, for the Pow-
ell optimizer, the median of incorrect solutions decreased by about 35% when
compared to binary encoding. The same relationship can be observed for all the
optimizers used. Compared to the smaller problem, the larger problem produced
worse results, which is because the problem itself uses a large number of qubits and
is therefore more difficult to solve.

7.2.2 VQE

The results obtained by VQE are presented in Figure 10 b). Most importantly, VQE
resulted in fewer incorrect solutions than QAOA (regardless of the mixer used) for
the Cobyla and Powell optimizers. This confirms a similar conclusion made in
the previous section that VQE is strongly optimizer-dependent, as the L-

Bfgs-B and Nelder-Mead optimizers performed worse than in QAOA,
which clearly implies that they are not sufficient for VQE.

Comparing the performance of binary and domain wall encoding with the VQE
algorithm, we find that for the Cobyla, L-Bfgs-B, and Nelder-Mead optimiz-
ers, binary encoding produced fewer incorrect solutions (see Figure 10 b)), while the
opposite is true for the Powell optimizer. It is noteworthy that for Cobyla and
Powell, the results span across the 0%–100% range.

To conclude, for the larger problem instance, the VQE algorithm with binary
encoding and Cobyla optimizer obtained the highest number of correct solutions
(median of 0.3%) and at the same time the lowest number of incorrect solutions
(median of 40%). An analysis of correct solution percentages – the corresponding
graphs of which can be found in [21] – leads us to believe that QAOA with a cus-
tom mixer obtained a similar number of correct solutions for domain wall encoding,
however, VQE performed better in terms of the number of incorrect solutions. Nev-
ertheless, this conclusion could indicate that QAOA may have more potential
in larger, more real-world problems.
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Figure 10. Larger problem instance: An incorrect solution comparison between the two
encodings and two algorithms
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7.3 Objective Function Weight Selection

As mentioned in previous section, we considered two variants of energy ordering: the
naive ordering and the feasibility jump ordering. In the previous parts of this section,
we presented the results for the latter, as we found that this ordering typically
produced better results. This difference was most prominent when considering VQE.

A comparison of incorrect solution percentages between the two orderings for
one-hot encoding can be seen in Figure 11. It can be observed that the feasibil-
ity jump ordering resulted in a significant decrease of incorrect results,
especially when considering Cobyla and Powell.

COBYLA L-BFGS-B NELDER-MEAD POWELL COBYLA L-BFGS-B NELDER-MEAD POWELL
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Figure 11. The difference in incorrect solution percentages for different orderings with
one-hot encoding and VQE algorithm for the smaller problem instance

8 CONCLUSIONS AND FUTURE WORK

In today’s quantum computing, we are limited to noisy near-term quantum devices
with a relatively small number of qubits. Although the true potential of quantum
computing has not yet been reached, many researchers focus on trying to improve
the existing algorithms and methods, in order to prepare for the hardware of the
future.

8.1 Achieved Goals and Observations

The goal of this paper was to research various methods of improving the existing
solutions of workflow scheduling. Additionally, we also wanted to compare different
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problem representations with the hope that they would allow us to solve larger
problems.

8.1.1 General Findings

While working on this paper and designing our experiments, we made many general
observations. They are as follows:

• Using encoding methods alternative to one-hot encoding allows for encoding
larger problems.

• The inclusion of slack variables severely complicates the objective function and
leads to the introduction of semi-correct and semi-optimal states. Those states
are very hard for the optimizer to handle, because they are penalized in the
same way as states that break the time constraint. Additionally, the number of
possible configurations increases majorly when slack variables are introduced,
meaning for each valid state there are several versions of it that are penalized.
With such numerous configurations, it becomes harder and harder to get to the
optimal solution.

• Denser encodings, such as binary encoding, limit the number of infeasible con-
figurations, which in some cases can lead to better results. In some specific
situations, binary encoding can even limit the number of infeasible configura-
tions to zero.

• Selecting good weights for the objective function and constraints is crucial. In-
troducing energy jumps between feasible and infeasible states leads to an im-
provement in the results.

• The inclusion of QAOA mixers allows the algorithm to disregard infeasible con-
figurations, which in turn leads to an improvement of the simulation results.
However, in our experiments, the noisy simulation results were not as satisfac-
tory, which might suggest that the additional noise generated by the inclusion
of a custom mixer might counteract any real benefits of the mixer [21].

8.1.2 Problem-Specific Findings

In Section 7, we presented our results in detail and discussed their importance.
Those observations can be summarized as follows:

• For the problems solved in the paper, it was the VQE algorithm that performed
better, but for the bigger problem instance the difference between VQE and
QAOA is not as significant. This may suggest that QAOA has more potential
for larger problem instances.

• Increasing the p parameter used by QAOA usually improved the results only
when it was increased to 2. When increased to 3, the results deteriorated. For
VQE, any increase in the reps parameter resulted in worse results. This trend
was observed for both smaller and larger instances of the problem. Although it is
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not presented in this paper, we also made attempts to increase these parameters
further, however, we were not able to improve our results.

• The VQE algorithm is highly dependent on the chosen classical subroutine, and
the best results were obtained when the Cobyla or Powell optimizers were
used. For QAOA there are no such discrepancies between optimizers.

• The use of custom mixers allowed us to reduce the complexity of the objective
function (see Section 5.5). This performed well as a perfect simulation, however,
with the inclusion of noise, there were no real benefits from the mixer.

8.2 Future Work

In this work, we focused on exploring several aspects of quantum optimization, but
there are still many other approaches that could be tested.

Firstly, we believe that the inclusion of slack variables is worth reexamining,
since those variables increase the complexity of the circuit and the number of qubits.
Other methods of encoding inequality constrains should be considered, such as the
Alternating Direction Method of Multipliers, based on augmented Lagrangians [9].

Another interesting direction for further research would be in finding better
ways of determining the weights used for the objective and the constraints. As
shown in Section 7, modifying those weights influences the results visibly, therefore
some specific paradigm for choosing good weights should be established.

Thirdly, since we did not observe any noticeable improvement in the results
of QAOA after increasing the p parameter, we believe that this method should be
explored further. In this paper, we only included the results for low values of p,
however, we initially also conducted experiments for much larger values and those
experiments did not return promising results. Other researchers report noticeable
improvements for growing values of p [10], which leads us to believe that our method-
ology might be worth reevaluating. A good starting point might be to reconsider
the metric used for selecting the best angles from a number of runs. Some ideas for
different metrics were discussed in Section 6.6. In this paper, we chose to focus on
the lowest average energy metric, however, it is likely that other metrics would per-
form better. Similarly, we experimented with modifying the reps parameter passed
to VQE, and we did not observe any clear correlation between this value and the
quality of the results.

While our research focused mainly on improving the results obtained on a sim-
ulator, in the future it will be necessary to guarantee reasonable results on a real
quantum computer as well. The first step in this exploration is the inclusion of
artificial noise models which serve as an indication of how a specific implementation
might perform under decoherence. Some of the techniques tackled in this paper
seemed to perform well as a perfect noiseless simulation, however, the inclusion of
noise severely affected the results. It would be particularly valuable to reexamine
the performance of QAOA mixers to evaluate if their performance outweighs the
potential implementation cost. Ultimately, in order to minimize the influence of
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decoherence on a real quantum computer, it would be a good idea to explore some
error mitigation techniques [5].
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