
Computing and Informatics, Vol. 40, 2021, 930–956, doi: 10.31577/cai 2021 4 930

CURRENT TRENDS IN SOFTWARE ENGINEERING
BACHELOR THESES

Jacek Dajda, Micha l Idzik, Jakub Sroka, Miko laj Sikora
Wiktor Paw lowski, Maciej Smo lka, Przemys law Jab lecki

Filip Ślazyk, Maciej Malawski, Emilia Majerz
Aleksandra Pasternak, Witold Dzwinel

Institute of Computer Science
AGH University of Science and Technology
Al. Mickiewicza 30, 30-059 Kraków
e-mail: {dajda, miidzik, smolka, malawski, dzwinel}@agh.edu.pl,

{jakubsr, mikolajsi, pawlowski, jablecki, slazyk, majerz,

pasternak}@student.agh.edu.pl

Wojciech Kania, Bogumi la Hnatkowska, Wojciech Thomas

The Department of Applied Informatics
Wroclaw University of Science and Technology
27 Wybrzeże Wyspiańskiego st., 50-370 Wroc law
e-mail: wojciech.kania@zoho.com, {bogumila.hnatkowska,

wojciech.thomas}@pwr.edu.pl

Joanna Świebocka-Wiȩk

The Department of Applied Informatics, Jagiellonian University
ul. Go lȩbia 24, 31-007 Kraków
e-mail: joanna.swiebocka-wiek@uj.edu.pl

Andrzej Paszkiewicz

Rzeszów University of Technology
Al. Powstańców Warszawy 12, 35-959 Rzeszów
e-mail: andrzejp@prz.edu.pl

https://doi.org/10.31577/cai_2021_4_930

Current Trends in Software Engineering Bachelor Theses 931

Abstract. This article presents short analysis and observations on current trends
and directions in conducting engineering theses in the field of computer science. This
report is based on collected bachelor theses in AGH Computer Science Department
for academic year 2020/2021 as well as the conducted competition for the best
engineering theses held during XXII KKIO 2021 Software Engineering Conference.
The awarded works are briefly presented as an illustration to the drawn conclusions.

Keywords: Software engineering, bachelor thesis, tools and solutions, analysis

1 INTRODUCTION

Every year all around the globe thousands of students graduate from their univer-
sities and join the software development community. What is more, the majority of
the graduates already work during their studies gaining professional experience and
acquiring academic knowledge at the same time. This mixture of youth, ideas and
some professional experience results in new inspirations and trends in the commu-
nity which turn into new start-ups, popular frameworks or developer tools. Having
said that, it seems valuable to spend some time and inspect the topics and standards
of the bachelor theses in the area of Computer Science.

Bachelor theses are meant to prove students skills and readiness for the profes-
sional job market. Usually, they have a form of one-year software projects realized by
single or more graduates (maximum 4) who form small teams. This report is based
on bachelor theses in the Computer Science Department in the University of Science
and Technology for the academic year 2020/2021 and the conducted competition for
the best engineering theses held during XXII KKIO 2021 Software Engineering Con-
ference. In total 66 final projects were analyzed in terms of teams sizes, types of
topics and best diploma theses.

This paper is structured as follows. First, the general data and analysis results
are presented. Afterwards, there come short summaries of the best diploma theses.
Finally, the conclusion tries to summarize the current trends, explain them and
forecast the near future in terms of student academic projects.

1.1 Team Size

Figure 1 shows the variations in team sizes in numbers. Most projects were realized
by teams consisting of 2 or 3 graduates. This can be interpreted as a good balance
between the formal graduation procedures and the concept of simulating professional
team environment.

Obviously, the team size is influenced by many factors, but it seems that small
teams are supposed to address more ambitious subjects and deliver more mature
results.

932 J. Dajda, M. Idzik, J. Sroka, M. Sikora et al.

1 student 2 students 3 students 4 students

5

10

15

20

25

30

Figure 1. Size of bachelor project teams

1.2 Thesis Characteristics

There are different types and themes of bachelor projects in computer science. Some
projects aim at creating functional and usable software products which are not
innovative in terms of technology or architecture. Other types of projects focus
on solving difficult problems and require a considerable amount of research and
an innovative approach. Another interesting aspect is whether a project requires
design and implementation of some sophisticated or non-standard algorithms. The
utilization of neural networks and machine learning algorithms is another important
factor, especially in the context of bachelor projects.

Every project is different and has its unique goals and characteristics. As
a result, projects can be often assigned to multiple factors which are described
above. For example, a project can result in a usable software product and uti-
lize neural networks in its core functionality. There are also projects that require
research and prototyping to solve the posed problem and deliver the final prod-
uct.

Figure 2 shows characteristics of 66 final bachelor projects having considered
the following aspects:

Research. Project requires a considerable amount of research before specification
and implementation could be started.

Product. The main goal and final result of the project is well defined, usable and
delivered software product.

Algorithms. The project requires design, realization and validation of dedicated
sophisticated algorithms.

Current Trends in Software Engineering Bachelor Theses 933

Machine Learning. The project requires utilization (which does not mean their
design) of machine learning algorithms which can be achieved by applying proper
software libraries delivered by other parties.

research product algorithms machine learning

10

20

30

40

50

60

Figure 2. Bachelor projects characteristics

The first observation is that most of the bachelor theses resulted in delivering
software products. However, it can be noticed that around 25 % of projects required
a considerable amount of research. In some cases, the development of dedicated
algorithms was the main goal of the thesis, in opposition to the standard product-
based approach. It can be observed that almost 40 % of projects required solving
problems by designing proper algorithms.

The following conclusions can be made:

• Majority of the projects have strictly engineering theme focusing on building
well designed technological software products.

• Considerable number of projects focus on solving given problems leaving tech-
nological aspects as secondary.

• One-quarter of projects manifest scientific nature usually including aspects of
machine learning and neural networks methods applied to solving specific prob-
lems.

1.3 Best Works

The organized competition for the best engineering theses held during XXII KKIO
2021 Software Engineering Conference awarded the following 4 diploma theses:

934 J. Dajda, M. Idzik, J. Sroka, M. Sikora et al.

• Wojciech Kania: ”Intuitive sound processing application”, Supervisor: Bogumi-
 la Hnatkowska;

• Miko laj Sikora, Wiktor Paw lowski and Jakub Sroka: ”Rule-based system for
solving functional harmony exercises”, Supervisor: Maciej Smo lka;

• Filip Ślazyk and Przemys law Jab lecki: ”A tool for comparison and integration
of feature selection algorithms for modeling of response to targeted therapy for
patients with hairy cell leukemia”, Supervisor: Maciej Malawski;

• Emilia Majerz and Aleksandra Pasternak: ”System for analyzing damage to the
surface of aircraft structures using convolutional neural networks”, Supervisor:
Witold Dzwinel.

Submitted diploma theses were evaluated against the following criteria:

• Topic originality and method of its implementation. This criterion eval-
uated work innovative approach in the context of existing solutions, possibilities
of practical application, the undertaken approach to the identified problem and
its implementation.

• Throughout quality. This criterion evaluated the quality of the work per-
ceived in multiple dimensions such as maturity of final results, comprehensibil-
ity and clarity of the thesis, completeness in terms of information contained,
editorial level.

• Closeness with Software Engineering research discipline. This criterion
evaluated references to Software Engineering discipline such as software quality
assessment tools, tools supporting automatic testing, communication or source
code implementation and others of a similar kind.

All awarded works delivered usable tools which solve quite specific needs: from
sound processing on mobile devices to identification of corrosion on the surface of
aircraft elements. None of the works referred to a trivial problem nor application
Majority of works required a considerable amount of research and specific domain
knowledge to be obtained before designing and implementation of the final solution.

In the following sections, the four highlighted works are shortly presented. Each
work is described in the same scheme and includes the following key aspects as
a problem description, solution concept and scope, method and implementation,
project results, conclusions and future work.

2 INTUITIVE SOUND PROCESSING APPLICATION

Raising popularity of mobile devices has created the need for software capable of pro-
cessing creative content. The showcased engineering thesis, titled “Intuitive sound
processing application”, is focused on the design and implementation of a user-
friendly tool for editing audio on smartphones.

Current Trends in Software Engineering Bachelor Theses 935

2.1 Problem Description

Sound processing applications for a very long time were firmly rooted in the desk-
top market, as only computers could operate on quantities of data required in these
processes. That is no longer the case – implementing easy to use, reliable and effi-
cient solution for audio edition in a mobile environment is an interesting challenge,
considering different hardware possibilities of smartphones, and the specifics of their
operating systems. This thesis focused on the Android operating system. The prob-
lems faced during the design and implementation phases can be generally divided
into performance and usability related.

While talking about performance, it is difficult not to mention several design
decisions that were taken by the operating system creator. Android differentiates
the main thread, which operates the GUI and is essential for the application per-
formance, and worker threads, as described in the platform’s documentation [1].
Complicated tasks reserving access to slow resources or performing lengthy opera-
tions should be given to the worker threads. The second highlight is the operating
memory restriction policy, which prevents applications being run on the device from
hogging too much resources. This restriction was the most most troubling in this
context. To put it into perspective, raw numerical data read from a 10 minutes long
audio file with standard quality (Audio CD standard, IEC 60 908 [3]) can take up
about 100 MB of operating memory. The device used for development purposes had
6 GB of RAM installed, which corresponded to imposed limit of roughly 512 MB –
after crossing this threshold, the application was automatically closed. Problems
such as these were uniformly well addressed by the existing solutions – multiple op-
timizations, such as partial loading and samples grouping, were introduced by their
authors to elevate the UI responsiveness – similar conclusions can be drawn when
the speed of applying built-in audio effects and transformations is being considered.

Second category of problems originates among others from naively transforming
the solutions known from the desktop environment into mobile devices, with little
thought put into assessing their differences and adjusting the design accordingly.
In some of the existing solutions, one can often observe complex menu hierarchies,
important views and controls rendered too small due to screen size differences, as
well as unnecessary complex sequences of user actions leading to frequently used
functionalities. Such design flaws can be intimidating to the user, who after the first
bad impression can uninstall the software. Finally, lack of physical keyboard can be
seen as an important disadvantage in the context of media edition, as it removes the
capabilities to create key bindings for core operations. There is also another aspect
of usability – the included range of functionalities, closely related with the audio
transformations that made it to the final release.

2.2 Solution Concept and Scope

The main goal was to achieve the possibility of manipulating a single- or dual-channel
audio track, with support for cutting, moving and inserting audio fragments, as well

936 J. Dajda, M. Idzik, J. Sroka, M. Sikora et al.

as sound edition via included audio effects implementations. The user should be
able to load and save external data in a few popular audio formats, both lossy
and lossless, as well as record, save and edit signal without exiting the application.
User actions should be performed by simple interaction with intuitive user interface
controls, or usage of supported touch gestures. By the end of development, the
application was ready to be used as a personal voice recordings creator and a simple
universal audio content editor.

The general concepts applied to minimize the impact of performance restraints
were simple in nature. Used mechanisms were already provided by the programming
language used. One of the dangers to look out for, with the background of memory
efficiency, is extensive garbage collection. Multiple garbage collector invocations
can slow down the application execution, as the operating system uses the main
thread to operate it. The key in resolving this problem is avoiding dynamic memory
reallocation, which includes pre-initialization of the collections used for numeric data
storage to an extent supported by the user’s device. Additionally, avoiding built-in
primitive types boxing as well as using arrays as means of data transport were crucial
to the software creation and usability. As stated by Marcin Moskala in his book,
“Effective Kotlin” [2], the boxed numeric types used in collection can increase the
usage of memory up to 5 times, and slow down an exemplary operation of mean
calculation by up to 25 %. Faster copying of data from or to arrays is supported
natively in most cases, arrays of primitive types also consume much less space than
dynamically expandable collections, such as lists or sets.

As stated previously, one can often see user interfaces unaccustomed to the mo-
bile environment. The author tried to avoid such mistakes, simplifying the control
flow, views and controls in the key areas. The most important control – signal
waveform – was highlighted and enlarged, occupying most of the screen space, ad-
ditionally quick access was provided to the key functionalities, such as the undo
or audio fragment insertion buttons. As for the means of control, touch gestures
support with appropriate introduction should be considered crucial in the author’s
opinion, for in many contexts they can perform the same roles as key bindings
known from the desktop software. In created software, the touch gestures are able
not only to scale the UI fragments, as also supported by other existing solutions,
but also to move and delete audio fragments across the rendered audio track and
even edit parameters of basic effects, such as amplitude control. In terms of imple-
mented transformations, the final release included Echo, Chorus, Distortion, Reverb,
periodic Panning and basic gain control.

2.3 Method and Implementation

Architecture of presented solution was divided into three layers, the Data Access
Layer responsible for the IO operations, the Services Layer which contained the
mechanisms responsible for main features of the application, and the Presentation
Layer, itself structured according to MVP pattern, which implemented the model
and generated the view of data as seen by the user.

Current Trends in Software Engineering Bachelor Theses 937

The application was designed with modularity in mind – the goal was to enable
easy addition of new audio transformations. A programmer could easily add Audio
Effects, as well as Audio Generators to the application sources, as they exposed
a common public interface. The previous was used to edit the already existing
audio, the latter to insert new audio fragments generated in-app on demand. All
the supported operations influencing the source data were described by the Audio
Transaction interface. They were managed by the Transaction Manager mechanism,
responsible for maintaining the log of operations, reversing them on demand, as
well as keeping a reference to the Cache Manager, which could create temporary
files with snapshots of audio fragments as needed. Finally, default interfaces of
communication between the mentioned services were implemented – they operated
using buffering, partially loading the requested data into arrays of fixed sizes. These
interfaces included Audio Sources as well as Audio Destinations, being respectively
on the supplying and consuming ends of the communication, as well as a helper
interface Audio Middleman, implementations of which used for relaying the status
of audio operations to the outer world.

Most of the effects were implemented using a combination of comb filters – basic
audio filters capable of creating different kinds of delays. Their principle of operation
involves summing the input signal with itself, fed forward or backward, delayed and
amplified [4]. The implementation used circular buffers of fixed length for storing the
state of the effect, allowing the transformation to still be buffer-based and memory
efficient. Some of the transformations included were simply parameterized functions,
which were ready to be applied to the signal out-of-the-box, without the need for
additional effect state variables.

2.4 Project Results

As parts of the thesis, project documentation and a mobile application called Sound-
Mash were created, allowing for import and export of audio in six formats, recording
voice memos, signal manipulation, including cutting and moving fragments in the
audio track and also application of chosen audio filters, mentioned in Section 2.2.
For conveying information about the signal, an interactive, generated oscillogram
was used, the solution also included the functionality of playing selected audio frag-
ments.

Figure 3 presents the main view of the application, with dual-channel audio
track waveform and a fragment of it selected. Upon selection, the menu button
can be seen in the upper right corner, containing the implemented effects. Figure 4
presents the parameters screen overlay of the Echo effect, with a short description
and supported range provided. The parameters can be also manipulated through
touch – the values being changed are then showcased in the upper part of the screen
without the parameters overlay shown, being directly steered by user input. For
example, sliding the finger downwards and upwards can decrease and increase the
gain value appropriately in the gain control transformation. More precise values can
be entered by unfolding the overlay parameters screen with a dedicated button.

938 J. Dajda, M. Idzik, J. Sroka, M. Sikora et al.

Figure 3. Main screen of the designed application

Figure 4. Exemplary parameters screen

2.5 Conclusions and Future Work

In retrospect, much improvement in the area of application design is still needed.
Insights from external testers early on in the project could be very beneficial for its
development, in terms of the UI, as well as in the requirements scope. In this regard
it is often preferred to use existing solutions, gradually implementing improvements.
The architectural cohesion should be planned beforehand, but there is a very high
possibility that the new knowledge acquired will prove earlier designs flawed. Find-
ing the right way of communication between the application modules is the key to
well designed solutions. A flawed decision is often better than a lack of decision,
once the expected deadlines of the project approaches try to deliver solution as full
as possible, even if some compromises have to be made.

Future work includes among others improving the efficiency of the solution in
terms of the audio formats supported, length of signal available for processing and
rendering the oscillogram. For this, redesigning the way of storing data for operating
memory usage optimization will be crucial. Including another batch of audio effects,
together with options of changing the audio characteristics, such as bit depth and

Current Trends in Software Engineering Bachelor Theses 939

sampling frequency, would expand the functionality. In the end, wide-scale func-
tional and non-functional testing procedures would need to be executed, playing
a key role in enhancing the solution’s reliability.

3 RULE-BASED SYSTEM FOR SOLVING FUNCTIONAL
HARMONY EXERCISES

In this section we describe a system called HarmonySolver devoted to solving prob-
lems from the area of functional harmony, which is one of main fields of music
theory. The presented system has the form of a plugin for the Musescore pop-
ular open-source musical score processor [9]. The system encodes musical rules
developed during the Baroque period and prevalent also in later music, that gov-
ern assembling notes into melodies and chord sequences. Using these rules we
can treat all basic types of problems arising in functional harmony: four-part
harmonization based on a given sequence of harmonic functions, figured bass re-
alization and soprano harmonization. Namely, we turn the problems into con-
strained discrete optimization tasks and solve them by means of classical graph
algorithms.

3.1 Problem Description

Harmony is a branch of music theory that rules the assembling sounds into chords.
Functional harmony is a type of harmony that was developed in the seventeenth
century and remained a key element of the mainstream music until the beginning
of the twentieth century. It is still in use in many genres of modern music and
it is the foundation of other types of harmony. Due to its importance and great
influence on modern harmony it is taught in detail in music schools. It is based
on creating four-part scores with four separate voices: the highest soprano, alto,
tenor and the lowest bass. Each voice has its own melody and obeys specific con-
straints, for example own scale. Moreover, each note in one voice forms a spe-
cific combination with notes in the other three voices: a chord. A main feature
of functional harmony is to base on a specific major or minor musical scale re-
lated to the key of composition. Each note in the scale can be used as a basis
for a chord consisting of three or more different sounds. Importantly, each chord
has its own function that determines its role and usage in a musical piece. The
most important harmonic functions are: tonic (denoted T) based on the first note
of the scale, subdominant (S) based on the fourth note and dominant (D) based
on the fifth note. Functional harmony provides many rules in two contexts: ver-
tical and horizontal. The vertical context corresponds to constructing chords: its
rules refer to relations among different voices in the same chord. The horizontal
context rules are thought to avoid inappropriate connections between neighboring
chords. There are three fundamental types of problems arising in functional har-
mony:

940 J. Dajda, M. Idzik, J. Sroka, M. Sikora et al.

• four-part harmonization based on given harmonic functions – as an input we
have a sequence of harmonic function symbols grouped in measures with given
key and time signature;

• figured bass realization – as an input we have a complete bass-voice melody
decorated with special symbols (mainly digits) which determine chords (and
their functions) that can be build on top of the bass notes;

• soprano harmonization – as an input we have only a soprano-voice melody and
appropriate chords have to be selected to match the given melody.

These problems are main types of exercises used in music schools because they touch
some key aspects of the composition of musical piece. In each problem the solution
is a sequence of chords grouped into measures (see Figure 5).

Figure 5. Figured bass realization (second type) problem formulation with a solution gen-
erated by HarmonySolver

For a thorough course in functional harmony we refer the reader to textbooks
like [5].

3.2 Solution Concept and Scope

The above-mentioned fundamental problems are also the three main use cases for
HarmonySolver. To solve problems of the first and second type we transform them to
optimization tasks with constraints. The objective is a numeric measure of solution
quality, whereas the constraints are obtained from the functional harmony rules
divided into hard rules and soft rules. A candidate solution cannot break any hard
rule, hence such a rule becomes a domain constraint. For each broken soft rule the
solution quality measure is appropriately made worse, which disfavors a solution
but does not necessarily reject it. In the first type of problems the constraints
have a form of a sequence of harmonic function symbols. A figured bass realization
task, i.e. a problem of the second type, is transformed to the first type by mapping
pairs {bass note, bass symbol} to harmonic functions with an additional constraint
imposed by the fixed bass-voice melody. In the soprano harmonization problem we

Current Trends in Software Engineering Bachelor Theses 941

solve two sub-problems sequentially. First we find a harmonic function sequence
that matches a given soprano melody. The result is a problem of the first type with
an additional constraint defined by the fixed soprano-voice melody. Hence it can
also be transformed into an optimization problem in a way analogous to the previous
types.

The crucial part of the system is the domain model (see Figure 6). It allows us
to properly encode functional harmony rules.

ChordComponentManager

ChordComponent

NoteChord

Scale

HarmonicFunction

MajorScale

MinorScale

HarmonicFunctionValidator

<<enumerator>>
BASENOTE

C
D
E
F
G
A
B

<<enumerator>>
MODE

MAJOR
MINOR

<<enumerator>>
SYSTEM

OPEN
CLOSE

Figure 6. Domain model

The heart of the model is the HarmonicFunction class containing the following
properties: functionName (T, S or D), degree (base note of a chord), position (chord
component in soprano voice), inversion (chord component in bass voice), delay (list
of pairs of chord components, which should be delayed from first to second one
in pair), extra (additional chord components), omit (omitted chord components),
down (flag indicating if the base note of chord is lowered), system (open, close or
undefined), mode (major or minor), key (indicates if the chord comes from key other
than piece base key, can be undefined) and isRelatedBackwards (used for backward
deflections).

For evaluating both vertical and horizontal contexts we introduce two very im-
portant components in our system: generator and evaluator. Generator finds all
objects matching a given single input specification and satisfying all rules. The type
of generated objects depends on the specification, i.e., for a given harmonic function
chords are generated and for a given soprano note the result is a set of admissible
harmonic functions. Evaluator evaluates connections between neighboring chords
and computes penalties.

3.3 Method and Implementation

HarmonySolver has been implemented as a plugin for the Musescore popular score
editor, which exposes QML/JavaScript developer API. Plugins are thought to be
short, consisting of one QML file containing both business logic and a GUI, but this

942 J. Dajda, M. Idzik, J. Sroka, M. Sikora et al.

assumption can be relaxed through importing external JavaScript files. As realizing
the system as a Musescore plugin was a requirement, we decided to implement it in
JavaScript and use a single QML file is the interface to Musescore.

To solve optimization problems described in the previous subsection we construct
a directed graph representation of all admissible solutions to a given task. A simpler
representation called SingleLevelGraph (see Figure 7) has been designed for tasks
with a given sequence of harmonic functions. Its vertices are aggregated in layers, one
for each harmonic function in a task and each vertex stands for only one of possible
chord forms for that harmonic function. Edges represent legal connections between
chords of neighboring layers and their weights are penalties obtained from soft rules
evaluation. There are also two extra vertices: begin and end that are connected
to each node from first and last layer, respectively. Generally SingleLevelGraph is
a DAG without unreachable and useless nodes, with only one source (begin) and
only one sink (end). Moreover, all paths from begin to end have the same length
and represent complete admissible solutions. Finally, solving first-type problems
consists in finding the shortest path in already built graph (cf. [6]).

SingleLevelGraph DoubleLevelGraph

Figure 7. Graph structures used in HarmonySolver

Some of the soft rules require considering triples of subsequent chords. To make
it possible the graphs must be transformed in such a way that all predecessors
of a single node have the same content, i.e., a harmonic function. We meet this
requirement by performing so-called Single Previous Content (SPC) transform, that
is our original idea and is based on the duplication of appropriate vertices and
edges.

The process of building a SingleLevelGraph is crucial in our solution method.
First, layers are filled with vertices, then edges between neighboring layer nodes are
added based on the result of evaluation of hard rules. Afterwards, unreachable and
useless nodes are removed. Then the SPC transform is performed and finally edge
weights are set according to the evaluation of soft rules.

The SingleLevelGraph structure is not sufficient for the hardest type of consid-
ered problems, i.e. the soprano harmonization. In this case we develop the structure
into DoubleLevelGraph. It can be described as two nested SingleLevelGraphs, where
the first level represents harmonic functions and the second level contains admissi-
ble forms of respective chords. Using such a structure makes the problem of finding
optimal harmonization more tractable.

Current Trends in Software Engineering Bachelor Theses 943

3.4 Project Results

Final product that we created is a fully functional plugin for Musescore program [8]
that can solve all three basic types of functional harmony exercises.

Figure 8. Plugin view with a solution of problem of the first type

Figure 8 shows a Musescore window with HarmonySolver views presenting a for-
mulation (right) and solution (left) of a problem of the first type.

One thing to note is that the plugin execution time is not very short: solving
complicated exercises can take about 20 seconds. Our tests showed that the reason is
not an inefficient implementation but performance issues with Musescore JavaScript
runtime. Executing the same code in other environments lasted 100 times shorter.
Nevertheless, since the manual way of solving such exercises takes about several
dozen minutes, our result is satisfactory even with the slow Musescore runtime.

To test the correctness of generated solutions, we created many tests on the basis
of a Polish classical harmony coursebook [7]. For all exercises our system provided
correct answers. We also performed a UX test on group of musicians, organists and
music theorists. They had a chance to evaluate our system, check if it generates
correct solutions and give scores to those solutions. The average score for solution
quality was 7.8/10 which is a great achievement. The usability of the product was
considered very good as well.

3.5 Conclusions and Future Work

Looking at the results of final projects and the feedback received during tests it is fair
to say that our system achieved a success. Our pure algorithmic and mathematical
way of solving musical exercises led to solutions with high musical quality, which
has been verified through tests.

944 J. Dajda, M. Idzik, J. Sroka, M. Sikora et al.

One way to improve the existing project is to boost the performance by changing
the solution architecture and avoid the use of the MuseScore runtime. A possible
solution is to create an external HTTP service and expose an API endpoints that
will handle requests for solving given exercise. Also, the integration with other
systems would be straightforward in this way. We have already started work on
that field and have a solution written with Scala and OpenAPI that already works
and reduces the solution time down to the order of one second.

Another idea worth exploring is to use machine learning (e.g., neural networks)
in solving the soprano harmonization exercises. There are already some solutions
that use artificial intelligence and machine learning in this context. In our opin-
ion combining the pure algorithmic and strict way based on harmonic rules and
a generative model like neural network could lead to some very interesting results.

4 A TOOL FOR COMPARISON AND INTEGRATION OF FEATURE
SELECTION ALGORITHMS FOR MODELING OF RESPONSE
TO TARGETED THERAPY FOR PATIENTS
WITH HAIRY CELL LEUKEMIA

This paper presents the development process and obtained results related to the tool
for analysis of cytometry data of hairy cell leukemia (HCL) patients.

4.1 Problem Description

The development of diagnostic techniques has made it possible to more accurately
measure parameters of the condition of the human body. It has led to the emergence
of deep phenotyping, an approach in medicine which is characterized by precise de-
tection of the phenotypic aberrations in individuals, supporting more precise detec-
tion of diseases in patients and providing targeted healthcare solutions [14]. More-
over, it is also increasingly easier to determine the accurate composition of blood,
utilizing methods such as flow cytometry. This particular technique allows medical
researchers to ascertain the exact count of different cell populations in a blood sam-
ple. It is particularly useful in the detection of HCL and modelling of response to
targeted therapy.

Analysis of the flow cytometry data is a complex task, given the fact that
hundreds of cell types are detected during this process, thus it requires statisti-
cal and computational approaches to prove viable in medical application, consid-
ering the complexity of the immune system and interdependencies among even
small cell populations. Feature selection is a particularly non-trivial operation
in this context. Hence, there exists a need to develop algorithms and compu-
tational tools for supporting that task, which is a crucial step in the generation
of classification models for data obtained from advanced medical diagnostic tech-
niques.

Current Trends in Software Engineering Bachelor Theses 945

4.2 Solution Concept and Scope

The main role of the tool is the integration and comparison of feature selection
algorithms. The implemented software is intended to effectively extract relevant
predictors as well as support medical data analysis, especially coming from targeted
therapies used to treat patients suffering from HCL. That task is challenging as
only about 2 % of leukemias are HCL, thus there is a limited amount of this type of
clinical data [11]. Also, the trained models can be saved and used when required.
The product is a web application with an easy-to-use graphical user interface. It
is an important aspect of the project since the end-users are not expected to be
familiar with the notion of programming.

4.3 Method and Implementation

The following section describes the applied method of solving the presented problem
and applied technologies.

4.3.1 Architecture of the System

Figure 9. Conceptual diagram of the project

The system is based on the client application deployed with the use of Docker.
A user places data and specifies the details of the requested computations via the user
interface. The data and parameters are transferred via REST API to the configured
supercomputer providing resources for training the model. When computations are
successfully completed, the results of an analysis are available in an application
tab in the form of diagrams, graphs and statistics. The conceptual diagram of the
system is presented in Figure 9.

946 J. Dajda, M. Idzik, J. Sroka, M. Sikora et al.

4.3.2 Applied Technologies

The backend is based on Django framework. Feature selection algorithms are imple-
mented using Python libraries such as numpy v. 1.18.1, pandas v. 1.0.3, matplotlib
v. 3.1.3., scikit-learn v. 0.22.1 and R rmcfs package v. 1.3.4.

The frontend is implemented using TypeScript and Angular framework. The
application is containerized with Docker.

External HPC and storage resources are accessed via Rimrock REST API 1 and
PLG-Data service 2.

4.3.3 Feature Selection and Classification Algorithms

Utilised feature selection algorithms are: Random Forest, Kendall or Pearson corre-
lation coefficient based selector, Lasso Regression, Elastic Net Regularization, Chi-
Square Test, Information-theoretical approach [10], Monte Carlo Feature Selection.

Utilised classification algorithms are: k-nearest neighbour, Random Forest, Sup-
port Vector Machine, Multi-layer perceptron classifier.

4.3.4 Methodology

The whole algorithm is similar to stratified k-fold cross-validation. For each par-
tition i of k partitions of the dataset the feature selection is performed, taking
partition i as test subset and the remaining k− 1 partitions as training subset. The
dimension of the training subset is reduced to the most relevant features and such
reduced subset is used to train the ensemble of classifiers specified by the user. The
averaged classification metrics obtained on test subset are used as weights for the
features rank for a given partition. The process is illustrated in Figure 10.

After performing feature selection on each partition, all feature ranks with their
corresponding weights are aggregated to build the final feature rank, which is a basis
for selection of the most relevant features in the context of the whole dataset. The
most important features are used to train the final models.

4.4 Project Results

The process of development was completed successfully and all requirements were
met. In addition, the obtained results are biologically interpretable. The project
allowed us to work on both engineering as well as research aspects. The source code
is available at github.com/pszemkor/FSTool.

4.4.1 Evaluation of Feature Selection and Classification Models

The clinical data used to train the models was obtained from The Ohio State Uni-
versity College of Medicine, one of the most important research centres focused

1 https://submit.plgrid.pl/
2 https://data.plgrid.pl/?locale=en

https://submit.plgrid.pl/
https://data.plgrid.pl/?locale=en

Current Trends in Software Engineering Bachelor Theses 947

Result from split no 1

Classification

Subset 1 Subset 2 Subset 3 Subset 4 Subset 5

TRAIN TEST

Train data
(all features)

Feature
selector

Features rank
with all
features

Train data
(k features)

Classifier
1

Classifier
2

Classifier
3

Te
st
da
ta
(k
fe
at
ur
es
)

Averaged
classification

metrics

Figure 10. Diagram of feature selection and classification performed for one of the splits
for given feature selector

on HCL. It consists of 145 features and 54 samples, where 17 of them belong to
“control” and 37 to “case” classes.

The list of features selected by information-theoretical algorithm is presented in
Table 1. The average accuracy is presented in Table 2.

4.4.2 Interpretation of the Results in the Biological Context

Numerous results achieved by these algorithms have an immediate biological inter-
pretation. For instance, the CD19 positive B-cells are the main contributors to the
tumour burden in HCL [12]. At the same time, the subsets of T-cells, both CD4 or
CD8 positive, which were identified by selected methods are associated with the ob-
served and previously described phenomenon of reduced immunity of HCL patients
to bacterial infections, which in some cases leads to death. In particular, the CD27

948 J. Dajda, M. Idzik, J. Sroka, M. Sikora et al.

Name Final Score

CD19+/CD80- 499.36

CD19+ 496.96

CD19+/CD80-/CD86- 489.93

CD27-/CD45RA+ 487.70

CD19+/CD86- 484.44

CD8+/CD27- 479.55

CD4+/CD27- 475.24

CD8+/CD29+ 473.75

CD27-/CD45RO+ 472.13

CD8+/45RA+/CD27- 454.68

Table 1. Selected features

Classifier Name Accuracy Min Accuracy Max Accuracy

KNN 0.76 0.5 0.91

MLP 0.55 0.3 0.73

Random Forest 0.81 0.7 0.91

SVM 0.82 0.73 0.91

Table 2. Average accuracy

marker is responsible for the immune signalling between B and T lymphocytes, and
the expression of this marker is characteristic of HCL [13].

4.4.3 Future Work

Due to the increasing popularity of cloud computing, some future clients may want
to take advantage of such resources instead of HPC clusters supporting SLURM.
From the algorithmic side, one of the ideas for further development is to incorporate
genetic algorithms as well as backward elimination.

Acknowledgements

The authors of this project would like to express their gratitude to Dr. Micha l Sew-
eryn, who provided meaningful support throughout the development of the project.
This publication is partly supported by the EU H2020 grant Sano No. 857 533, and
by the project Sano carried out within the International Research Agendas Pro-
gramme of the Foundation for Polish Science, co-financed by the European Regional
Development Fund. This research was supported in part by PLGrid Infrastructure.

Current Trends in Software Engineering Bachelor Theses 949

5 SYSTEM FOR ANALYZING DAMAGE TO THE SURFACE
OF AIRCRAFT STRUCTURES USING CONVOLUTIONAL
NEURAL NETWORKS

The study aimed to create a system for classifying images of the surface of air-
craft structures according to the occurrence of corrosion. Its goal is to improve
the efficiency and efficacy of visual, non-destructive aircraft inspection (NDI) pro-
cedures. The system was developed owing to the database containing images of
fragments of aircraft fuselages collected by the Air Force Institute of Technology
(AFIT) in Warsaw. The heart of the system is a trained Convolutional Neural
Network (CNN) model, which can be used via a web interface. The final product
utilises a neural network based on the EfficientNetB0 architecture, which achieved
75 % accuracy on the test set, correctly classifying 90 % of images showing corroded
surfaces.

5.1 Problem Description

During exploitation, the aircraft is prone to corrosion, which can lead to serious
damage. The situation that made the public aware of the seriousness of that issue
was the Aloha Airlines Flight 243 incident, caused by failure of the maintenance
program, with corrosion being one of the incident’s contributing factors. Therefore,
both traditional and innovative inspection techniques are used to assure passengers’
safety, which is paramount in aviation.

One of the main techniques to control the appearance of possible damages is
visual inspection conducted by professionals. To enhance the visibility of damages,
new methods were developed, such as D-sight [15]. It is used for processing fuselage
images in the scope of DAIS (D-Sight Aircraft Inspection System) technology. How-
ever, the images in DAIS are still analysed and processed visually. To avoid human
errors and make the procedure automatic, we propose to apply Deep Learning (DL)
algorithms.

Current state-of-the-art architectures of Artificial Neural Networks (ANNs) for
image classification are CNNs, containing convolutional layers capable of effec-
tive extraction of image features. Concerning previous CNN applications in NDI,
a worth-mentioning approach utilises an SVM classifier, trained on features ex-
tracted by a CNN from images of airplanes’ fuselages [16]. Some other prior works
were focused on the application of single and ensemble CNN models. For exam-
ple, in [17], the ensembles of CNNs were used to improve the classification per-
formance on borescope images of aircraft surfaces and compared to single mod-
els.

In this paper, we demonstrate the efficacy of CNN architectures in corrosion
detection. As the input, we use images of fragments of aircraft fuselages, initially
preprocessed by the DAIS.

950 J. Dajda, M. Idzik, J. Sroka, M. Sikora et al.

5.2 Solution Concept and Scope

The proposed system consists of an image classifier and a user interface in the form
of a website. Pictures provided by the DAIS are analysed by a pretrained ANN.
The main requirement for the system is an intuitive and easy-to-use classifier since
the intended users are aircraft specialists and people interested in aviation. The
classifier is to determine corrosion occurrence in a 2-point scale (corrosion vs no
corrosion). The result contains the predicted class and a softmax value for each
class. Information about the areas where damages were detected is also presented
to the user. The classifier can be easily retrained or replaced.

5.3 Method and Implementation

The web application is implemented in a client-server architecture model and works
as HTTP API. The user through a web browser sends POST request with all required
information like the image for the classifier to predict, then the server processes
the request and returns the result in the form of a text (prediction) or an image
(heatmap). The server was built with Flask microframework due to its simplicity
and flexibility, which allowed changes of technology decisions throughout the project
duration. The client side was written in HTML, CSS, and JavaScript with AJAX
requests for dynamic page experience.

The dataset used in this project consisted of 13 075 images of 37 aircraft struc-
tures divided into 5 classes: no corrosion – 6 431 samples, soft corrosion – 6 040
samples, medium corrosion – 578 samples, hard corrosion – 0 samples, soft dam-
age – 26 samples. Because of the data being unbalanced, the decision was made
that the appropriate task should be a binary classification: no corrosion (for not
corroded surfaces) and corrosion (the rest). To ensure the closest simulation of
the NN’s behavior on new data, images in training, validation and test sets came
from different aircrafts (training set – machines 1–30 – 10 343 samples, validation
set – machines 31–34 – 1 448 samples, test set – machines 35–37 – 1 284 sam-
ples).

The core of the project was searching for a proper NN architecture able to
achieve both high accuracy and recall (because of the False Negatives (FN) occur-
rence being a threat to the safety of passengers of examined aircrafts) on the DAIS
dataset. During the experiments phase, the SOTA architectures (ResNet, Inception,
EfficientNet) and various machine learning methods and preprocessing techniques
(data standardization and data normalization, data augmentation – horizontal and
vertical flips, ensemble learning, classification of the features returned by convo-
lutional layers of neural networks by SVM, threshold manipulation) were tested.
The results were also analysed using t-SNE method, by visualising the dataset after
last convolutional layer to check classes separation in a 2-dimensional space. The
experiments were conducted on PLGrid Prometheus supercomputer using Python
language and TensorFlow framework.

Current Trends in Software Engineering Bachelor Theses 951

One of the functional requirements was to present the pixels which are the most
responsible for the result of prediction (probably representing corroded areas) by
using a heatmap. This goal was achieved with the use of the Grad-CAM (Gradient-
weighted Class Activation Mapping) [18] tool.

5.4 Project Results

The developed application delivered all functionalities specified at the beginning of
the project. The user can upload images in jpg, jpeg, png or bmp file formats and
apply different filters: Gaussian blur, Fourier transform, contouring, sharpening
or grayscale transformation. Then the user can crop the image as the input for
prediction. The results are shown on the frontend, including the values of neurons
in the output layer for each class. The result includes Grad-CAM output in the
form of a heatmap overlaying the image (Figure 11).

Figure 11. Window for image modifications with sample changes (left), the heatmap gen-
erated after presenting the result of prediction (damage-rusty rivet) (right)

The performance of each model was measured using the evaluation metrics pre-
sented in Table 3. However, the main focus was on accuracy and recall (inducing the
lowest number of FNs). The best results were achieved using the network based on
the EfficientNetB0 architecture (without the fully connected layer at the top of the
network, followed by a GlobalAveragePooling2D and a Dense Layer with softmax
activation) that was trained on the standardized data. The threshold separating
classes was set to 0.3 (it is set to 0.5 by default), as it produced high recall while
preserving acceptable accuracy. The number of FNs was reduced over two times
with the use of the selected value threshold in comparison with the default value
threshold usage. The issue with the split point manipulation was that only 57 % of
pictures showing no corrosion were classified correctly, although it was acceptable
as the focus of work was on the other class. The rest (FP) can be eliminated during
visual inspection.

952 J. Dajda, M. Idzik, J. Sroka, M. Sikora et al.

Threshold Accuracy TP FP TN FN Precision Recall F1

0.5 0.76 555 150 416 163 0.79 0.77 0.78
0.3 0.75 644 241 325 74 0.73 0.90 0.80

Table 3. Metrics computed on the test set for the chosen NN

It is also worth noting that 12 % of images featuring soft corrosion and only 1 %
of those showing medium corrosion were classified incorrectly. That could mean that
the former were more similar to not corroded ones from the network’s perspective,
which is a desirable and intuitive behaviour.

Analysing incorrectly classified images from the no corrosion class, one can
conclude that the network makes choices similar to those made by nonprofession-
als. The differences in light intensity and the aircraft surface waviness can pro-
duce a wrong impression of the surface being corroded (Figure 12). It should also
be mentioned that the analysis of heatmaps obtained with the use of Grad-CAM
shows that the network is focusing on areas near the aircraft rivets, which is desir-
able.

Figure 12. Sample images classified as corroded and corresponding heatmaps: examples
of TP (top) and FP (bottom) predictions

5.5 Conclusions and Future Work

We have developed a web application for NDI of the aircraft fuselage based on DAIS
images. We demonstrate that the system can be useful to predict the occurrence
of fuselage corrosion. Moreover, convincing experiments were conducted, showing
that using DL for classifying DAIS images for such prediction has potential and
can be an effective tool in real, production systems. We expect that having the
access to a bigger DAIS image database, even better results could be achieved.
Simultaneously, further works regarding ensembles of classifiers based on the best-
performing architecture could be executed to reach higher accuracy. Moreover,
to obtain smaller networks that could be implemented in the DAIS hardware, we

Current Trends in Software Engineering Bachelor Theses 953

propose a multi-teacher knowledge distillation method [19]. Another interesting
direction is carrying out extensive image preprocessing on DAIS images. On the
web application side, further works could include adding more filters and providing
an administrator panel which involves user authentication.

6 CONCLUSIONS

Based on the analysis of the presented theses, we can make observations in two
different areas: teaching and research.

From the didactic point of view, we investigated such aspects as the size of the
typical students team or preferred topic areas. There are clear trends that can be
utilised by teachers to improve the process of managing and evaluating bachelor
theses. Our research is narrowed to the software engineering field so it would be
interesting to investigate other fields in a similar fashion.

In terms of the conclusions about students’ research, presented theses demon-
strated interesting results from both technological and conceptual perspectives. All
theses delivered working software which solves some specific unique problem, often
difficult and even scientific. The applied libraries testify to the good orientation of
all the graduates in the modern technology stack. Judging by the analyzed works,
it seems that in future we will see more and more theses solving complex problems
by taking advantage of the existing machine learning libraries. Good examples are
such libraries as Tensor Flow, Keras. This trend is also visible all around the world
and is caused by the availability of complex algorithms provided in a moderately
easy and approachable way.

It is also worth noting that bachelor theses in the computer science field are
increasingly interdisciplinary works. Students are eager to solve real-world problems
and have the proper tools to make it possible nowadays. This trend can be beneficial
both in the teaching area because students can learn how to deal with non-superficial
obstacles, and in the research area: the outcomes of students’ projects can be used
to develop real solutions.

Acknowledgements

This work was supported by the PLGrid Infrastructure. We would like to thank
Professor Dr. Krzysztof Dragan (AFIT, Warsaw) for his contribution to this re-
search.

Jacek Dajda and Micha l Idzik are grateful for support from the subvention of
Polish Ministry of Education and Science assigned to the AGH University of Scien-
ce and Technology (Faculty of Computer Science, Electronics and Telecommunica-
tions).

954 J. Dajda, M. Idzik, J. Sroka, M. Sikora et al.

REFERENCES

[1] Android Developers: Processes and Threads Overview. Last access: 26.09.2021,
available online https://developer.android.com/guide/components/

processes-and-threads.

[2] Moskala, M.: Effective Kotlin: Best Practices. Chapter 8, 2020, Item 51.

[3] International Norm IEC 60908 Version 2.0. 1999, Audio Recording – Compact Disc
Digital Audio System.

[4] Smith III, J. O.: Physical Audio Signal Processing. 2010, [online], Last access:
26.09.2021, available online: https://www.dsprelated.com/freebooks/pasp/.

[5] Aldwell, E.—Schachter, C.—Cadwallader, A.: Harmony and Voice Lead-
ing. Cengage Learning, 2018.

[6] Cormen, T. H.—Leiserson, C. E.—Rivest, R. L.—Stein, C.: Introduction to
Algorithms. MIT Press, 2009.

[7] Sikorski, K.: Harmony: A Collection of Exercises and Examples. PWM, 2003 (in
Polish).

[8] HarmonySolver Musescore Plugin. Available at: https://github.com/miksik98/

HarmonySolverPlugin.

[9] Musescore. Available at: https://musescore.org.

[10] Pietrzak, M.—Lozanski, G.—Grever, M.—Andritsos, L.—Blachly, J.—
Rogers, K.—Seweryn, M.: On the Analysis of the Human Immunome via an In-
formation Theoretical Approach. International Journal of Computational Biology and
Drug Design, Vol. 13, 2020, No. 5-6, pp. 555–581, doi: 10.1504/ijcbdd.2020.113878.

[11] Troussard, X.—Cornet, E.: Hairy Cell Leukemia 2018: Update on Diagnosis,
Risk-Stratification, and Treatment. American Journal of Hematology, Vol. 92, 2017,
No. 12, pp. 1382–1390, doi: 10.1002/ajh.24936.

[12] Stetler-Stevenson, M.—Tembhare, P. R.: Diagnosis of Hairy Cell Leukemia
by Flow Cytometry. Leukemia and Lymphoma, Vol. 52, 2011, No. sup2, pp. 11–13,
doi: 10.3109/10428194.2011.570820.

[13] Forconi, F.—Raspadori, D.—Lenoci, M.—Lauria, F.: Absence of Surface
CD27 Distinguishes Hairy Cell Leukemia from Other Leukemic B-Cell Malignancies.
Haematologica, Vol. 90, 2005, No. 2, pp. 266–268.

[14] Robinson, P. N.: Deep Phenotyping for Precision Medicine. Human Mutation:
Variation, Informatics, and Disease, Vol. 33, 2012, No. 5, pp. 777–780, doi:
10.1002/humu.22080.

[15] Komorowski, J. P.—Bellinger, N. C.—Gould, R. W.—Forsyth, D. S.—
Eastaugh, G. F.: Research in Corrosion of Ageing Transport Aircraft Structures.
CASI Journal, Vol. 47, 2001, No. 3, pp. 289–298.

[16] Malekzadeh, T.—Abdollahzadeh, M.—Nejati, H.—Cheung, N. M.: Air-
craft Fuselage Defect Detection Using Deep Neural Networks. 2017, arXiv:
1712.09213.

[17] Ren, I.—Zahiri, F.—Sutton, G.—Kurfess, T.—Saldana, C.: A Deep En-
semble Classifier for Surface Defect Detection in Aircraft Visual Inspection. Smart

https://developer.android.com/guide/components/processes-and-threads
https://developer.android.com/guide/components/processes-and-threads
https://www.dsprelated.com/freebooks/pasp/
https://github.com/miksik98/HarmonySolverPlugin
https://github.com/miksik98/HarmonySolverPlugin
https://musescore.org
https://doi.org/10.1504/ijcbdd.2020.113878
https://doi.org/10.1002/ajh.24936
https://doi.org/10.3109/10428194.2011.570820
https://doi.org/10.1002/humu.22080
http://arxiv.org/abs/1712.09213

Current Trends in Software Engineering Bachelor Theses 955

and Sustainable Manufacturing Systems, Vol. 4, 2020, No. 1, pp. 81–94, doi:
10.1520/SSMS20200031.

[18] Selvaraju, R. R.—Cogswell, M.—Das, A.—Vedantam, R.—Parikh, D.—
Batra, D.: Grad-CAM: Visual Explanations from Deep Networks via Gradient-
Based Localization. International Journal of Computer Vision, Vol. 128, 2020,
pp. 336–359, doi: 10.1007/s11263-019-01228-7.

[19] Zuchniak, K.—Dzwinel, W.—Majerz, E.—Pasternak, A.—Dragan, K.:
Corrosion Detection on Aircraft Fuselage with Multi-Teacher Knowledge Distilla-
tion. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V. V., Dongarra, J. J.,
Sloot, P. M. A. (Eds.): Computational Science – ICCS 2021. Springer, Cham, Lecture
Notes in Computer Science, Vol. 12747, 2021, pp. 318–332, doi: 10.1007/978-3-030-
77980-1 25.

Jacek Dajda received his Ph.D. in 2008 in the area of agile software methods. Currently
he works at the Department of Computer Science, AGH University of Science and Tech-
nology in Kraków. His research interests focus on software engineering, databases and
analytical information systems. Chair of the competition committee.

Micha l Idzik received his M.Sc. (2014) in the area of natural language processing at
AGH University of Science and Technology, Kraków. He worked on access layer for high
energy physics experiments database on internship (2012) at CERN (The European Or-
ganization for Nuclear Research). His research interests include evolutionary algorithms,
multiobjective optimization, natural language processing and data visualization. He is
a member of the competition committee.

Wojciech Kania graduated from the Wroclaw University of Science and Technology with
thesis entitled ”Intuitive Sound Processing Application” under supervision of Bogumi la
Hnatkowska.

Miko laj Sikora, Wiktor Paw lowski, Jakub Sroka graduated from AGH University
of Science and Technology with thesis entitled ”Rule-based system for solving functional
harmony exercises” under supervision of Maciej Smo lka.

Filip �Slazyk, Przemys law Jab lecki graduated from AGH University of Science and
Technology with thesis entitled ”A tool for comparison and integration of feature selec-
tion algorithms for modeling of response to targeted therapy for patients with hairy cell
leukemia” under supervision of Maciej Malawski.

https://doi.org/10.1520/SSMS20200031
https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.1007/978-3-030-77980-1_25
https://doi.org/10.1007/978-3-030-77980-1_25

956 J. Dajda, M. Idzik, J. Sroka, M. Sikora et al.

Emilia Majerz, Aleksandra Pasternak graduated from AGH University of Science
and Technology with thesis entitled ”System for analyzing damage to the surface of aircraft
structures using convolutional neural networks” under supervision of Witold Dzwinel.

Joanna �Swiebocka-Wie�k, Wojciech Thomas, Andrzej Paszkiewicz are members
of the competition committee.

