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Abstract. Extended Partial Dynamic Backtracking (EPDB) is a repair algorithm
based on PDB. It deals with Dynamic CSPs based on ordering heuristics and
retroactive data structures, safety conditions, and nogoods which are saved dur-
ing the search process. In this paper, we show that the drawback of both EPDB
and PDB is the exhaustive verification of orders, saved in safety conditions and
nogoods, between variables. This verification affects remarkably search time, es-
pecially since orders are often indirectly deduced. Therefore, we propose a new
approach for dynamically changing environments, the Lazy Repairing Backtracking
(LRB), which is a fast version of EPDB insofar as it deduces orders directly through
the used ordering heuristic. We evaluate LRB on various kinds of problems, and
compare it, on the one hand, with EPDB to show its effectiveness compared to
this approach, and, on the other hand, with MAC-2001 in order to conclude, from
what perturbation rate resolving a DCSP with an efficient approach can be more
advantageous than repair.
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1 INTRODUCTION

In Artificial Intelligence (AI) and operation research, a large number of problems
can be modeled as Constraint Satisfaction Problem (CSP). In fact, constraints are
naturally present in real problems such as allocation problems [3], scheduling prob-
lems, sensor networks problems [18], etc. The concept of CSPs indicates all these
problems and consists of looking for the solutions satisfying them. To increase
the efficiency of the constraint satisfaction algorithms, many techniques as filter-
ing, improved backtracking, using efficient representations and heuristics have been
developed. However, these techniques assume that the complete description of the
CSP instance is known and fixed in advance. This is a strong limitation when
dealing with real situations [17], where problems may evolve due to changes in the
environment or their execution conditions.

The notion of dynamic CSP (DCSP) [9] has been introduced to represent such
situations. A DCSP is an extension of a static CSP. It can be viewed as a sequence
of CSPs, where each one differs from the previous one by addition or removal of
some constraints. In fact, all other possible changes of a CSP (constraints or do-
main modifications, variables additions or removals) can be expressed in terms of
constraints additions or removals. The present paper focuses on scenarios where
after solving a DCSP, some constraints have been added or changed, then, the old
solution and reasoning are required to be effectively repaired.

Most DCSPs complete algorithms are based on backtracking, constraint prop-
agation and nogood learning. The nogoods are used by intelligent back-trackers to
record information regarding dead-ends in order to avoid encountering them again.
They are used in Partial-order Dynamic Backtracking (PDB) [11], which considers
a complete set of assignments that are incrementally modified until all constraints
are satisfied, or no solution is found. The advantage of PDB is that it allows great
flexibility in the backtracking strategy which affects the flexibility of the search space
exploration. Extended Partial-order Dynamic Backtracking EPDB [2] exploits this
flexibility by repairing solutions using variables ordering heuristics (VOHs) to build
an optimal order, and by fixing the checked constraint, contrary to PDB, till its
consistency.

In this paper, we propose a fast version of EPDB, the Lazy Repairing Back-
tracking (LRB) approach. This algorithm aims to repair solutions using EPDB
advantages while eliminating unnecessary tests of orders.

This paper is organized as follows: First, we recall DCSP concept, EPDB ap-
proach and profound degree (pdeg) [1] heuristic. Then, we present the proposed
LRB algorithm. Next, we evaluate the performance of this approach, compared to
EPDB and MAC-2001 [4, 5] on different types of problems respectively in order
to show its effectiveness and to demonstrate when repairing a DCSP is more effi-
cient than resolving it from the scratch. Finally, we extract some conclusions and
directions for further research.

This paper is organized as follows: In Section 2 we summarize some backround
concept useful for the rest of the paper. Then in Section 3 we present and detail our
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new repairing approch LRB. Next in Section 4 we present some empirical experi-
ments to defend the performance of LRB approach. Before conclude, we discuss in
Section 5 experiments’ results in both repairing and solving configuration.

2 BACKGROUND

2.1 Dynamic Constraint Satisfaction Problem

Many real problems are dynamic, due to the environment or problem scenario
changes. These changes are caused by the dynamism of the environment nature,
spurious actions, incomplete knowledge, etc. A DCSP is a CSP which is adapted to
changes. A problem change can be a restriction, which is an addition of constraints,
or relaxation, that is an elimination of some existing constraints.

Definition 1 (CSP). A Constraint Satisfaction Problem (CSP) is a tuple (X,D,
C), where:

• X is a set containing n variables {x1, x2, . . . , xn}.
• D is a set of domains {D(x1), D(x2), . . . , D(xn)} for these variables, such as each
D(xi) contains the possible values which xi may take.

• C is a set of m constraints {c1, c2, . . . , cm} between variables in subsets of X.
Each ci ∈ C expresses a relation defining which combinations of variables as-
signments are allowed for the variables vars(ci) in the scope of the constraint.

Definition 2 (DCSP). Consider P a dynamic constraint satisfaction problem
(DCSP) [9]. P is a sequence of static CSPs P0, . . . , Pα, Pα+1, . . . , where each
Pi differs from the previous Pi−1 by the addition or removal of some constraints
(we assume that all CSPs possible changes can be expressed in terms of constraint
additions or removals).

If Pα = (X,D,Cα), then Pα+1 = (X,D,Cα+1), where Cα+1 = Cα ± C, such as C is
a set of constraints.

2.2 Extended Partial-Order Dynamic Backtracking

The dynamic scheduling offers the possibility to rebuild a new order among variables
during the search. The Partial-order Dynamic Backtracking (PDB) [11] is one of
the approaches using this technique. However, it suffers from a lack of flexibility in
backtracking strategy although using a partial order which supports dynamism.

In fact, PDB replaces the fixed order of variables, used in several approaches
to solve CSPs, with a partial order that is dynamic and partially modified during
the search process. It uses the concept of nogoods introduced in the Dynamic
Backtracking algorithm (DBT) [10].
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Definition 3 (Nogood). A nogood [11] is an expression of the form:

(X1 = v1) ∧ · · · ∧ (Xk = vk)⇒ X ̸= v. (1)

It is a failure explanation which can be used to represent a constraint as an impli-
cation. It is logically equivalent to the constraint:

¬[(X1 = v1) ∧ · · · ∧ (Xk = vk) ∧ (X = v)] (2)

that represents a set of assignments that cannot be extended to a solution of the
problem.

The order in PDB is manipulated when a nogood is generated, in order to jus-
tify an elimination when a constraint is violated, or when a failure of instantiating
a variable is met due to a domain wipe out. Contrary to DBT, when a nogood is
induced during the search, PDB verifies the current order between variables con-
cerned with this conflict. If no order is imposed, there may be significant choices for
the variable that will represent the nogood conclusion. The approach performance
depends mainly on the quality of this choice, which is not covered in PDB.

Generally, for two given variables, the order is not defined at the beginning.
There is a partial order that is built during the search process, to achieve the solution
if it exists, or to detect the unsatisfiability through the empty nogood.

The partial order between variables is imposed by saved nogoods and safety
conditions, a data structure of orders presented by the deleted nogoods.

Definition 4 (Safety condition). A safety condition [11] is defined as an assertion
of the form: x < y, with x and y variables.

If S is a set of safety conditions, we denote by ≤s the transitive closure of <,
meaning that S is acyclic if ≤s is anti-symmetric:

x <s y ⇒ x ≤s y & y ≰s x. (3)

In another way, x <s y if there is a sequence (possibly empty) of safety conditions:

x < z1 < z2 < · · · < zn < y. (4)

The first improvement of Extended Partial-order Dynamic Backtracking
(EPDB) [2] is to extend the classical description of PDB, by exploiting its flex-
ibility to repair assignments using ordering heuristics to control changes. Thus,
in a conflict situation, when no order exists between variables in conflict, EPDB
changes the less relevant sub-problem. Otherwise, it keeps as long as possible the
most difficult sub-problems intact, in order to avoid falling into more complicated
conflicts. Technically, this is equivalent to attribute the variable in the most com-
plex sub-problem to the nogood conclusion, whenever a conflict has to be justified,
or a nogood resolution occurs due to a dead-end. The usefulness of variable ordering
heuristics (VOHs) appears in these two situations.
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The second improvement of EPDB is to satisfy the current constraint Ci before
selecting another one to verify. In fact, when a checked constraint Ci is violated,
PDB [11] changes the value of a Ci concerned variable and another constraint is
checked. The satisfaction of Ci is not insured, but it will be re-checked later.

To reuse solution and past reasoning techniques, EPDB (Figure 1) starts the
search with a DCSP that contains a full assignment (e.g. past solution) keeping
retroactive data structures of nogoods ngList saved during the past search process.

EPDB updates the set of constraints cstrs which need to be verified and satisfied;
it clears the safety conditions list SC, which contains the old orders expressed by
deleted nogoods, and initiates the information of the solution obtainment and the
empty nogood at False. Then, it checks the consistency of every constraint till
finding a solution or generating the empty nogood (lines 1–7).

If an inconsistency is detected, a new nogood ng is generated using GenerateNg
(lines 7–9). The function is called to determine the variable, among the variables in
conflicts conflictVars, which will represent the right-hand side (Rhs) of the nogood.
It generates the nogood respecting the existing order, which is expressed by both
of the list of nogoods ngList and safety conditions SC (lines 30–32), or according
to the chosen variable ordering heuristic VOH if no order exists (line 33). Next,
the new nogood is added into the list of nogoods ngList, and Repair, the recursive
function, is called, in order to find a new assignment to Rhs(ng), the right-hand side
variable (the conclusion) of ng (lines 10 and 11).

If the constraint c is consistent, it is moved from the DCSP constraints set
cstrs to freeCstrs, which saves all checked and satisfied constraints of the DCSP.
Then, another constraint is chosen to be checked (lines 12–14). If all constraints
are satisfied (DCSP .cstrs is empty), the solution is found, and the search is ended
(lines 15–17).

As already said, the function Repair looks for an assignment to its parameter
var, therefore, it verifies its domain (line 18). If the function cannot assign a value
to var due to a domain wipe out, it builds a nogood ng2 , which is the resolution
nogood of all nogoods where var appears in the conclusion, using the procedure
ResolutionNg (lines 18 and 19). If the resolved nogood is empty, no solution can
be found, thus, the search is ended (lines 20–22). Else, Repair is called recur-
sively to look for a new assignment to Rhs(ng2 ), the right-hand side of the nogood
ng2 . If Rhs(ng2 ) cannot change its value due to a domain wipe out, an empty
nogood is generated. The function returns False due to the solution’s non-existence
(lines 23 and 24). Otherwise, Repair deletes all nogoods where var exists in the
antecedent and updates the safety conditions list SC (lines 25 and 26). Updat-
ing SC consists of deleting from it all orders where the right-hand side is equal
to the right-hand side of any of deleted nogoods, before preserving orders imposed
by them in SC. Then, it updates the set of constraints by moving to cstrs the
constraints involving var and associates to it a new value from its valid domain
(lines 27–28).

ResolutionNg is called when the variable var detects a dead-end. Thus, the
procedure stores, in a structure conflictVars, all variables appearing on the left-
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Algorithm 1 Description of EPDB

Procedure EPDB(DCSP, newCstrs, VOH)
1. add newCstrs in DCSP .cstrs;
2. clear DCSP .SC ;
3. solutionFound ← False;
4. emptyNgGenerated ← False;
5. c← a constraint from DCSP .cstrs;
6. while (¬solutionFound &&¬emptyNgGenerated) do
7. if (c is not consistent) then
8. conflictVars ← variables of c;
9. ng ← GenerateNg(conflictVars);
10. add ng in DCSP .ngList ;
11. Repair(Rhs(ng));
12. else
13. move c from DCSP .cstrs to DCSP .freeCstrs;
14. c← a constraint from DCSP .cstrs;
15. if (c is null) then
16. solutionFound ← True;
17. Return Result ;

Function Repair(var)
18. if (domain of var is empty) then
19. ng2 ← ResolutionNg(var);
20. if (ng2 is empty) then
21. emptyNgGenerated ← True;
22. Return False;
23. if (¬Repair(Rhs(ng2 ))) then
24. Return False;
25. remove from DCSP .ngList nogoods as var in Lhs;
26. update DCSP .SC according to deleted nogoods;
27. move var ’s constraints from DCSP .freeCstrs to DCSP .cstrs;
28. change value of var ;
29. Return True;

Function GenerateNg(conflictVars)
30. lower ← get lower priority in conflictVars;
31. if(lower is not null) then
32. Return nogood between conflictVars where lower is Rhs;
33. Return nogood between conflictVars according VOH ;

Function ResolutionNg(var)
34. conflictVars ← variables in Lhs of nogoods prohibiting values of var ;
35. GenerateNg(conflictVars);
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hand side (Lhs) of all nogoods prohibiting var’s values (line 34). Then, it calls
GenerateNg to generate the relevant nogood (line 35).

2.3 Profound Degree Heuristic

When a constraint is violated, a concerned variable has to change the value. This
change can affect neighbors, hence the interest of deg heuristic to choose the variable
to change.

In fact, when a variable changes the value, the change may affect, in addition
to its neighbors, all of the network variables, with a given probability.

The goal of profound degree (pdeg) [1] is to change, when a conflict is detected,
the concerned variable that can affect the network the least possible. Therefore,
pdeg of each variable estimates its influence relatively to its position in the network.
This is performed at the beginning of the search. The influence estimation considers
the whole network constraints, and associates to each constraint a specific weight,
higher or lower, in relation to its distance from the concerned variable. pdeg is
considered as the sum of these weights.

3 LAZY REPAIRING BACKTRACKING

3.1 Motivation

EPDB has the advantage to be largely flexible compared to PDB: it exploits the
flexibility of PDB to build optimal orders between variables, using VOHs, in order
to converge to the termination with minimal checks of constraints.

The drawback of both EBDP and PDB is the verification of the current order
between concerned variables before generating a nogood, in conflict or domain wipe-
out situations. This verification of orders, which are saved in safety conditions and
nogoods, is necessary to avoid looping, but it often consumes a significant time,
since in most cases, orders are not directly deduced.

To clarify, suppose the next example:
EPDB is used to repair a dynamic CSP. The current constraint to check is C12,

which is violated. A nogood concerning X1 and X2 must be generated, thus, the
current order between X1 and X2 is verified.

The actual orders are shown in Table 1.

Safety Conditions Nogoods

X2 < Xi (1) Xk = vk =⇒ Xl ̸= vl (4)
Xi < Xm (2) Xk = vk =⇒ X1 ̸= v1 (5)
Xj < Xk (3) Xi = vi =⇒ Xj ̸= vj (6)

Table 1. Existing orders

In fact, X2 < X1, sinceX2 < Xi (1), Xi < Xj (6), Xj < Xk (3) andXk < X1 (5).
But deducing the order between X1 and X2 is not directly done, as the variables
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involved in this order, namely X2, Xi, Xj, Xk and X1, are involved in other nogoods
and safety conditions which are stored before the concerned orders. Xi is involved
in (2) which is placed before (6) and Xk in (4) which is before (5), then, (2) and (4)
are also verified.

Moreover, determining order takes an expensive time also when no order exists
between variables in conflict. Unfortunately, this must be proven by verifying all
nogoods and safety conditions concerning them directly (orders where they appear)
and indirectly (orders where their neighbours appear directly and indirectly).

As an example, suppose once again using EPDB to repair a DCSP, such as the
current constraint to check C12 is violated. To generate a nogood, the current order
between X1 and X2 is verified.

The actual orders are shown in Table 2.

Safety Conditions Nogoods

X2 < Xi (1) Xk = vk =⇒ Xl ̸= vl (4)
Xi < Xm (2) X1 = v1 =⇒ Xk ̸= vk (5)
Xj < Xn (3)

Table 2. Existing orders

The approach checks (1) then (2) to test if X2 precedes X1, and (5) then (4) to
test if X1 precedes X2, before concluding that no order exists between them, and
establishing one using the specified VOH.

Therefore, in Lazy Repairing Backtracking (LRB), orders are deduced directly
using a VOH. Thus, while safety conditions in EPDB are only used to store orders
expressed by the removed nogoods, and nogoods are also used to save justifications
of prohibitions (to avoid choosing a value which will cause an already met conflict
and to restore values when causes are no longer valid), safety conditions are rejected
and only nogoods are kept.

The only issue that can exist, when establishing the order directly using a VOH,
i.e. without verifying the existence of order between concerned variables, is the
termination when the VOHs values change. To remedy this problem, only static
VOHs are used, in order to have a fixed order between variables during the search
process, especially since the static VOHs, deg and pdeg, have the best behavior in
repairing [1, 2].

3.2 Behavior of LRB Compared to PDB and EPDB

As shown in Figure 1, after checking a constraint Cij, satisfied or not, PDB checks
another one Ckl. In fact, if Cij is violated, PDB tests if an order already exists
between the concerned variables i and j. Next, it builds a nogood ng, respecting
the order, if there exist. If no order exists between i and j, it builds any nogood ng
which will impose a new order between i and j. Then, the conclusion of ng changes
the value and another constraint Ckl is checked.
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Figure 1. Behaviour of PDB, EPDB and LRB

After checking a constraint Cij, EPDB checks another one Ckl only if Cij is
satisfied. If Cij is violated, it tests if an order already exists between the concerned
variables i and j. Next, it builds a nogood ng, respecting the order if there exists. If
no order exists between i and j, the nogood respects the chosen heuristic H. Then,
the conclusion of ng changes the value, and Cij is re-checked.

LRB, like EPDB, after checking a constraint Cij, checks another one Ckl only if
Cij is satisfied. Otherwise, LRB builds a nogood ng, respecting the chosen heuris-
tic H. Then, the conclusion of ng changes the value, and Cij is checked again.

3.3 An Example Run

Let us consider the CSP illustrated in Figure 2:

• X = {X1, X2, X3, X4}.
• D = {D1, D2, D3, D4} such as Di = {1, 2, 3}, ∀i ∈ [1, 4].

• C = {X1 < X2, X1 ̸= X4, X2 = X3, X2 ̸= X4}.

All variables are assigned by the value 1. For simplicity, we consider that
this first assignment (before perturbation) was found using a simple resolution ap-
proach (FC for example), then, at the beginning of repairing, no nogood or safety
condition are saved in the last search. Thus, no order is imposed between vari-
ables.
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Figure 2. A constraint network example

Table 3 describes EPDB using the deg heuristic. The approach calculates, before
starting the search, deg of each variable in the network: deg(X1) = 2, deg(X2) = 3,
deg(X3) = 1 and deg(X4) = 2.

All variables have the same assigned value 1. This assignment violates more
than one constraint. A constraint ordering heuristic [12] can be used to improve
the search, but, in order to treat different cases, we assume that the constraints are
ordered as shown in to check column.

The first checked constraint checked is the one between X1 and X2 (line 1).
This constraint is violated, and as no order exists yet between X1 and X2 (add
column is empty), the heuristic value of X1 and X2 is verified to determine the
order. deg(X1) < deg(X2), thus, the generated nogood is (1). X1 changes the
value and the constraint is re-checked before selecting another one (line 2). C12 is
not consistent, then, the existence of order between X1 and X2 is tested before
generating the nogood. (1) is tested then (2) is generated. X1 changes the value
and the constraint, which is still not consistent, is re-checked (line 3). To generate
the nogood, the existence of order between X1 and X2 is tested. Then, (1) is
tested and (3) is generated. X1 has no more values in its domain, then, EPDB
resolves (1), (2) and (3) as (4), removes the three no valid nogoods (line 4), saves
their expressed order as a safety condition (5) and changes the value of X2, the
unique cause of the domain wipeout of X1 (line 5). X1 is assigned to its first
valid value, and the constraint, which is consistent, is rechecked (line 6). As C12

is satisfied, it is moved to the list of free constraints free cstrs, which contains all
tested and satisfied constraints, and the next constraint to verify is checked. C14

is violated (line 7). The existence of order between X1 and X4 is tested, but no
order in add contains neither X1 nor X4. Then, the heuristic value is verified. As
deg(X1) = deg(X4), any order is chosen, we assume that in similar cases, the chosen
order is the lexicographic one. Thus, the nogood is generated as (6). X4 changes
the value, then, C14 is consistent (line 8) and it is moved to free cstrs. The next
constraint to check is C24 which is violated (line 9), (5) and (6) are tested, then,
(7) is generated, the value of X4 is changed (line 10) and C14, the only constraint
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in free cstrs concerning X4, is moved to to check list. The next checked constraint
is C23 which is violated (line 11), the tested orders are (5) then (6), and (7). As no
order exists between the two variables, the chosen heuristic is used to generate (8),
then, the value of X3 is changed (line 12). C23 is consistent, thus, it is moved to
free cstrs. C14 is then checked (line 13), it is satisfied so it is moved to free cstrs. to
check is empty (line 14), thus, all constraints are satisfied and the solution is found.

to check free cstrs X1 X2 X3 X4 checked test add remove
1 C12 C14 C24 C23 1, 1, 1, 1 C12× deg X2=1 ⇒ X1 ̸=1 (1)
2 C12 C14 C24 C23 2, 1, 1, 1 C12× (1) X2=1 ⇒ X1 ̸=2 (2)
3 C12 C14 C24 C23 3, 1, 1, 1 C12× (1) X2=1 ⇒ X1 ̸=3 (3)
4 C12 C14 C24 C23 –, 1, 1, 1 X2 ̸=1 (4) (1), (2), (3)
5 C12 C14 C24 C23 –, 2, 1, 1 X2 < X1 (5)
6 C12 C14 C24 C23 1, 2, 1, 1 C12

√

7 C14 C24 C23 C12 1, 2, 1, 1 C14× deg X1=1 ⇒ X4 ̸=1 (6)
8 C14 C24 C23 C12 1, 2, 1, 2 C14

√

9 C24 C23 C12 C14 1, 2, 1, 2 C24× (5),(6) X2=2 ⇒ X4 ̸=2 (7)
10 C24 C23 C14 C12 1, 2, 1, 3 C24

√

11 C23 C14 C12 C24 1, 2, 1, 3 C23× (5),(6),(7),deg X2=2 ⇒ X3 ̸=1 (8)
12 C23 C14 C12 C24 1, 2, 2, 3 C23

√

13 C14 C12 C24 C23 1, 2, 2, 3 C14
√

14 C12 C24 C23 C14 1, 2, 2, 3 NULL

Table 3. Execution of EPDBdeg

Similarly to EPDB, when LRB is executed using the same heuristic deg, the
approach calculates, before starting the search, deg of all network variables.

It proceeds like EPDB with the following differences:

• to generate a nogood, LRB tests directly the chosen VOH values. Then, in test
column, each constraint violation (nogood to generate) causes only one test,
which is the test of deg, contrary to EPDB (the test column of Table 3).

• LRB does not need the information about the order saved in safety conditions,
since the order is determined by the used VOH. Then, when a nogood is removed,
no safety condition is retained (in Table 3, after removing nogoods in remove
column of line 4, add column of line 5 will be empty).

3.4 Description of the Proposed Approach

To reuse the solution and the past reasoning techniques, LRB starts the search
with a DCSP that contains the past solution, keeping retroactive data structures of
nogoods ngList saved during the past search process.

LRB proceeds exactly like EPDB, with the following major differences:

• to generate a nogood when a conflict is detected, LRB does not verify the order
between concerned variables as EPDB does. Then, in line 9 of Figure 1, the
chosen VOH is directly used to establish the order.

• similarly, to generate the resolution nogood when a domain wipe-out is produced,
LRB does not verify the order between the responsible variables as EPDB does.
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Thus, in line 35 of Figure 1, the chosen VOH is directly used to generate the
nogood.

• As no order verification will be required, LRB does not use the safety condition
list to store orders expressed by the removed nogoods, then, lines 2 and 26 in
Figure 1 are removed.

3.5 Termination Proof

It is proven in [6] that PDB terminates. In fact, PDB respects the relative order-
ing conditions corresponding to the ordered nogoods. Moreover, it imposes safety
conditions, which are relative ordering conditions, in order to retain some of the
ordering conditions of the nogoods that have been removed. The order selected for
new nogoods is required to respect both types of ordering conditions. Thus, the
resulting set of conditions could not be cyclic.

LRB proceeds in the same manner of PDB, but drops safety conditions. To
guarantee termination, it uses only static VOHs and is based on the used SVOH for
the selected order.

4 EXPERIMENTAL STUDY

4.1 Experiments Concerning Repairing

In this section, we compare LRB to EPDB, to show the improvement of the new
approach. We also compare it to MAC-2001 [4, 5], to identify the maximal rate of
perturbation that tolerates repairing, i.e. from which rate of disturbance the use of
a good resolution algorithm is more efficient to deal DCSPs.

Some integrations of MAC in intelligent backtrackers were already proposed [16,
13], but we choose MAC-2001 as we judge it to be one of the most efficient resolving
CSPs strategies while being the most familiar constraint propagation one.

Heuristics used in LRB and EPDB are pdeg and deg. To prove that performance
of LRB is due essentially to a well-chosen heuristic, we use also the lexicographic
order heuristic, which is used instead of the arbitrary order, as LRB supports only
the static ordering to avoid looping. MAC-2001 is combined to the dom/deg heuristic
like in [14]. We note that the arc consistency strategy can be also improved by
using dom/wdeg [7], but as shown in [15], this heuristic is efficient essentially in
combination with AC-3.

As evaluation criteria, we measure the runtime and the number of Constraints
Checks (CCs).

4.1.1 Experiments on Uniform Random Binary DCSP

A uniform random binary DCSP P is a sequence of static CSPs which are subject
to perturbations.
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CSPs are characterized by ⟨n, d, p1, p2⟩, where n is the number of variables,
d the number of values per variable, p1 the network connectivity, defined as the ratio
of existing binary constraints to possible binary constraints, and p2 the constraints
tightness, that represents the proportion of forbidden pairs among the constraints.

Tests are performed on sparse and dense problems, respectively ⟨30, 10, 0.25,
0.45⟩ and ⟨30, 10, 0.75, 0.19⟩. The chosen problems are the satisfiable ones at the
transition phase [8] (the most complicated area).

For each pair of fixed density and constraints tightness ⟨p1, p2⟩, 30 different
instances are treated by each algorithm and the present results are the averages of
these 30 runs.

The rate of injected constraints %IC = |new constraints|
|whole problem constraints| . It indicates the

rate of disturbance that will be treated using both LRB and EPDB. IC varies from
1% to 100%, such as for each given disturbance of d%, the added constraints are
the same as those in the disturbance of d − 1%, plus 1% more constraints. The
30 final problems (after disturbance) are the same for each rate of disturbance.

For DCSP approaches, namely LRB and EPDB, the computed effort is the one
for repairing the past solution, i.e. which existed before disturbing.

As p2 is known, we tried to replace, in the pdeg calculation, the parameter 1/2
by p2. But results were not significantly better than those of using 1/2, then, we
choose to keep the parameter 1/2 for all kinds of problems. We fix the time-out
at 7 minutes. Experiments are performed on the Java platform, on a core i7 PC
(3.6GHz processor and 16GB RAM).

Concerning the number of CCs (2nd part of Tables 4 and 5), using LRB with
a VOH is almost the same as using EPDB with the same VOH. But regarding the
execution time (1st part of Tables 4 and 5), LRB exceeds EPDB very remarkably,
regardless of the used VOH.

Excepting the small disturbances, MAC-2001 often produces less CCs than LRB
(2nd part of Tables 4 and 5), mainly when LRB uses the deg heuristic.

From a certain small disturbance (13% for sparse problems and 10% for those
dense), LRB needs almost the same effort to repair (Tables 4 and 5), whatever
the rate of injected constraints IC. This effort is not stable, regardless of the used
heuristic, but it is subject to same sudden falls.

Regarding LRB, the use of pdeg is often more beneficial than using deg.
LRBpdeg is always faster than MAC-2001 (1st part of Tables 4 and 5), even

disturbing 100% of constraints, which is equivalent to resolving the whole prob-
lems. LRBdeg is sometimes less efficient than MAC-2001, but it is anyway a good
concurrent.

4.1.2 Experiments on Meetings Scheduling Problems

A Dynamic Meeting Scheduling Problem (DMSP) is a sequence of static Meeting
Scheduling Problems (MSPs): MSP0, MSP1, . . . , MSPα−1, MSPα, . . . , where the
network is subject to constraints perturbations, and each MSPi differs from the
latest one MSPi−1 by the addition of some constraints.
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% IC MAC-2001 LRBpdeg LRBdeg LRB lex EPDBpdeg EPDBdeg

1

0.094

0.006 0.008 1.471 0.508 0.723

time(sc)

4 0.024 0.026 1.835 2.242 2.662
7 0.048 0.065 2.047 4.842 6.254
10 0.059 0.073 2.304 5.788 7.047
13 0.079 0.089 2.650 7.517 8.373
16 0.082 0.093 2.860 8.081 9.338
19 0.082 0.097 2.809 8.099 9.243
22 0.085 0.094 2.876 8.214 9.479
25 0.080 0.095 2.878 7.759 9.479
28 0.080 0.099 2.860 8.020 9.467
31 0.078 0.101 2.891 7.263 8.093
34 0.075 0.102 2.881 7.330 8.402
40 0.062 0.075 2.869 8.321 8.069
46 0.069 0.078 2.893 9.521 10.455
52 0.080 0.093 2.894 8.919 10.799
58 0.065 0.076 2.914 8.897 8.989
64 0.075 0.084 2.942 8.593 8.258
70 0.082 0.097 2.932 7.678 9.113
76 0.073 0.106 2.871 8.189 10.227
82 0.085 0.099 2.903 8.266 10.381
88 0.083 0.100 2.889 8.203 10.337
94 0.085 0.099 2.897 8.510 10.315

100 0.084 0.099 2.868 8.230 9.888

1

169 168

15 108 20 199 3 032 339 15 108 20 199

CCs

4 58 651 65 202 3 806 153 59 779 68 687
7 117 728 157 599 4 227 876 123 667 157 298
10 145 623 181 242 4 764 235 148 286 180 593
13

169168

192 355 214 418 5 527 584 189 534 209 805
16 201 644 225 471 5 992 181 205 562 230 519
19 201 099 235 586 5 879 701 204 280 228 941
22 207 509 230 595 6 049 455 206 419 233 566
25 196 193 233 567 6 047 661 197 054 235 723
28 196 130 243 182 6 001 166 203 289 237 828
31 191 143 247 404 6 060 702 185 955 206 190
34 183 019 248 225 6 058 750 188 308 211 733
40 169 168 151 765 185 843 6 015 178 212 178 202 816
46

169 168
170 804 192 706 6 066 024 242 173 261 430

52 197 833 226 562 6 076 485 228 440 268 696
58 169 168 161 864 187 689 6 094 090 227 370 228 662
64

169 168

186 754 207 362 6 138 907 223 674 210 593
70 200 774 237 995 6 029 206 195 718 229 670
76 181 101 255 407 6 029 857 213 139 257 020
82 207 836 246 870 6 084 857 210 158 259 925
88 201 640 248 743 6 070 954 210 870 259 146
94 207 763 243 764 6 068 184 217 752 257 468

100 206 479 241 355 6 014 275 207 955 246 269

Table 4. Execution time by seconds and Number of CCs (p1 = 0.25, p2 = 0.45)
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% IC MAC-2001 LRBpdeg LRBdeg LRB lex EPDBpdeg EPDBdeg

1

11.054

0.698 0.896 1.874 111.769 194.669

time(sc)

4 3.328 4.565 13.510 370.385 –
7 4.698 5.877 32.571 – –

10 6.590 7.427 40.478 – –
13 7.379 6.675 42.993 – –
16 7.657 7.591 44.719 – –
19 7.847 8.638 44.873 – –
22 8.835 9.253 44.903 – –
25 5.962 8.694 44.027 – –
28 7.711 9.874 44.113 – –
31 7.848 9.780 44.086 – –
34 8.938 10.503 44.004 – –
40 8.357 9.736 43.991 – –
46 8.183 9.297 44.067 – –
52 10.209 9.597 44.148 – –
58 9.427 10.268 43.885 – –
64 10.794 10.731 43.960 – –
70 10.688 11.700 43.985 – –
76 8.355 9.925 44.026 – –
82 8.946 10.461 44.056 – –
88 8.271 9.475 44.145 – –
94 7.615 8.883 44.184 – –
100 7.600 8.898 44.242 – –

1
11 091 737

2 053 499 2 676 894 5 300 103 2 063 315 2 687 746

CCs

4 10 050 253 13 609 155 37 787 281 7 700 192 –
7

11 091 737

14 196 226 17 492 480 90 474 816 – –
10 19 917 644 22 168 200 112 775 270 – –
13 22 323 569 19 950 505 119 366 418 – –
16 23 178 909 22 661 403 121 865 776 – –
19 23 692 559 25 854 188 122 555 689 – –
22 26 684 225 27 586 331 122 734 624 – –
25 18 061 593 25 937 447 122 755 174 – –
28 23 355 364 29 466 473 122 739 959 – –
31 23 793 094 29 203 775 122 837 687 – –
34 27 114 111 31 384 172 122 669 346 – –
40 25 268 174 29 127 000 122 734 902 – –
46 24 710 542 27 748 892 122 643 912 – –
52 30 820 375 28 720 750 122 943 597 – –
58 28 428 460 30 704 619 122 704 450 – –
64 32 524 541 32 018 965 122 798 424 – –
70 32 150 097 34 963 393 122 669 749 – –
76 25 192 875 29 655 806 122 768 330 – –
82 26 922 873 31 354 768 122 696 907 – –
88 24 982 344 28 307 565 122 684 444 – –
94 22 954 833 26 581 585 122 766 266 – –
100 22 965 095 26 579 493 122 848 545 – –

Table 5. Execution time by seconds and Number of CCs (p1 = 0.75, p2 = 0.19)
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AMeeting Scheduling ProblemMSP is characterized by ⟨m, p, n, d, h, t, a⟩, where
m is the number of meetings, p the number of participants, n the number of meetings
per participant and d the number of days. Different time slots are available for each
meeting, and h is the number of hours per day, t the duration of the meeting and
a the percentage of availability for each participant.

In the used model, p × n is the number of variables. Variables Xi.j, such as
i ∈ p, j ∈ n and Xi.j ∈ [timeSlot(1), timeSlot(m)], are the totality of meetings per
all participants. Thus, tow types of constraints exist:

• As p is the number of participants and n the number of meetings per partic-
ipant, for each two distinct variables Xi.j and Xk.l, if i = k, then, variables
are connected by a constraint termed Arrival Constraint, which means that the
participant i must attend two distinct meetings. Therefore, |Xi.j − Xk.l| ≥ δ,
where δ is the time required to move between Xi.j and Xk.l, expressed in time
slots.

• For each two distinct participants i and k, Xi.j = Xk.l means that i and k must
attend the same meeting.

We present our results for the class ⟨15, 30, 4, 5, 10, 1, 85⟩ and vary the rate of
disturbance from ∼ 1% to ∼ 100%. We generated 30 different instances treated
by each algorithm and the results are an averages of these 30 runs. As LRB lex and
EPDB are not good concurrent, as shown in the experiments above, we include in
comparison only MAC-2001, LRBpdeg and LRBdeg.

Concerning MSPs (Figure 3), LRBpdeg is more efficient than MAC-2001 regard-
less of the rate of disturbance, specially respecting the number of CCs. However,
MAC-2001 is more effective than LRBdeg respecting runtime (except for a distur-
bance of 1%), even if the rate of CCs is comparable to that of LRB.

4.2 Experiments Concerning the Problem Solving

The previous experiments concern satisfiable problems. Experiments on random
problems are more precisely focused on satisfiable problems in hard areas of low and
high densities. These experiments show that LRB using a VOH, mainly pdeg, is
a good concurrent for MAC-2001 although for solving (100% of IC).

In order to show where MAC-2001 is more efficient than LRBpdeg and LRBdeg,
we execute the three approaches on random problems, not necessary satisfiable, with
the same previous parameters n, d and p1. Constraints tightness’ vary from p2 = 0.1
to p2 = 0.9. 30 different instances are treated by each algorithm and the present
results are the averages of these 30 runs. Experiments are performed on the Java
platform, on a Pentium IV PC (2.8GHz processor and 3.24GB RAM).

Figures 4 and 5 show that LRB, using either deg or pdeg, is efficient to treat
satisfiable problems, i.e. ⟨p1 = 0.25, p2 ∈ [0.1, 0.45[⟩ and ⟨p1 = 0.75, p2 ∈ [0.1, 0.19[⟩,
while MAC-2001 is effective to detect the non satisfiability of problems in ⟨p1 =
0.25, p2 ∈]0.45, 0.9]⟩ and ⟨p1 = 0.75, p2 ∈]0.19, 0.9]⟩. In complex areas, i.e. the
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a)

b)

Figure 3. Execution time and Number of CCs for MSPs
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a)

b)

Figure 4. Execution time and Number of CCs for p1 = 0.25
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a)

b)

Figure 5. Execution time and Number of CCs for p1 = 0.75
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transition phases ⟨p1 = 0.25, p2 = 0.45⟩ and ⟨p1 = 0.75, p2 = 0.19⟩, the majority
of problems are non satisfiable, therefore, MAC-2001 is generally better than LRB,
mainly for high densities, where satisfiable problems are rare.

For high density problems (Figure 5), using either deg or pdeg in LRB is almost
the same.

5 DISCUSSION

5.1 Discussion Concerning Repairing

As shown in the experiments on satisfiable problems in the transition phases (Ta-
bles 4 and 5), LRB is widely more powerful than EPDB in terms of runtime. This
is particularly due to avoiding the verification of progressively saved orders, which
is done in EPDB each time inconsistency is detected. But regarding CCs, the use
of LRB with a VOH is almost the same as using EPDB with the same VOH. Nor-
mally, for a fixed heuristic, LRB and EPDB proceed in the same manner, with the
difference of testing orders for EPDB. Thus, they must generate the same num-
ber of CCs. However, the perturbation, which is a modification in constraints, can
change the used heuristic values, as both of the used VOHs deg and pdeg depend
on the existing constraints. Then, in EPDB, nogoods stored before disturbance im-
pose an order which is not necessary the same as the one expressed by the present
heuristic values, whence the difference of the number of CCs between LRB and
EPDB.

From a certain small disturbance, LRB requires almost the same effort to repair,
whatever the rate of injected constraints, since problems are chosen from the most
complex areas (the transition phases). This effort is not stable, but it is subject
to the same sudden falls. In fact, the repairing effort depends on the affectation
before disturbance and its consistency with the new constraints. Then, disturbing
a problem with some constraints can be easier or harder than disturbing another
problem with more constraints, depending on which affectation is satisfiable by more
new constraints.

The use of pdeg in LRB (Tables 4 and 5 and Figure 3) is often more effective
than using deg, as pdeg estimates the position of each variable regarding the whole
network, while deg calculates the position of each variable regarding its neighbour-
hood.

When problems are hard and satisfiable, LRB, mainly when using pdeg, is a good
concurrent of MAC-2001, even for solving (100% of IC). Nevertheless, when no VOH
is used (LRB lex in 1st part of Tables 4 and 5), LRB becomes inefficient comparing to
MAC-2001. In fact, the goal of VOHs in repairing is to engender minimal network
changes, by keeping the hard sub-problems unchangeable as long as possible, in
order to minimize risks of affecting other sub-problems. Therefore, the performance
of LRB is also due to the use of a good VOH.
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5.2 Discussion Concerning Solving

Concerning problems where constraints tightness is less than the peak (under the
transition phase), although injecting the totality of constraints in perturbation, i.e.
resolving (Figures 4 and 5), LRB using either deg or pdeg is more efficient than
MAC-2001, regardless of problems density. In these areas, most of the problems
are satisfiable, thus, the use of arc consistency is not efficient enough. As a matter
of fact, the major interest of MAC-2001 is to detect earlier the future domains
dead-ends, in order to modify the partial assignments which can not be included in
a solution. But in sparse graphs, domains dead-ends are rarely met.

Therefore, for unsatisfying problems, where constraints tightness is higher than
the peak, MAC-2001 is more effective than LRB.

On peaks, the majority of problems are unsatisfying, then, MAC-2001 is often
more efficient than LRB.

Respecting high densities, LRBpdeg does not exceed remarkably LRBdeg. This
is caused by the high connectivity of the network. Therefore, each variable has
the majority of other variables as neighbors, then, pdeg is nearly the same as
deg.

6 CONCLUSION AND PERSPECTIVES

In this paper, we introduce a new approach, namely LRB, which is based on EPDB,
to repair the DCSPs solutions rapidly, using static VOHs.

Based on the results of experiments on a variety of problem classes, we show
that LRB is a great improvement of EPDB, respecting the runtime, insofar as it
avoids the expensive tests of orders.

We have proved that this approach is mainly efficient when using pdeg and that
is a good concurrent for MAC-2001. In fact, LRB outperforms MAC-2001 when
problems are satisfiable, although using it to solve from the scratch. Thus, LRB has
the advantage to be not only destined for DCSPs, but also to CSPs.

We demonstrate that LRB is more effective to treat satisfiable problems while
MAC-2001 is more efficient to detect the problem’s non-satisfiability. Therefore, for
complicated problems where the satisfiability is unknown, the two approaches can
be separately launched and the fast resolution is then guaranteed.

As perspectives, we plan to implement a CSP solver, based on LRB, which
benefits from LRB advantages and resolves by repairing a complete assignment that
violates a minimum number of constraints, in order to converge more rapidly to
a solution. We also plan to develop a version of LRB for minimal perturbation
problems [19], to preserve DCSPs solutions as much as possible. We also intend to
integrate constraint propagation within LRB to benefit from the advantage of the
two strategies regardless of the problem’s satisfiability.
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