
Computing and Informatics, Vol. 40, 2021, 1025–1055, doi: 10.31577/cai 2021 5 1025

CONTROLLED EXPERIMENT FOR ASSESSING
THE CONTRIBUTION OF ONTOLOGY BASED
SOFTWARE REDOCUMENTATION APPROACH
TO SUPPORT PROGRAM UNDERSTANDING

Sugumaran Nallusamy, Meei Hao Hoo

University Tunku Abdul Rahman
Sungai Long Campus Jalan Sungai Long
Cheras 43000, Kajang
Selangor, Malaysia
e-mail: {sugumaran, hoomh}@utar.edu.my

Farizuwana Akma Zulkifle

Universiti Teknologi MARA
Kuala Pilah Campus
72000 Kuala Pilah
Negeri Sembilan, Malaysia
e-mail: farizuwana@uitm.edu.my

Abstract. Redocumentation is an approach that is used to recover knowledge from
raw software artifacts by using alternative presentations. Several legacy systems
have been developed based on event-driven programming which require redocumen-
tation. However, these existing repository and query techniques emphasize only on
lexical and syntactical based queries which come with limitations in providing the
semantic relationship for program understanding. We are using ontology based
approach that uses both ontology reasoning and querying techniques to generate
software documentation from the knowledge repository. We present a controlled ex-
periment for the empirical evaluation on the proposed ontology based approach and
implemented in a tool called Ontology Based Software Redocumentation (OBSR).
In this experiment, two existing tools namely Universal Report (UR) and Microsoft
Visual Studio specifically for Visual Basic (VB) programming environment have
been selected to be compared with the OBSR tool. The goal is to provide experi-

https://doi.org/10.31577/cai_2021_5_1025


1026 S. Nallusamy, M.H. Hoo, F. A. Zulkifle

mental evidence of the viability of our approach in the context of program under-
standing using HTML based semantic software documentation. The experiment
shows that the software maintainers are able to understand and provide significant
improvement in program understanding to accomplish the maintenance task easily.
We describe in detail the experiment performed, discuss its results and reflect the
lesson learned from the experiment.

Keywords: Software documentation, ontology, reverse engineering, software main-
tenance, event-driven programming, program understanding

1 INTRODUCTION

Software redocumentation is one of the approaches used as an aid for program un-
derstanding to support the maintenance and evolution. According to Chikofsky
and Cross, “Redocumentation is a creation or revision of a semantically equivalent
representation within the same relative abstraction level” [1]. In other words, re-
documenting a code is transformation of one existing (and other documents and
stakeholder knowledge) into a new or updated documented code. It therefore be-
comes an aid for the recovery and recording in software comprehension.

Even though legacy systems are sometimes viewed as outdated software system,
other reviews claim that legacy systems are worth keeping and supporting since they
are essential to a business. Previous studies [2, 3, 4, 5] have highlighted the challenges
in modernization of legacy systems in terms of technical and business aspects. Thus,
software redocumentation is one of the important methods to assist the moderniza-
tion of legacy system. Redocumentation consists of four main components, which
are Software Work Product (SWP), or artifact, parser, repository and documenta-
tion. These four components create a process to rescue knowledge from a software
system. Redocumentation helps to extract knowledge from the SWP via reverse
engineering techniques, and presents it in the form of documentation. A repository
component in redocumentation is an important component to process data and gen-
erate documentation [6]. It provides the query functionality to build the content in
the documentation, as well as, to enable browsing and searching for relevant content
in the hypertext documentation [7]. These repositories require query capabilities to
find and build various views or documents requested by software maintainers [6, 8].
The existing query techniques used in the current redocumentation approaches and
tools to query the source code are lexical, relational, graph, algebra and network
structure queries.

To evaluate the advantages and disadvantages of the tools in acquiring knowledge
of any such technique we required to conduct empirical evaluation. There are few
typical empirical evaluation used namely, case studies, observations, surveys, or
controlled experiment [9]. However, according to Sjoeberg et al. [10], a controlled
experiment is suitable to identify the capability of tools or approaches in acquiring



Controlled Experiment for Assessing the Contribution of OBSR 1027

knowledge for specific people in a specific environment. In addition, controlled
experiments used in a variety of current approaches to software documentation [11,
12, 13, 14].

In the previous study, we have formulated an approach called Ontology Based
Software Redocumentation (OBSR) [15, 16]. The OBSR approach generates soft-
ware documentation from the Source Code Ontology (SCO) which allows the soft-
ware maintainers to semantically search and browse for the transitive relations and
concept hierarchy within the source code. The SCO describes and presents the
knowledge from the programming source code semantically in the repository. The
documentation generated from the SCO is able to enhance the search, navigation
and inference capabilities to assist in finding the relevant data from a source code.
Thus, a meaningful information can be provided to understand the source code
to solve software maintenance tasks. Furthermore, a tool called Ontology Based
Software Redocumentation Tool (OBSRT) was developed to proof the concept of
the OBSR approach. A detailed overview of the established OBSRT tool will be
discussed in the following section.

However, the main goal of this paper is to evaluate the OBSR approach us-
ing the developed OBSR tool for its support in software maintenance. The OBSR
tool was developed to redocument the source code from the VB 6.0. Source code
from VB 6.0 was chosen because the support for VB has been discontinued by Mi-
crosoft in 2008 [17, 18], and many programmers switched to other programming
languages, such as PHP, and C#. The changes to the VB 6.0 framework caused
issues and difficulty in understanding the legacy system for purpose of upgrading
or rewriting [19]. The OBSR tool solves this problem by automatically generating
HTML software documentation and representing the mental model for the software
maintainers to understand the program residing in the software systems semanti-
cally.

Therefore, we conducted a controlled experiment to verify whether the OBSR
approach is able to improve the efficiency and effectiveness to program understand-
ing tasks during software maintenance. The controlled experiment was initiated
by formulating the null hypothesis from the research question of this study. UR
and VB are used as baselines for the proposed OBSR tool. These two baselines
are also referred to as independent variables in this controlled experiment. The
tasks designed consist of two sections, namely, subjects’ work backgrounds and
questions on program understanding to handle the software maintenance tasks dur-
ing the experiment. The subjects that participated in the controlled experiment
consist of 33 participants from various positions; nine participants were program-
mers, five participants were systems analysts and three participants were software
consultants.

The rest of the paper is structured as follows. Section 2 outlines the author’s
formulated OBSR method. Section 3 explains all tasks carried out in a controlled
experiment. Section 4 addresses the outcome. Section 5 outlines the findings of the
controlled experiment. Section 6 explains how the risks to authenticity have been
minimised. Finally, Section 7 ends the remarks and the potential work.



1028 S. Nallusamy, M.H. Hoo, F. A. Zulkifle

2 ONTOLOGY BASED SOFTWARE REDOCUMENTATION (OBSR)
APPROACH

The main problem in the existing redocumentation approaches and tools is the
knowledge repository and querying functionalities emphasize on lexical, syntactical
and graph based query techniques, which are not able to use reasoning capabilities
to identify, justify and verify the relation in the source code and provide relevant
information as needed by software maintainers in the specific time. This affects the
efficiency and effectiveness of the exploration functionalities in software documen-
tation such as browsing, searching and visualizing the source code for program un-
derstanding. Therefore, OBSR approach was proposed as shown in Figure 1, and it
consists of three levels of input, namely, Knowledge Extraction (Level 1), Knowledge
Transformation (Level 2) and Knowledge Representation (Level 3). The approach
was formulated based on the importance of the navigation functionalities, which
required two main components, namely, repository and reasoning tools. Therefore,
the proposed OBSR approach provides an ontology based repository and reasoning
capabilities in Level 2 (Knowledge Transformation) by extracting the source code
component from Level 1 (Knowledge Extraction).

The approach was formulated based on the importance of the navigation func-
tionalities, which required two main components, namely, repository and reasoning
tools. Therefore, the proposed OBSR approach provides an ontology based reposi-
tory and reasoning capabilities in Level 2 (Knowledge Transformation) by extracting
the source code component from Level 1 (Knowledge Extraction). The tool called
OBSRT was developed based on the formulated OBSR approach. The source code
is transformed to ontology and the user is able to use OBSR tool to generate the
documentation automatically. In addition, to visualize the search result in graphical
form, OBSR tool provides the component viewer to have better understanding on
the source code.

3 EXPERIMENT DESIGN

The proposed OBSR approach was evaluated using a controlled experiment to quan-
titatively evaluate the effectiveness and efficiency of the OBSR approach based on
the correctness and time. The efficiency has been measured based on how quickly
and timely the software maintainers understand the software system during the
software maintenance tasks. On the other hand, the effectiveness of the OBSR ap-
proach has been measured based on the correct answer provided for each question
considered. The controlled experiment has been designed and conducted based on
factors such as choosing baseline, choosing subjects, providing training for subjects,
selecting tasks and distributing tasks, choosing real world systems and preparing
guidelines to repeat the experiment, as specified by Wettel et al. [20]. Detail study
and analysis have also been done regarding procedure and steps required to be fol-
lowed before and during the experiment [21, 22].



Controlled Experiment for Assessing the Contribution of OBSR 1029

Figure 1. Proposed OBSR approach

3.1 Research Question and Hypothesis

The main research question for this controlled experiment is defined as “How to
validate the significance of the proposed OBSR approach in improving program un-
derstanding during the software maintenance tasks?” Thus, two different sets of
hypotheses have been formulated to measure efficiency and effectiveness individu-
ally.

a) Hypothesis to Measure Efficiency

A null hypothesis formulated to measure efficiency based on the main research
question is as follows:

H10: There is no significant difference in time required to complete pro-
gram understanding task among the UR, VB, and OBSR tools during
software maintenance.

An alternative hypothesis used to measure efficiency in this controlled experi-
ment is as follows:



1030 S. Nallusamy, M.H. Hoo, F. A. Zulkifle

H1: The ontology based software documentation approach significantly
improves the time required to complete the program understanding task
during software maintenance.

b) Hypothesis to Measure Effectiveness

A null hypothesis formulated to measure effectiveness based on the main research
question is as follows:

H20: There is no significant difference in correctness of the solutions
to program understanding tasks between the UR, VB, and OBSR tools
during software maintenance.

An alternative hypothesis used to measure effectiveness in this controlled exper-
iment is as follows:

H2: The ontology based software documentation approach significantly
improves the correctness of the solutions to program understanding tasks
during software maintenance.

After defining the hypothesis of this controlled experiment, two existing redoc-
umentation tools have been selected as a baseline for this study.

3.2 Choose Baseline for Controlled Experiment

UR [23] and VB [24] are the two tools that have been used as baselines for the
proposed OBSR tool. These two baselines are also referred to as independent vari-
ables in this controlled experiment. The UR and VB tools have been selected as the
baseline for this controlled experiment for two main reasons, namely, they support
VB programming and they support search and exploration functionality, as specified
below:

Support VB Programming Language. As specified earlier in Section 2, the
OBSR tool generates software documentation for VB source code. Therefore,
the baseline tool was selected from existing tools which can support VB source
code. In our controlled experiment, we used UR and VB. UR supports the
redocumentation process for VB source code and provides many functionalities,
such as source code metrics, object level interaction and method level interaction.
On the other hand, the VB editing environment is one of the common graphical
user interface application programming languages in the year 2000. Many large
scale applications have been developed using VB, and are currently maintained
as legacy systems. In general, the UR tool has better functionality compared
to other existing VB redocumentation tools, such as VBDocman, which only
provides a list of objects and methods, and related source code.

Presence of Search and Exploration Functionalities. Both UR and VB tools
have the ability to present technical documentation with exploring and query
functionality. The UR tool provides these functionalities in the form of HTML



Controlled Experiment for Assessing the Contribution of OBSR 1031

based documentation. On the other hand, even though VB 6.0 is program-
ming environment but VB provides basic functionalities required to understand
the program to handle the software maintenance tasks, such as searching and
browsing functions which software maintainer use this functionalities in VB to
support the program understanding and maintenance task. Therefore, in this
experiment, VB becomes a part of tool to compare the searching and browsing
functionalities with UR and OBSR tool.

3.3 Select Dependent Variables

The dependent variables were chosen based on the goal of this experiment, which is
to find the efficiency and effectiveness of the proposed OBSR tool. The efficiency was
measured based on the time taken to answer each question given to the subjects. On
the other hand, the effectiveness was measured based on the score of correct answers
provided by the subjects for the questions asked. Therefore, score (S) and time (T)
have both been chosen as the dependent variables for this study. These dependent
variables, time (T) and score (S), have been captured from the answers provided
by the subjects during the experiment. The time taken consists of two dependent
variables, namely, T1 for time taken regardless of correct answers, and T2 for time
taken with the consideration of the correct answers. Next, statistical analysis was
conducted to test the significance of the OBSR tools used by the subjects in this
controlled experiment.

3.4 Statistical Analysis for Dependent Variables

The statistical analysis starts with the Box’s M-test to verify the assumption on the
homogeneity of equal covariance matrices across the cells formed by the between-
subjects effects. T2 is not required to be tested with the Box’s M test because the
data size is not equal and varies, as specified by Johnson and Wichern [25]. However,
Multivariate Analysis of Variance (MANOVA) and Analysis of Variance (ANOVA)
tests still need to be conducted when the Box’s M-test result leads to rejection of
the null hypothesis.

After the Box’s M-test, MANOVA has been used to test the significant mean
difference in time taken (T1) and score (S) for all six questions. Meanwhile, ANOVA
has been used to test the significant differences between means based on time taken
(T1 and T0) and score by questions. After ANOVA, a detailed Post-Hoc test has been
utilized to find the significant mean pair from the ANOVA results. The Post-Hoc
test was conducted to find the significant pair difference and accept the alternative
hypothesis if the OBSR tool shows significant improvement from any of the six
program understanding questions compared to the UR and VB tools.

There are two types of Post-Hoc tests used, namely, Tukey High Significance
Difference (HSD) and Hocbergs’s GT2. Tukey HSD was used to test the results
from T1 and S because the sample used were equal in size, which were 11 subjects



1032 S. Nallusamy, M.H. Hoo, F. A. Zulkifle

for each tool. Hocbergs’s GT2 was used to test T2 because the sample size varied
based on each question.

The statistical analysis analyses the significance value from the MANOVA test
for variable S and T1 based on the probability value; α = 0.1 can be used if the
sample size is small; this applies in this controlled experiment because the sample
size is small, and consists of only 33 subjects. If the significant value (p-value) is
less than α = 0.1, the null hypothesis for H10 and H20 can be rejected. On the other
hand, the alternative hypotheses are accepted if the OR group shows a significant
improvement from any of the six program understanding questions compared to
the UR and VB tools. The steps on the statistical analysis for each dependent
variable are shown in Figure 2. These steps have been used as a guideline during
the statistical analysis in this controlled experiment.

Figure 2. Statistical analysis steps for the dependent variables

3.5 Subject Systems for Controlled Experiment

The subject system used in the controlled experiment is a College Management
System (CMS) that was developed 11 years ago (in 2003) for a private college in
Malaysia, termed as College A (name obfuscated for non-disclosure reasons). The
CMS was developed using VB 6.0, and consisted of about 100 000 lines of code.



Controlled Experiment for Assessing the Contribution of OBSR 1033

The CMS basically handles the management process in the college environment, in-
cluding student admissions, personnel data management, course registration, exam-
ination scheduling, student attendance, examination reports, facility management
and maintenance scheduling. The CMS is a medium sized system which consists of
179 forms, 7 modules and uses 102 tables in a database. This legacy source code
was used as a subject system in the controlled experiment to evaluate the proposed
approach.

3.6 Subject for Controlled Experiment

In the controlled experiment, 33 participants were involved in several sessions of
the experiment. As stated earlier, the group of experiments was divided into three
groups based on the used used by each group: the OR group (Ontology Based Soft-
ware Redocumentation tool), the UR group (Universal Report tool), and the VB
group (VB tool). Each group consists of 11 subjects. Table 1 shows the frequency
distribution of the different types of positions in the software development industry
and PhD academic work. The mixed group of students and industry employees cho-
sen for this control experiment also match the arguments of adequately represent
the intended user population for the study [26]. The students involved in this exper-
iment have some working experience before continuing their postgraduate studies.
The subjects have participated in this experiment on a voluntary basis, and it is
assumed that the subjects have an honest engagement towards this experiment.

Position Frequency Percent
Valid

Percent
Percent

Ph.D. Students 9 27.30% 27.30% 27.30%

Lecturers – Software Consul-
tants/Developers

7 21.20% 21.20% 48.50%

Software Programmers 9 27.30% 27.30% 75.8%

Software Consultants 3 9.00% 9.00% 84.8%

System Analysts 5 15.20% 15.20% 100%

Total 33 100% 100%

Table 1. Position of subjects

Each participant is required to have at least basic knowledge with the VB pro-
gramming language. This is considered a challenging task in this controlled experi-
ment, because it is difficult to find people with knowledge in VB, as this software has
been obsolete since 2008. Tables 2 and 3 show cross tabulation based on the position
and experience in developing and maintaining the program using VB for each group
respectively. In Table 4, the groups of the subjects were distributed fairly based on
their programming skills with VB. The VB programming skill levels was determined
based on their development expertise, and was correlated to the five stage typology
defined by Artherton [27]. The number of subjects involved in each skill level is the



1034 S. Nallusamy, M.H. Hoo, F. A. Zulkifle

same except, for Proficient and Expert, which are four and three, respectively. This
is due to the difficulties to obtain the skilled person in VB programming.

Position
Tool

OR UR VB Total

PhD Students 3 4 2 9

Lecturers – Software Consultants/Developers 2 3 2 7

Software Programmers 3 2 4 9

Software Consultants 1 1 1 3

System Analysts 2 1 2 5

Total 11 11 11 33

Table 2. Cross tabulation of position of subjects versus tool

Experience
Tool

OR UR VB Total

Less 1 year 1 0 1 2

1–3 years 2 3 2 7

4–6 years 2 2 0 4

More than 6 years 6 6 8 20

Total 11 11 11 33

Table 3. Cross tabulation of experience versus tool

Experience
Tool

OR UR VB Total

Novice 3 4 2 9

Advance Beginner 3 3 2 9

Competent 3 2 4 9

Proficients 1 1 2 4

Expert 1 1 1 3

Total 11 11 11 33

Table 4. Cross tabulation of subjects based on VB programming skill

3.7 Task Design for Controlled Experiment

In this research, the questions used to measure the significance of time (T) and
score (S) in program understanding were designed to represent three different levels
of abstractions. The first abstraction level represents the interaction among the
objects, the second level represents the interaction among methods, and the third
level represents the interaction among methods and data.

Moreover, these questions were devised based on program understanding tasks
defined by Pacione et al. [28] and Sillito et al. [29] for the software maintenance task.



Controlled Experiment for Assessing the Contribution of OBSR 1035

Silito’s questions covered various aspects in the software maintenance tasks, namely,
domain, packages, classes, modules, methods, data, and variables. These questions
are categorized into four categories, namely, initial focus points, building the points,
understanding the relationship and relationship between the components. Silito’s
questions focused on the most common questions asked by the programmers, or
software maintainers, which need to be answered during the maintenance tasks. On
the contrary, the questions proposed by Pacione support both dynamic and static
information. However, in this study, only questions on static information have been
considered for static analysis.

The task design consists of the questions are related to understand the program
to handle the maintenance tasks. The questions are required to be related to pro-
gram understanding from the software documentation for the maintenance tasks.
Therefore, in this study, the program understanding framework used by Pacione
et al. [28] was considered to define the questions. There are nine tasks defined,
covering the aspects of reverse engineering tasks such as the redocumentation pro-
cess and other related components of reverse engineering to extract dynamic and
static information. The list of the nine program understanding tasks are applied by
Cornelissen et al. [30] to evaluate program understanding to complete the software
maintenance tasks. In additional, Storey [31] has specified and summarized the
study by Erdos and Sneed [32] with the most common questions asked about the
tool designed to support the maintenance tasks. Lange et al. [33] and Ko et al. [34]
have listed some of the questions to extract the software components for program
understanding. The program understanding questions in this study are tailored with
the existing studies specified above, as shown in Table 5. The questions basically
cover the abstraction on low and high levels, and map the questions to the specific
tasks based on abstraction level specified by Pressman [35].

3.8 Pilot Study

The pilot study needs to be conducted to make sure that the task designed for the
control group is achievable in the allocated time. The pilot study was conducted with
the Software Engineering Master’s degree program students studying at University
Teknologi of Malaysia (UTM). From the pilot study the questions, especially in
Section B, were required to go through several refinement processes to ensure the
subjects understood the questions asked and to avoid biases that had occurred
among the grouping.

3.9 Conduct the Controlled Experiment

During the controlled experiment, the subjects were divided into three groups. The
subjects were distributed into groups based on academic and industrial working
experience in the software industry (past or present) and the expertise level in VB.
Each group was provided with the tools (OBSR, UR, and VB), and the groups
were labeled based on the tools they used, such as OBSR, UR, and VB. Training



1036 S. Nallusamy, M.H. Hoo, F. A. Zulkifle

No. Questions Abstraction
Level

Tasks

QB1 What are the forms called by the form frm-
StudentDetail?

High (L3) A1, A4, A6,
A8, A9

QB2 Which event procedures and forms call the
form frmStudentDetai l?

High (L3) A3, A4, A6,
A8

QB3 List the methods called by function isregistered
from form frmSubjReg. What are the methods
name and the relevant object type?

Low (L4) A1, A3, A4,
A6, A8

QB4 Identify the function that retrieves the subject
status which is called by the function isregis-
tered from form frmSubjReg. What is the re-
turn value by the particular function?

Low (L4) A1, A2, A3

QB5 How many methods call the database table tbl-
payment?

Low (Data In-
teraction) (L5)

A1, A3, A6

QB6 Which function and object type creates the
database connection? Identify the variable re-
turn type for this function.

Low (Data In-
teraction) (L5)

A1, A69

Table 5. Proposed question in section B

session for an hour was conducted before the experiment itself with an explanation
and demonstration on the tools provided. In addition, the technical manual of each
tool was provided to the respective group. A brief introduction on the subject
system (CMS) was also given to the subjects by conducting a demo of the CMS and
providing a short description hand out about the modules available in the CMS.
As specified earlier, with a brief description on the CMS and the familiarity of
the subjects in the procedures of college and university environments, the subjects
should be able to obtain an overview about the subject system.

A challenging task to organize the VB programmers for this controlled exper-
iment. Additionally, those that know VB programming come from diverse work-
places and universities. Conducting the experiment in a single session was not
possible. Therefore, the experiment was done in sessions for both academic and in-
dustrial subjects. Academic subjects were tested in the university, whereas the
industrial tests were conducted after work. No distractions, subjects were not
in a contact with others, and they were not given alternate methods to assist
with the experiments. Because of this, equivalent steps could not be used for
all the experiments. Nonetheless, recommendations had been developed before-
hand.

To carry out the experiment, the subjects were provided with a laptop and the
test tool installed. They were asked to follow the following procedures to answer
the questionnaire given to them:

1. Read the description given on the first two pages on the purpose and the term
definition of this experiment.



Controlled Experiment for Assessing the Contribution of OBSR 1037

2. Next, continue with answering the survey in Section A, which was related to the
previous or current working experience.

3. Give a description on the maintenance tasks related questionnaire in Section B
to the subjects by using the related tools.

The subjects were also provided with a digital watch to record the start time
and end time for answering the questions. However, there was no time limit for them
to answer the questions. They were allowed to clarify some questions regarding the
tools used. All the sessions were supervised closely to prevent the subjects from
consulting others or using other tools.

4 RESULT AND DISCUSSION

In this section, the analysis of the results is discussed after the controlled experiment
is conducted with the 33 participants from three different groups, namely, OR group
(Ontology Based Software Redocumentation tool), UR group (Universal Report
tool), and VB group (VB tool), as specified in Subsection 3.6. The results are
analysed based on dependent variables time (T1 and T2) and score (S) to answer
the six questions in Table 6. The analysis of the results for each dependent variable
is discussed separately in the following subsections.

4.1 Controlled Experiment Result Analysis Based on Time (T1)

The first step in the experiment analysis is to record the time it takes to answer
the six questions in section B. In Figure 3, the OR group answered all questions in
the shortest time, except for Questions 2 and 6. The VB and UR groups took the
longest time to answer Question 2 (224 s) and Question 3 (253 s), respectively.

Figure 3. Mean value for T1 for each redocumentation tool (regardless of correctness)

The summary value of descriptive statistics (mean, median, and standard de-
viation) for each tool for 11 participants is shown in Table 6. There is no major



1038 S. Nallusamy, M.H. Hoo, F. A. Zulkifle

difference in timing based on T1 identified in the UR group. However, the VB group
shows a median of 16.49% compared to the mean value. There are six subjects
that had taken over 300 seconds to answer questions in the VB group, which affects
the mean value. However, overall, based on the mean data, the OR group obtained
a 26.80% decrease in completion time compared to the UR group, and a 35.80%
decrease in completion time compared to the VB group.

Question
OR UR VB

Mean Median
Standard

Mean Median
Standard

Mean Median
Standard

Deviation Deviation Deviation
Q1 74.727 80.000 20.967 125.727 120.000 37.721 153.818 135.000 70.188
Q2 131.909 115.000 62.168 223.636 237.000 61.296 124.000 126.000 36.984
Q3 70.546 65.000 24.345 161.818 165.000 25.945 253.364 237.00 103.160
Q4 90.000 88.000 18.319 92.091 81.000 30.622 107.455 90.000 50.049
Q5 56.364 51.000 14.868 77.909 74.000 18.223 181.909 165.000 82.725
Q6 199.091 163.000 115.915 169.455 162.000 53.573 143.394 114.000 81.543
Overall 103.773 84.500 72.937 141.773 129.500 63.409 161.652 135.00 85.630
Median
Compare
to Mean

−18.57% −8.66% −16.49%

Time, T1

reduce
based on
mean

26.80% 35.80%

Table 6. Descriptive statistics for time taken T1

Next, the Box’s M test was conducted. The results demonstrate that the p-
value was less than 0.1, and null hypothesis H10 is rejected for all six questions. On
the other hand, Johnson and Wichern [25] say that this result can be ignored if the
sample size for each tool is less than 20, which is applicable in our experiment. After
that, the MANOVA might proceed to look for the significant value. To summarize,
the MANOVA test for the six questions shows that time taken T1 has a significant
difference among the groups, with a p-value of 0.001, as shown in Table 7. The null
hypothesis H10 is rejected based on the MANOVA results. ANOVA test found a
statistically significant difference in the time required to answer questions Q1, Q2,
Q3, and Q5, as seen in Table 8, which is below the 0.1 probability threshold.

Box’s M
Wilks’
Lambda

F statistic Sig.

Six Questions 132.839 0.106 8.627 < .001

Table 7. Overall test using MANOVA

More analysis is required to identify the group that has a substantial mean pair
to answer the program understanding questions. Post-hoc, the Tukey HSD test was
performed. Table 9 shows the summaries of the findings of the comparisons, except
for Q4 and Q6. The negative sign in the mean difference values suggests that the
first group completed the question in a shorter amount of time as compared to the
second group. The OR group was able to exhibit a significant improvement for Q1
and Q3, as shown in Table 9.



Controlled Experiment for Assessing the Contribution of OBSR 1039

Question F(2, 32) p-value

Q1 7.814 0.02*

Q2 11.260 < 0.000*

Q3 23.155715 < 0.000*

Q4 0.634 0.538

Q5 20.108 < 0.000*

Q6 0.900 0.417

Table 8. ANOVA test results for time taken (T1) regardless of correctness

Questions Significance Pair Mean Difference p-value

OR-UR -51.000 0.045
Q1

OR-VB −79.091 0.001

Q2
OR-UR −91.727 0.001
VB-UR −99.636 0.001

OR-UR −91.273 0.005

OR-VB −182.81 0.000Q3
UR-VB −91.546 0.005

Q5
OR-VB −125.546 0.000
UR-VB −104.000 0.000

Table 9. List of pairs that have a significant difference based on the mean of completion
time (T1) for each question using the Tukey HSD test (α = 0.1)

The Post-Hoc analysis shows that the OR group’s completion time was able
to show a significant mean difference in three questions compared to UR and VB,
namely, Q1, Q2, and Q3. However, the UR group was only able to show a significant
mean difference compared to VB for two questions, namely, Q3 and Q5. Overall,
the UR and VB group were not able to show a significant improvement based on T1

compared to the OR group. However, the OR group was able to show a significant
improvement compared to both the UR and VB groups. Based on the Tukey HSD
test results, the alternative hypothesis (H2) can be accepted for Q1, Q2, Q3, and Q5.

4.2 Controlled Experiment Result Analysis Based on Score (S)

The following analysis is based on the score (S). A higher average for the score was
observed for all questions answered by the tools in the experiment. Figure 4 shows
the highest scores for Q1 (10), Q3 (10), Q4 (10), Q5 (11) and Q6 (10), by the OR
group. For Q4 (10), the UR group shares the same value with the VB group. The
lowest score was obtained by the UR group and the VB group, which also share the
same value for Q3 (2).

Table 10 shows the descriptive statistics for each question, and the questions
overall: Descriptive data reveal that for each question, the OR group’s mean dif-
ference is bigger compared to other tools. The Box’s M test was conducted. The
p-value is less than 0.1, hence the null hypothesis H20 can be rejected for the Box’s



1040 S. Nallusamy, M.H. Hoo, F. A. Zulkifle

Figure 4. Sum of score for correct answers by group

M test. Refer to Subsection 3.4 for clarification on the Box’s M test, which does not
equate covariance matrices. This finding can be ignored in this experiment if the
sample size for each tool is less than 20, which is feasible with 11 subjects per tool.
Next, the MANOVA test was continued, and the results showed that the score (S)
obtained had a significant difference among the groups, with a p-value of < .001, as
shown in Table 11. Therefore, H20 can be rejected.

Question
OR UR VB

Mean Median
Standard

Mean Median
Standard

Mean Median
Standard

Deviation Deviation Deviation
Q1 0.909 1.000 0.302 0.818 1.000 0.405 0.727 1.000 0.467
Q2 0.545 1.000 0.522 0.727 1.000 0.467 0.818 1.000 0.405
Q3 0.909 1.000 0.302 0.182 0.000 0.405 0.182 0.000 0.405
Q4 0.909 1.000 0.302 0.818 1.000 0.405 0.818 1.000 0.405
Q5 1.000 1.000 < 0.000 0.909 1.000 0.302 0.273 0.000 0.467
Q6 0.909 1.000 0.302 0.727 1.000 0.467 0.364 0.000 0.505
Overall 0.864 1.000 0.346 0.697 1.000 0.463 0.530 1.000 0.503
Median
Compare
to Mean

−23.90% −62.85%

Table 10. Descriptive statistics for Score (S))

The ANOVA test was conducted and test results show that the significant dif-
ference in the score was obtained by the groups for Q3, Q5, and Q6, as shown in
Table 12 (less than an alpha value of 0.1). The significant pair difference of the score
among the groups for the Q3, Q5, and Q6 was identified using Post-Hoc ANOVA
Tukey HSD, as shown in Table 13. In particular, the OR group shows a signifi-
cant improvement in Q3 compared to the UR group (0.727) and VB group (0.727);
Q5 and Q6 for VB (Q5: < 0.001) (Q6: 0.016) group only. The OR group was able
to show 50% effectiveness compared to the UR group, which only obtained 17% ef-
fectiveness in answering the program understanding questions. Based on the Tukey
HSD test results shown in Table 13, the alternative hypothesis H2 can be accepted
for Q3, Q5, and Q6.



Controlled Experiment for Assessing the Contribution of OBSR 1041

Box’s M Wilks’ Lambda F statistic Sig.

Six Questions 46.416 0.222 4.680 < .001

Table 11. Overall test using MANOVA

Question F(2, 32) p-value

Q1 0.576923 0.568

Q2 0.972222 < 0.390

Q3 13.913043 < 0.001*

Q4 0.217391 0.806

Q5 16.764706 < 0.001*

Q6 4.516129 0.019*

Table 12. ANOVA test results for correctness (S)

4.3 Controlled Experiment Result Analysis Based on Time (T2)

The following analysis process proceeds to attempt to capture the time for the
correct answer only T2. The mean of the time taken T2 by the OR group is the
shortest for all of the questions except for Question 2 and 6. The UR group takes
the longest time to answer Question 2 and 4 correctly. The VB group takes the
shortest time to answer Question 2 and 6 correctly, and the longest time taken for
answering Question 1, 3 and 5, as shown in Figure 5.

Mean, median, and standard deviation T2 for each question are displayed in
Table 14. The OR group had a 29.96% drop in completion time when compared
to the UR group, and a 68.47% drop in completion time when compared to the
VB group. The next test carried out was the MANOVA test. The MANOVA
test could not be done due to the fact that the sample size was varied for each
group. Alternatively, the ANOVA test was conducted. For every question except
question Q4, as shown in Table 15, the results demonstrate a statistically significant
difference. Additional study is necessary to discover which of the groups that shown
a significant improvement to the program understanding questions.

Hence, a post-hoc analysis test was performed using Hochberg’s GT2, as shown
in Table 16, for all questions except Q4. The negative sign in the mean difference
values suggests that the first group completed the question in a shorter amount of

Questions Significance Pair Mean Difference p-value

OR-UR 0.727 < 0.001
Q3

OR-VB 0.727 < 0.001

Q5
OR-VB 0.727 < 0.001
UR-VB 0.636 < 0.001

Q6 OR-VB 0.545 0.016

Table 13. List of pairs that have a significant difference based on the mean of correctness
for each question using the Tukey HSD test (α = 0.1)



1042 S. Nallusamy, M.H. Hoo, F. A. Zulkifle

Figure 5. Mean of time taken T2 to answer each question correctly for each tool

Question
OR UR VB

Mean Median
Standard

Mean Median
Standard

Mean Median
Standard

Deviation Deviation Deviation
Q1 76.200 82.000 21.493 122.444 112.000 40.544 135.125 127.000 39.139
Q2 118.333 114.500 17.374 229.375 228.000 65.459 110.667 116.000 24.510
Q3 65.800 63.000 19.578 181.000 181.000 43.841 187.00 187.000 70.7111
Q4 88.000 86.500 18.000 92.333 73.000 33.864 103.222 86.000 54.408
Q5 56.364 51.000 14.868 76.000 73.000 18.012 119.667 103.000 34.196
Q6 171.000 162.000 72.696 157.875 163.000 42.466 90.000 101.500 31.885
Overall 93.684 83.000 52.048 133.761 119.500 66.999 117.114 103.000 44.402
Median
compare
to Mean

−11.40% −10.67% −12.05%

Time, T2

reduced
based on
mean

−29.96% −68.47%

Table 14. Descriptive statistics for Time T2

time, as compared to the second group. Table 16 demonstrates that the OR group
had an improved time taken T2 to answer Q1, Q3, and Q5 (when compared to both
the UR group (Q1: −46.244, Q3: −115.200, Q5: −19.636) and the VB group (Q1:
−46.244, Q3: −121.200, Q5: −63.303)) and Q2 with UR group (Q2: −111.043).
The VB groups has improved compared to the OR group for Q6. The OR group
was able to properly answer 83% of the questions, compared to the UR group, with
an efficiency of only 33%. Based on the Hochberg’s GT2 test, the null hypothesis
H10 can be rejected, and the alternative hypothesis H1 should be accepted for all
questions, except for Q4, based on time T2.

The results presented in Table 16 show that the OR group shows a significant
improvement in the time taken T2 to correctly answer Q1, Q3, and Q5, compared
to both the UR group (Q1: −46.244, Q3: −115.200, Q5: −19.636), and the VB
group (Q1: −46.244, Q3: −121.200, Q5: −63.303), and Q2 with UR group (Q2:
−111.043). For Q6, the VB groups shows an improvement compared to the OR
group. The OR group was able to show 83% efficiency to correctly answer the



Controlled Experiment for Assessing the Contribution of OBSR 1043

Question Between Groups Within Groups F p-value

Q1 2 24 7.640 0.003*

Q2 2 20 19.274 0.001*

Q3 2 11 21.187 0.001*

Q4 2 25 0.401212 0.673742

Q5 2 21 13.580795 0.001*

Q6 2 19 2.893 0.080*

Table 15. ANOVA test result for Time T2

questions compared to the UR group, with an efficiency of only 33%. The detailed
findings of how the tools and subjects involvement contributes to the efficiency to
correctly answer the questions are discussed in Section 5. Based on the Hochberg’s
GT2 test, the null hypothesis H10 can be rejected, and the alternative hypothesis
H1 should be accepted for all questions, except for Q4, based on time T2.

Questions Significance Pair Mean Difference p-value

OR-UR −46.244 0.021
Q1

OR-VB −58.925 0.004

Q2
OR-UR −111.043 < 0.001
UR-VB 118.708 < 0.001

OR-UR −115.200 0.002
Q3

OR-VB −121.200 0.001

Q5
OR-UR −19.636 0.076
OR-VB −63.303 < 0.001
UR-VB −43.667 0.006

Q6 OR-VB 81.000 0.080

Table 16. List of pairs that have a significant difference based on the mean of time T2 for
each question using Hochber’s GT2 test (α = 0.1)

5 FINDINGS FROM THE CONTROLLED EXPERIMENT

Based on the analysis in the previous sections, the results show that the software
maintainers are able to understand and provide significant improvement in program
understanding by utilizing the OBSR tool to accomplish the maintenance task. In
this section, each question is discussed to find the impact of the tools to understand
the program and support the maintenance task.

Q1: What are the forms called by the form frmStudentDetail?

The main purpose of Question 1 is to identify and understand the overall view
of the software components in the subject system (CMS). The specific question
has the aim to understand the interaction between frmStudentDetail and other
forms during the maintenance task.



1044 S. Nallusamy, M.H. Hoo, F. A. Zulkifle

The OR group showed significant improvement in T1 and T2 by a 68% and
a 61% mean difference, respectively, when compared to the UR group, and 91%
of the subjects obtained the correct response. This OBSR tool was able to show
the forms called by the frmStudentDetail by searching the object name in the
Search Form section. For subjects, the form must be named frmStudentDetail
and clicking the Generate Graph button, as shown in Figure 6 a), and generates
the dependency graph, as shown in Figure 6 b). The subjects gained replies
by querying the semantic links between objects in the OBSR tool. For the UR
tool, subjects must find the location of the form fromStudentDetail from the tree
view, which is taking 60.5% longer. Conversely, the VB group used the search
capability built into the tool to search the forms called by frmStudentDetail
with the “.show” word. Therefore, by using the local search, the subject is
able to get the forms called by frmStudentDetail. This happened, but only to
a few participants in the VB group who had unintentionally clicked on global
search. This caused inaccurate results. Several of the individuals began from
the beginning, which influenced the VB group’s results on T1 and T2 by a 51%
and 44% mean difference, respectively, with the OR group.

In the UR tool, users can click on the Form Diagram section, and the depen-
dencies between forms will be shown in tree view. The subjects have to find the
location of form frmStudentDetail from the tree view, which consumes 60.5%
more mean difference in time to get the correct answer in searching the called
form, compared with the OR group. The efficiency of finding the form will be
worse if the software system becomes more complex.

Q2: Which event procedures and forms call the form frmStudentDetail?

Question 2 Lists the form(s) that invoke frmStudentDetail in order to identify
the internal structure and relationships within the subject system (CMS). Using
VB 6.0 in the tool, the VB group discovered the solutions for T1 and T2 with
a 6.5% and 6% percent mean difference, respectively, as compared to the OR
group. The subjects’ experience in Q1 improves the use of the search function
in Q2.

The average time taken to answer Q2 correctly by the UR group is 106% longer
than by the VB group. The UR group was required to trace the frmStudent-
Detail.show command in every single method, and some of the participants
overlooked of the content.

On the other hand, surprisingly, the OR group had taken an average time of
6.3% longer to correctly answer the question compared to the VB group. The
OR group provides the semantic navigation (isCallBy), where the users are only
required to click on the frmStudentDetail shown in Figure 6 b). This will list
the method name, which is called the frmStudentDetail, as shown in Figure 7.
Some of the subjects in the OR groups were confused with the semantic link
provided, and manually searched in the method diagram section.



Controlled Experiment for Assessing the Contribution of OBSR 1045

Figure 6. a) Search forms function. b) List of the forms called by form frmStudentDetail
generated in the dependency graph view via OBSR tool.

Figure 7. List of the methods called by the form frmStudentDetail using OBSR tool



1046 S. Nallusamy, M.H. Hoo, F. A. Zulkifle

Q3: List the methods called by function isregistered from form frmSubj-
Reg. What are the methods names and the relevant object types?

Question 3 is useful for identifying functional dependencies within other meth-
ods. The OR group responded in the quickest time for both T1 and T2, and
their overall efficiency was 56% and 64% greater, respectively, compared to
the UR group, and 91% of the individuals obtained the correct answer. The
OR group was able to get the solution to this question by examining the term
isregistered frmSubjReg in Figure 8 a). Figure 8 b) depicts the dependence
graph. The hasCallFunction semantically links the functions, illustrating the
dependency relationship. Instead, the subject might utilize the textual search
feature to build the list.

Figure 8. a) Search method. b) List of the methods called by the function isregis-
tered frmSubjReg method generated in the dependency graph view via OBSR tool.



Controlled Experiment for Assessing the Contribution of OBSR 1047

The UR group took 128% and 174% more time than the OR group, respectively,
for both T1 and T2 mostly due to the lack of a search option in the UR group.
Only 18% of the students were able to correctly answer the test questions.
The subjects opted for an alternative approach in choosing the methods: the
UR offers hyperlink and blue text color to distinguish the techniques. This
feature benefits the subjects, although all the approaches are not indicated in
the UR tools. The subjects were instructed to look very closely to see if anyone
employed an alternative strategy. The subjects were also unsure – it is a method
or a variable? And so several of them chose the incorrect answer.

The VB group had the greatest discrepancy in time T1 and T2, with a mean dif-
ference of 256%. This shows that the subjects were unable to locate the methods
using only the source code. The VB participants had the same challenge as the
UR group, and they had to look for each term individually. Click “definition” to
find whether the word is a method or a variable. Some of the individuals were
able to identify procedures based on their parameters or values. This illustrates
that the OBSR tool looks for and finds related components based on semantic
relationships, and outperforms the other two tools.

Q4: Identify the function that retrieves the subject status which is called
by function isregistered from form frmSubjReg? What is the return
value by the particular function?

Question 4 basically requires the groups to find the function used in the function
isregistered under the form frmSubjReg. The required function retrieves the
subject status from the list of functions. The subjects were required to find
the function name from the list identified in Q3. In addition, the groups were
required to identify the return value of that function.

The OR group was the fastest group for T1 by 2% compared to the VB group.
For T2, it had a significant improvement of 25% compared to the UR group.
The OR group was required to go through the 10 methods generated from Q3
and find the function which retrieves the subject status. The OR group was
able to answer this question more efficiency and effectiveness compared to the
other two groups, as the answer can be retrieved from the function name itself,
which represents the task of its function in the dependency diagram. The OR
group navigated the functional dependency diagram using a link provided by
the function getSubjStatus to find the return value, as shown in Figure 9.

As in Q3, the UR group identified the function name from the link provided for
each method in the source code view. However, the subjects had to manually
search through source code view and find the function name getSubjStatus. The
subjects had taken 2.2% more time compared to the OR group to go through
the source code and find the getSubjStatus function. Next, the subjects clicked
on the function getSubjStatus to view the code and find the return value.

The VB group took a 19% longer time compared to the OR group in T1. Al-
though, in T2, they were 0.1% better than the UR group. Additionally, 82% of



1048 S. Nallusamy, M.H. Hoo, F. A. Zulkifle

Figure 9. Return value (hasOutputType) and other related descriptions for function get-
SubjStatus in OBSR tool

the participants scored correctly, which is little lower than the OR group with
91% of the respondents achieving the correct answer. The VB group was fur-
ther forced to manually look through the source code line by line to find the
procedure. Some of the subjects simply submitted the answer after first finding
the solution using the same methodology, which is erroneous. In conclusion, the
answer status was “subjstatus”, but in reality it was a variation variable. It is
a positive result because the activity was completed more efficiently, with useful
links and navigation provided.

Q5: How many methods call the database table tblRegProgram?

Question 5 required the subject to understand the data level interaction with
the methods in the program. This aids the program maintainers through the
adaptive and perfective maintenance tasks. This question asked the subjects
to list the functions that interact with or use the table tblRegProgram. Dur-
ing the controlled experiment, the OR group was able to improve the program
understanding by a 28% and 37% mean difference when compared to the UR
group. The OR group obtained a 100% correct answer for Q5. In the OBSR
tool, the subjects were required to locate the table name from the general
search option. These results reveal all the tables associated by the semantic
relationship of “hasCalledData” and which methods use the table name (Fig-
ure 10). Subjects who opted to search and traverse the table tblRegProgram
in the main part on “Data Item” found the table tblRegProgram. Once the
user clicks on it, it lists the object properties and value. Using the object at-
tributes, the OR group found the list of the table. When a function’s use of
a table is significant, a detailed description of the table is essential for the func-
tion.

Although, the UR group’s performance at time T1 and T2 were 39% and
58% lower, respectively, than the OR group, 10% UR group offers the search
feature, which is slower and requires more time to find the table tblRegPro-
gram with keyword search in the complete program. This is usually done
by using the Glossary Function in the UR Tool. The glossary offers the list



Controlled Experiment for Assessing the Contribution of OBSR 1049

Figure 10. List of functions using table tblRegProgram in OBSR tool

of code phrases in alphabetical order. Nevertheless, the glossary gives you
the source code for each procedure in the table tblRegProgram. Long results
lead to the number of methods that use the table tblRegProgram being dif-
ficult to find. Overall, the UR group’s efficiency differs from the other two
groups.

Compared to the OR group, the VB group had the longest duration by a 225%
and 150% mean difference for T1 and T2. 29 methods utilised the tblReg-
Program, and the users had to manually find and count each. Many subjects
had to check and tally procedures to make sure that the table tblRegProgram
is not misused. Additionally, it does not provide a single viewpoint to skim
at all the methods in the list to comprehend their behavior. Thus, for quick
response during maintenance jobs, relevant searching output and input to the
future maintenance actions are required.



1050 S. Nallusamy, M.H. Hoo, F. A. Zulkifle

Q6: Which function and object type creates the database connection?
Identify the variable return type for this function.

The last question is Question 6, requires the subjects to find return type of the
method, and the database connection string supplied by the function. This is
a portion of the previous question. When we have methods using table tblReg-
Program, we can expect to see that table function in action. Subject should be
able to locate the function in the list of methods on Question 3. The OR group
took the longest time for T1 and T2 by a 34% and 90% mean difference, re-
spectively, but had the greatest total, with 91% of subjects answering correctly.
Only one function from Question 3 was required, and the function that found
the database connection was shown. More than half of the OR group members
found the cnnLess function. The subjects were also required to check into the
real code to verify the answer. The subjects were simply required to explore the
semantic link through the object characteristics hasCallMethod and hasOutput-
Type. It takes the longest since subjects have to comprehend the proposition,
devise a strategy, then apply it in the OBSR tool to get the proper response.
The navigation delivers relevant links that assists the subjects in finding the
proper solution.

In contrast, the UR group took longer time for both T1 and T2 by a 17% and
76% mean difference, respectively, compared to the VB group. UR group had
to choose one of the methods offered in Q5 and find the connection string. UR
group was tasked with going through the source code line by line to discover the
correct connection string function. The List of Routine was required in order to
verify the chosen approach. This included fewer steps, and hence, the UR group
had taken a longer time.

The VB group took the shortest time for T1 and T2 by a 15% and 43% mean
difference, respectively, compared to the UR group. However, only 37% of the
VB group subjects were able to score correctly. The VB group had to find
from the source code related to Question 5, which have highlighted the term
tblpayment.

The OR group performed better on all of the questions except for Question 2,
although the substantial improvement was seen for Questions 3, 5, and 6. Nev-
ertheless, only in Question 3 is the OR group’s mean different from the UR
group and the VB group. Based on the correctness, the OBSR technique has
a significant statistical advantage in program understanding. Hence, H20 can be
rejected as the null hypothesis, and H2 is accepted for the alternative.

The OR group exhibits a substantial mean difference for both variables T1 and
T2 for Questions 1 and 3. Only in Question 5 do the OR group and the VB
group have substantial differences. But, VB outperforms OR for variable T2’s in
Question 6. However, in comparison to the UR group, the OR group experiences
greater improvements for both T1 and T2 in Question 2, and in Question 5 as
well. It was found that OBSR considerably improved the program knowledge to



Controlled Experiment for Assessing the Contribution of OBSR 1051

perform the maintenance task for Questions 1, 2, 3, 5, and 6. Therefore, H10 can
be rejected, and the alternative H1 can be accepted for all questions except for
Question 4.

6 ANALYSING VALIDITY THREATS

This section provides a detailed discussion on the possible threats to this controlled
experiment design. The validity threats discussed in this study are based on four
categories; internal, external, construct and conclusion validity [36]. Each validity
test consist of several factors that are important to make sure proper planning is in
place to avoid problems that can mislead the results of the controlled experiment.

6.1 Internal Validity

The internal validity basically includes the factors that affect the treatment of the
dependent variable. Some of the factors are as follows:

Task: The task design may be biased to the advantage of the OBSR tool. This
threat has been diminished by using the task design proposed by the existing
evaluation using the controlled experiment in program understanding [28, 31,
33].

Different session: The fact that the subjects were required to be involved in this
experiment in separate sessions may affect the results. To mitigate this threat,
the pilot experiment was conducted with the Master’s degree program students
to obtain a stable and reliable experimental setup by refining the question struc-
ture or the experimental procedure. In addition, for each session, the subjects
were provided with clearly defined procedures and guidelines to understand the
overall flow of the experiment.

6.2 External Validity

The external validity basically includes the factor which gives generalizability of
experimental results. In this controlled experiment, subjects are categorized incor-
rectly and may not be skilled enough. Before the trial, subjects were examined to
determine how long they have been active in different types of projects and utilizing
VB in software development. To make sure that the subjects understood the term,
they were also provided an explanation relating the skill level (novice, advanced
beginners, competent, proficient and expert). The second issue is if expertise is
not dispersed properly according to the numerous independent factors, which may
impact the findings. This is due to the shortage of software practitioners with basic
and expert skills.



1052 S. Nallusamy, M.H. Hoo, F. A. Zulkifle

7 CONCLUSION AND FUTURE WORK

We presented a controlled experiment aimed at evaluating the OBSR approach to
understand the extensive of the OBSR tool in improving program understanding
during the software maintenance task. The experiment was measured based on
time (T1 and T2) and correctness (S) of the answers provided by the subjects. The
analysis of the experiment was conducted by using MANOVA and ANNOVA tests.
In addition, the Post-Hoc test was also conducted to identify the significant mean
difference from the ANOVA results. The results revealed that the OBSR prototype
tool showed a significant difference based on the time required to complete the
questions. Overall, for T1, the alternative hypotheses for both H10 and H20 were
accepted based on the significant improvement in the Post-Hoc analysis by the OR
group compared to the UR and VB groups. However, further evaluation is required
to strengthen the capability of the OBSR approach in terms of usability and features
provided by the OBSR approach compared to the existing approach. The usability
study is important to identify whether the OBSR tool is able to provide features
and functions that can assist software maintainers as equivalent as or better than
to the existing tools. On the other hand, feature analysis also required to compare
the capabilities of the OBSR approach and existing redocumentation approaches in
querying the repository and presenting the exploration functionalities.

REFERENCES

[1] Chikofsky, E. J.—Cross, J. H.: Reverse Engineering and Design Recovery:
A Taxonomy. IEEE Software, Vol. 7, 1990, No. 1, pp. 13–17, doi: 10.1109/52.43044.

[2] Geist, V.—Moser, M.—Pichler, J.—Beyer, S.—Pinzger, M.: Leveraging
Machine Learning for Software Redocumentation. 2020 IEEE 27th International
Conference on Software Analysis, Evolution and Reengineering (SANER), 2020,
pp. 622–626, doi: 10.1109/SANER48275.2020.9054838.

[3] Le Borgne, A.: ARIANE: Automated Re-Documentation to Improve Software
Architecture Understanding and Evolution. Doctoral dissertation, École nationale
supérieure des Mines d’Alès (IMT Mines Alès), 2020.

[4] Sneed, H—Verhoef, C.: Re-Implementing a Legacy System. Journal of Systems
and Software, Vol. 155, 2019, pp. 162–184, doi: 10.1016/J.JSS.2019.05.012.

[5] Purbasari, A.: Software Redocumentation to Support the Maintenance of an In-
tegrated Information System at University of Pasundan Bandung. National Con-
ference of Information System (KNSI), Bandung Institute of Technology. Avail-
able at: http://jurnal.atmaluhur.ac.id/index.php/knsi2018/article/view/

494/419, 2018. (Software Redocumentation untuk Mendukung Pemeliharaan Sistem
Informasi Terpadu Universitas Pasundan (SITU)).

[6] Canfora, G.—Di Penta, M.—Cerulo, L.: Achievements and Challenges in
Software Reverse Engineering. Communications of the ACM, Vol. 54, 2011, No. 4,
pp. 142–151, doi: 10.1145/1924421.1924451.

https://doi.org/10.1109/52.43044
https://doi.org/10.1109/SANER48275.2020.9054838
https://doi.org/10.1016/J.JSS.2019.05.012
http://jurnal.atmaluhur.ac.id/index.php/knsi2018/article/view/494/419
http://jurnal.atmaluhur.ac.id/index.php/knsi2018/article/view/494/419
https://doi.org/10.1145/1924421.1924451


Controlled Experiment for Assessing the Contribution of OBSR 1053

[7] van Deursen, A.—Moonen, L.: Documenting Software Systems Using Types.
Science of Computer Programming, Vol. 60, 2006, No. 2, pp. 205–220, doi:
10.1016/j.scico.2005.10.006.

[8] Tilley, S. R.: A Reverse-Engineering Environment Framework. Technical Report
CMU/SEI-98-TR-005, Software Engineering Institute, Carnegie Mellon University,
1998. Available at: http://resources.sei.cmu.edu/library/asset-view.cfm?

AssetID=13047, doi: 10.21236/ada343688.

[9] Quante, J.: Do Dynamic Object Process Graphs Support Program Understand-
ing? – A Controlled Experiment. 2008 16th IEEE International Conference on Pro-
gram Comprehension, 2008, pp. 73–82, doi: 10.1109/ICPC.2008.15.

[10] Sjoeberg, D. I. K.—Hannay, J. E.—Hansen, O.—Kampenes, V.B.—Kara-
hasanovic, A.—Liborg, N.-K.—Rekdal, A.C.: A Survey of Controlled Experi-
ments in Software Engineering. IEEE Transactions on Software Engineering, Vol. 31,
2005, No. 9, pp. 733–753, doi: 10.1109/TSE.2005.97.

[11] Easterbrook, S.—Singer, J.—Storey, M.-A.—Damian, D.: Selecting Em-
pirical Methods for Software Engineering Research. In: Shull, F., Singer, J.,
Sjøberg, D. I.K. (Eds.): Guide to Advanced Empirical Software Engineering.
Springer, London, 2008, pp. 285–311, doi: 10.1007/978-1-84800-044-5 11.

[12] Kitchenham, B.—Linkman, S.—Law, D.: DESMET: A Methodology for Evalu-
ating Software Engineering Methods and Tools. Computing and Control Engineering
Journal, Vol. 8, 1997, No. 3, pp. 120–126, doi: 10.1049/cce:19970304.

[13] Pfleeger, S. L.: Experimental Design and Analysis in Software Engineering. Annals
of Software Engineering, Vol. 1, 1995, No. 1, pp. 219–253, doi: 10.1007/BF02249052.

[14] D’Avila, L. F.—Farias, K.—Barbosa, J. L.V.: Effects of Contextual Informa-
tion on Maintenance Effort: A Controlled Experiment. Journal of Systems and Soft-
ware, Vol. 159, 2020, Art. No. 1110443, doi: 10.1016/j.jss.2019.110443.

[15] Nallusamy, S.—Ibrahim, S.—Mahrin, M.N.: A Proposed Framework for Soft-
ware Redocumentation Using Ontology Based Approach and Integration with Stan-
dard Software Documentation. The Third International Conference on Computer En-
gineering and Technology (ICCET 2011), 2011, Art. No. 79, doi: 10.1115/1.859735.pa-
per79.

[16] Nallusamy, S.—Ibrahim, S.—Mahrin, M.N.: A Software Redocumentation
Process Using Ontology Based Approach in Software Maintenance. International
Journal of Information and Electronics Engineering, Vol. 1, 2011, No. 2, pp. 133–139,
doi: 10.7763/ijiee.2011.v1.21.

[17] Harris, J.: CS1: Where is Visual Basic? Journal of Computing Sciences in Colleges,
Vol. 16, 2001, No. 2, pp. 223–228.

[18] Logan, W.: Life After Visual Basic 6.0 – Where to Go from Here. 2008 IEEE
International Automatic Testing Conference (AUTOTESTCON), 2008, pp. 518–521,
doi: 10.1109/AUTEST.2008.4662673.

[19] Lakshmi, D. S—Perumal, R. S.—Mouli, P.V. S. S. R.C.: Challenges and Issues
in Code Migration from VB 6.0 to VB.NET. International Journal of Computer
Information Systems, Vol. 2, 2011, No. 3, pp. 56–59.

https://doi.org/10.1016/j.scico.2005.10.006
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=13047
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=13047
https://doi.org/10.21236/ada343688
https://doi.org/10.1109/ICPC.2008.15
https://doi.org/10.1109/TSE.2005.97
https://doi.org/10.1007/978-1-84800-044-5_11
https://doi.org/10.1049/cce:19970304
https://doi.org/10.1007/BF02249052
https://doi.org/10.1016/j.jss.2019.110443
https://doi.org/10.1115/1.859735.paper79
https://doi.org/10.1115/1.859735.paper79
https://doi.org/10.7763/ijiee.2011.v1.21
https://doi.org/10.1109/AUTEST.2008.4662673


1054 S. Nallusamy, M.H. Hoo, F. A. Zulkifle

[20] Wettel, R.—Lanza M.—Robbes R.: Software Systems as Cities: A Controlled
Experiment. Proceedings of the 33rd International Conference on Software Engineer-
ing (ICSE ’11), 2011, pp. 551–560, doi: 10.1145/1985793.1985868.

[21] Jedlitschka, A.—Pfahl, D.: Reporting Guidelines for Controlled Experiments
in Software Engineering. 2005 International Symposium on Empirical Software Engi-
neering, 2005, pp. 95–104, doi: 10.1109/ISESE.2005.1541818.

[22] Juristo, N.—Vegas, S.: Analyzing Software Engineering Experiments: Every-
thing You Always Wanted to Know But Were Afraid to Ask. Proceedings of the 38th

International Conference on Software Engineering Companion, 2016, pp. 900–901,
doi: 10.1145/2889160.2891054.

[23] Tadonki, C.: Universal Report: A Generic Reverse Engineering Tool. 12th

IEEE International Workshop on Program Comprehension, 2004, pp. 266–267, doi:
10.1109/WPC.2004.1311073.

[24] Meijer, E.: Visual Basic. Companion to the 22nd ACM SIGPLAN Conference on
Object-Oriented Programming Systems and Applications Companion (OOPSLA ’07),
2007, pp. 860–861, doi: 10.1145/1297846.1297926.

[25] Johnson, R.A.—Wichern, D.W.: Comparisons of Several Multivariate Means.
Applied Multivariate Statistical Analysis. Pearson, 2007, pp. 273–359.

[26] Di Penta, M.—Stirewalt, R. E.K.—Kraemer, E.: Designing Your Next Em-
pirical Study on Program Comprehension. Proceedings of the 15th IEEE Interna-
tional Conference on Program Comprehension (IOPC ’07), 2007, pp. 281–285, doi:
10.1109/ICPC.2007.17.

[27] Atherton, J.: Competence, Proficiency and Beyond. 2013 [cited 2013 27 May 2014];
Available at: http://www.doceo.co.uk/background/expertise.htm.

[28] Pacione, M. J.—Roper, M.—Wood, M.: A Novel Software Visualisation Model
to Support Software Comprehension. 11th Working Conference on Reverse Engineer-
ing, 2004, pp. 70–79, doi: 10.1109/WCRE.2004.7.

[29] Sillito, J.—Murphy, G.C.—De Volder, K.: Questions Programmers Ask Dur-
ing Software Evolution Tasks. Proceedings of the 14th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (SIGSOFT ’06/FSE-14), 2006,
pp. 23–24, doi: 10.1145/1181775.1181779.

[30] Cornelissen, B.—Zaidman, A.—van Deursen, A.: A Controlled Experiment
for Program Comprehension Through Trace Visualization. IEEE Transactions on
Software Engineering, Vol. 37, 2011, pp. 341–355, doi: 10.1109/TSE.2010.47.

[31] Storey, M.-A.: Theories, Tools and Research Methods in Program Comprehension:
Past, Present and Future. Software Quality Journal, Vol. 14, No. 3, pp. 187–208, doi:
10.1007/s11219-006-9216-4.

[32] Erdos, K.—Sneed, H.M.: Partial Comprehension of Complex Programs (Enough
to Perform Maintenance). 6th International Workshop on Program Comprehension
Proceedings (IWPC ’98), 1998, pp. 98–105, doi: 10.1109/WPC.1998.693322.

[33] Lange, C.—Sneed, H.M.—Winter, A.: Comparing Graph-Based Program
Comprehension Tools to Relational Database-Based Tools. Proceedings 9th Inter-
national Workshop on Program Comprehension (IWPC 2001), 2001, pp. 209–218,
doi: 10.1109/WPC.2001.921732.

https://doi.org/10.1145/1985793.1985868
https://doi.org/10.1109/ISESE.2005.1541818
https://doi.org/10.1145/2889160.2891054
https://doi.org/10.1109/WPC.2004.1311073
https://doi.org/10.1145/1297846.1297926
https://doi.org/10.1109/ICPC.2007.17
http://www.doceo.co.uk/background/expertise.htm
https://doi.org/10.1109/WCRE.2004.7
https://doi.org/10.1145/1181775.1181779
https://doi.org/10.1109/TSE.2010.47
https://doi.org/10.1007/s11219-006-9216-4
https://doi.org/10.1109/WPC.1998.693322
https://doi.org/10.1109/WPC.2001.921732


Controlled Experiment for Assessing the Contribution of OBSR 1055

[34] Ko, A. J.—DeLine, R.—Venolia, G.: Information Needs in Collocated Soft-
ware Development Teams. 29th International Conference on Software Engineering
(ICSE ’07), 2007, pp. 344–353, doi: 10.1109/ICSE.2007.45.

[35] Pressman, R.: Software Engineering: A Practitioner’s Approach. 7th Edition. Mc-
Graw Hill, 2010.

[36] Karoulis, A.—Stamelos, I. G.—Angelis, L.—Pombortsis, A. S.: Formally
Assessing an Instructional Tool: A Controlled Experiment in Software Engineer-
ing. IEEE Transactions on Education, Vol. 48, 2005, No. 1, pp. 133–139, doi:
10.1109/TE.2004.837047.

Sugumaran Nallusamy received his Ph.D. in computer scien-
ce (2015) from the University of Technology Malaysia. He is
Assistant Professor attached to the Department of Internet En-
gineering and Computer Science, University Tunku Abdul Rah-
man, Sungai Long. He has been awarded with the Best Ses-
sion Presentation at the International Conference on Advanced
Computer Science and Information System, Indonesia in 2010
and also Certificate of Excellent Paper at the International Con-
ference on Software and Information Engineering (ICSIE 2011).
His field of interest is reverse engineering, big data, data analysis

and redocumentation for software maintenance.

Meei Hao Hoo is Assistant Professor and Researcher at the
Department of Internet Engineering and Computer Science, Uni-
versiti Tunku Abdul Rahman. She received her Ph.D. degree in
information science from the National University of Malaysia.
Her research interests include usability engineering, persuasive
design and data mining. She has more than 10-year experience in
teaching related to system development and design, and 5-year
experience in the private sector in areas related to information
system audit and system administration.

Farizuwana Akma Zulkifle is Senior Lecturer and Research-
er at the Faculty of Computer Science and Mathematics at the
University Teknologi Mara (UiTM). She holds Ph.D. degree in
computer science from the University of Technology Malaysia.
She teaches and researches in areas of data analysis, big-data,
image processing and web application development. For 7 years
she worked in the private sector in areas related to information
systems planning and implementation projects.

https://doi.org/10.1109/ICSE.2007.45
https://doi.org/10.1109/TE.2004.837047

