
Computing and Informatics, Vol. 40, 2021, 1080–1107, doi: 10.31577/cai 2021 5 1080

FORMALIZATION AND MODEL CHECKING OF BPMN
COLLABORATION DIAGRAMS WITH DD-LOTOS

Toufik Messaoud Maarouk, Mohammed El Habib Souidi
Nadia Hoggas

Faculty of Science and Technology, Université Abbès Laghrour Khenchela
ICOSI Lab, BP 1252 El Houria
40004 Khenchela, Algeria
e-mail: {maarouk.toufik, souidi.mohammed}@univ-khenchela.dz

Abstract. Business Process Model and Notation (BPMN) is a standard graphical
notation for modeling complex business processes. Given the importance of busi-
ness processes, the modeling analysis and validation stage for BPMN is essential.
In recent years, BPMN notation has become a widespread practice in business pro-
cess modeling because of these intuitive diagrams. BPMN diagrams are built from
basic elements. The major challenge of BPMN diagrams is the lack of formal se-
mantics, which leads to several interpretations of the concerned diagrams. Hence,
this work aims to propose an approach for checking BPMN collaboration diagrams
to guarantee some properties of smooth functioning of systems modeled by BPMN
notation. The verification approach used in this work is based on model checking
techniques. The approach proposes as a first step a formal semantics of the collab-
oration diagrams in terms of the formal language DD-LOTOS, i.e., a phase of the
transformation of collaboration diagrams into DD-LOTOS. This transformation is
guided by applying the inference rules of the formal semantics of the DD-LOTOS
formal language, and we then use the UPPAAL model checker to check the absence
of deadlock, safety properties, and liveness properties.

Keywords: BPMN, business process, DD-LOTOS, C-DATA, temporal logic, model
checking

Mathematics Subject Classification 2010: 68-N30, 68-Q60

https://doi.org/10.31577/cai_2021_5_1080

Formalization and Model checking of BPMN 1081

1 INTRODUCTION

In recent years, Business Process Model Notation (BPMN) [1] has been the main
language for modeling business processes [2]. The modeling of business processes in
BPMN is based on the use of graphic elements to build diagrams. These diagrams
describe the behavior of the system to be modeled. BPMN 2.0 defines three diagrams
to support all aspects of business processes. The elements of BPMN are tasks,
subprocesses, events, sequences, and gateways [3].

The major problem with BPMN models is the lack of formal semantics to in-
terpret BPMN diagrams. This renders the crucial step of analyzing and validating
BPMN models impossible. Consequently, we cannot show that the system contains
no design errors and therefore cannot ensure the smooth functioning of the model.
This issue has opened an area of research, and several works have tried to provide
a solution to this insufficiency.

In general, the proposed approaches are based on integrating formal methods
into the design process for complex systems. Beginning with the expression of needs
and continuing through the final production, thus making it possible to rigorously
design the system and guarantee a smooth functioning and reliability of the de-
veloped system. The proposed approaches include transforming BPMN models to
formal models such as Petri nets [4, 5, 6, 7, 8], process algebras [9, 10], and rewriting
logic (Maude Language) [11, 12].

In our previous work [13], we proposed a formal semantics for BPMN models
based on the formal language Distributed Durational LOTOS (DD-LOTOS). DD-
LOTOS is a formal specification language that can model the behavior of concurrent
systems, and it is defined with a semantic model of true concurrency [14]. This lan-
guage allows distributed systems to be described with temporal constraints, and the
specification is then translated into a semantic model called Communicating Dura-
tional Action Timed Automaton (C-DATA) [15], to be verified by formal verification
tools.

In this paper, we focus on the formal verification of BPMN models. We pro-
pose a model verification approach (model checking) that consists of checking the
properties of smooth functioning, such as the deadlock property, for the developed
systems. These properties are expressed in Timed Computation Tree Logic (TCTL).
The system is described by C-DATA. The C-DATA is defined on true concurrency
semantics, which makes it possible to verify two categories of properties: qualitative
and quantitative properties. A model checker is used to interpret the properties on
the C-DATA semantic model. It returns either that the property is satisfied or not,
including a counterexample in the latter case.

Figure 1 illustrates the proposed approach, which comprises two major steps.
First, the system is developed using BPMN collaboration diagrams, and then, based
on the collaboration diagrams, we generate a specification in DD-LOTOS code using
the BPMN2DDLOTOS tool. At the end of this step, we generate the semantic
model C-DATA. The second step consists of passing the C-DATA and the property

1082 T.M. Maarouk, M.E. Souidi, N. Hoggas

to be checked as inputs to the model checker. The latter returns Yes/No, indicating
whether the property is satisfied by the C-DATA.

Hungry
for pizza

Spizza Opizza

Askpizza

Paypizza Eatpizza

Hungry
satisfied

pizza

received

P
iz
za

C
u
st
om

er

pizza
order

60 minutes

The BPMN2DDLOTOS tool

s0start s1

s2s3

{ϕ} {x ≥ t1}

{y ≥ t5}{z ≥ t6}

a, Cϕ ≥ d, x := 0

b, Cϕ ≥ d

c, y ≥ t5, z := 0

a

a

Generate

A [] not deadlock

Model-checker
UPPAAL

yes/counter-example

Figure 1. Architecture of the proposed approach

The first step, which consists of transforming the collaboration diagram into
a DD-LOTOS specification, is automatically carried out using the BPMN2DDLO-
TOS tool.

This tool is developed by using the techniques and tools of model-driven en-
gineering. At the beginning, we defined a meta-model for the BPMN collabora-
tion diagram; we have also developed an editor to construct collaboration diagrams
based on the defined meta-model. The editor offers a workspace that contains all
the BPMN elements necessary for the construction of collaboration diagrams. The
editor is developed using the Eclipse Sirius framework. Second, once the diagram is
ready, the tool launches the transformation based on the meta-model and a set of
transformation rules. These rules are defined from correspondence between BPMN
elements and DD-LOTOS behavioral expressions. This step is carried out using the
Eclipse Acceleo framework.

The second step concerns the generation of the corresponding C-DATA. This
step is performed via the use of a generation tool [16]. The last step is to verify
certain properties of smooth functioning by UPPAAL. The choice of UPPAAL com-
pared to the existing model checkers such as SPIN, Tina, . . . is motivated by the
possibility to take into account the time aspect, either for the specification of tem-
poral properties in particular the bounded liveness property or for the specification
of the model to be checked.

The main contribution of our approach in comparison with the related works is
to provide formal semantics to BPMN elements in terms of the formal language DD-

Formalization and Model checking of BPMN 1083

LOTOS. DD-LOTOS is an extension of the LOTOS standard; therefore, it inherits
all the formal properties of LOTOS. It supports several aspects and characteristics
of concurrent systems. In the context of business processes, DD-LOTOS can express
the following aspects:

• Distribution of the processes on several sites or localities, this property is ex-
pressed explicitly in DD-LOTOS, which allows us to specify the swimlanes in
BPMN.

• Time aspect: can be expressed by the temporal constraints through specific
operators and the durations of actions through maximality semantics.

• Checking of quantitative and qualitative properties, as an example of quantita-
tive properties, a task can start its execution only if the time elapsed since the
sensitization of the system exceeds t units of time, or else a task is proposed to
the environment for a determined duration.

The rest of this paper is organized as follows. Section 2 discusses related work. In
Section 3, we introduce the basic concepts of BPMN diagrams, the formal language
DD-LOTOS, and its semantic model, C-DATA. Section 4 presents our approach to
generating C-DATA from BPMN diagrams. Section 5 presents and examines two
real case studies. The paper ends with a conclusion and discussion of future work.

2 RELATED WORK

The formalization of BPMN models has been an active area of the research in
recent years. Many works have proposed different approaches in order to verify and
formally validate BPMN models. The main objective of formalization is to remedy
the problem of the lack of formal semantics associated with BPMNmodels. This lack
leads to problems of inconsistency, ambiguity and incompleteness in BPMN models.
The majority of the works regarding this research field proposed approaches based
on Petri nets, rewriting logic and Maude, and the theory of process algebras.

Corradini et al. [17, 12] proposed in the first work a formalization and for-
mal verification of collaboration diagrams. For the formalization, a formal syntax
of collaboration diagrams has been defined and an operational semantics repre-
sented by a set of inference rules describing the behavior of a collaboration. The
authors proposed to take into account three properties: well-structuredness, safe-
ness, and soundness. These properties are defined formally and studied rigorously
within collaboration; several theorems show that the relationship between the three
properties have been proven. Finally, the three properties have been checked us-
ing the S3 tool [18]. In the second work, the authors proposed an approach for
checking collaboration diagrams known as BProVe. This approach is based on
two model checking methods, namely Maude LTL model checker and statistical
model checking, through the statistical analyzer MultiVeStA. The formal verifica-
tion of the properties is effectuated in two stages. The first stage concerns each

1084 T.M. Maarouk, M.E. Souidi, N. Hoggas

process. However, the second one concerns the entire collaboration. For each pro-
cess, the authors checked two important properties, soundness, and safeness. The
soundness property expresses three sub-properties: option complete, proper com-
pletion and no dead activities. To analyze the collaboration, the authors used
the statistical analyzer MultiVeStA by executing a finite number of finite execu-
tions.

Krishna et al. [19] proposed a transformation approach defined on a variety
of formal behavioral relations between process models. The approach begins by
transforming BPMN processes to a formal labeled transition system. This model
is used as an input to the Construction and Analysis of Distributed Processes
(CADP) toolbox to verify smooth functioning properties, such as the absence of
deadlock.

Kheldoun et al. [20] also proposed an approach for verifying BPMN models.
The general idea is to take into account the characteristics of the BPMN models,
the cancellation and parallelism of the subprocesses, and handling exceptions. The
proposed approach involves three transformations: the first transforms the BPMN
model to the XMI format. The second transforms the latter to the recursive Petri
nets RECATNets. Finally, the last transforms the RECATNets into a rewriting
logic. Then a formal verification step is applied using the Maude LTL model checker
tool.

Takemura [4] proposed a transformation correspondence from BPMN diagrams
to formal Petri nets models. They show how to use the two properties of coverability
and accessibility for formal verification of the BPMN transaction.

Dijkman et al. [5] proposed a mapping from BPMN to a formal Petri nets model.
The choice of Petri nets was motivated by the available variety of efficient and reliable
static analysis techniques. The properties checked for are the absence of dead tasks
and proper task completion.

Martens and Cerioli [6] proposed a transformation from the Business Process
Execution Language for Web Services (BPEL4WS) to Petri nets. Furthermore, they
checked some proprieties such as the usability property or soundness criterion, the
compatibility property, and the equivalence property.

Raedts et al. [7] proposed a transformation of BPMN models to Petri nets and
then transformed the latter into a formal language called mCRL. Validation and
verification are applied to the Petri nets, and the Yaser simulation tool is used to
validate the BPMN model.

Decker and Weske [8] proposed “interaction modeling” as an alternative that
avoids many disadvantages of other approaches, with a new extension of BPMN in
terms of interaction modeling called iBPMN. This extension is then translated to
a formal representation of Petri nets, called interaction Petri nets.

Cheikhrouhou et al. [21] proposed a BPMN 2.0 compliant extension to take
into account the majority of temporal constraints. This extension supports three
categories of constraints: intra-activity constraints, inter-activity constraints, inter-
process constraints, and temporal constraints correlated with resource/data con-
straints. For the formal verification part, the authors used the UPPAAL model

Formalization and Model checking of BPMN 1085

checker and checked the absence of deadlock and the respect of deadlines of the
processes.

Mallek et al. [22] proposed an approach to specify and verify interoperability in
a BPMN collaboration. The approach is based on mapping collaboration diagrams
into timed PLC networks. Then the UPPAAL model checker is used to verify the
interoperability requirements. These requirements are formalized using temporal
logic TCTL. The main limitation of this approach is that the expressive power
of the TCTL logic does not allow a precise formalization of many interoperability
requirements. Moreover, the response to the requirement is not limited to a yes/no
provided by the model checker.

El-Saber and Boronat [11] defined a formal semantics of BPMN models; this
semantics is interpreted by the formal language Maude. The BPMN model is defined
by a tuple comprising several elements such as flow objects, data objects, activities,
events, gateways tasks, subprocesses, etc. The BPMN elements are represented by
a formal syntax expressed as an algebraic expression in Maude. In the analysis, the
first validated property is the soundness of well-formed BPMN models.

Wong and Gibbons [9, 10] proposed an abstract syntax using the Z notation
and the operational semantics of CSP process algebras for a subset of BPMN. In
the analysis, some timed and untimed properties are validated, such as untimed
invariance, responsiveness, preservation of freedom from deadlock, etc.

Güdemann et al. [23] proposed VerChor for development design and verification
of choreographies, an intermediate form of choreography for the model checking, and
a library of formal properties that must be checked to ensure the smooth functioning
of the specification.

In general, most of the works in the literature proposed approaches that allow
the interpretation of BPMN collaboration diagrams as a formal specification model.
These models are generally Petri nets and their extensions, rewriting logic, mainly
Maude language, and finally process algebras such as CSP. Güdemann’s work made
the exception by providing the VerChor environment to design and analyze chore-
ographies diagrams.

The advantage of the approaches based on Petri nets is related to the tools
part. In other words, there exist a variety of manipulation, simulation, and analysis
tools intended for Petri nets. On the other hand, Petri nets suffer from a significant
limitation: they cannot support two essential concepts of business processes. The
first is the cancellation of an activity or a task, and the second is the OR-joins
operator. These two elements pose correctness problems in business processes [24,
25]. To remedy this challenge, Yet Another Workflow Language (YAWL) [24] has
been proposed. It has been shown that YAWL is more suited to business processes
than Petri nets [24].

In this context, Wang et al. [25] proposed an approach to verify business pro-
cesses with cancellation and OR-joins; these processes are modeled using YAWL.
Four important properties are checked: soundness, weak soundness, irreducible can-
cellation regions, and immutable OR-joins. The authors confirm that this result
can be applied to the BPMN notation. In another work, Wang et al. [26] have de-

1086 T.M. Maarouk, M.E. Souidi, N. Hoggas

fined a set of reduction rules for preserving soundness in the modeling of business
processes with cancellation and OR-joins.

Our approach defines an interpretation of BPMN collaboration diagrams in the
formal DD-LOTOS language, in which we can specify the temporal constraints and
the duration of actions. The main contribution in this context is to check two
categories of properties: quantitative properties and qualitative properties. The first
category is related to the temporal constraints, the deadlines of the offer and the
duration of actions, while the second is related to properties of smooth functioning
such as deadlock, accessibility, and starvation.

In the approaches defined on interleaving semantics such as Petri nets, CSP,
and CCS process algebras and their temporal extensions, we cannot distinguish
between the sequential and parallel activities. This limit is due to the assumption
of the structural and temporal atomicity of the actions imposed by the interleaving
semantics. It is, therefore, not possible to check the properties relating to the
duration of actions and parallel execution.

Our DD-LOTOS language is defined on another semantic model known as true
concurrency semantics. In this semantics, we can distinguish between sequential
behavior and parallel behavior.

The other contribution of our approach is that the DD-LOTOS language and
its semantic model C-DATA take into account the distribution of activities and
processes, which makes it able to specify BPMN swimlanes.

3 PRELIMINARIES

3.1 BPMN

The Object Management Group (OMG) [1] developed the standard BPMN language.
The BPMN language is intended for the modeling of business processes. BPMN
modeling relies on a set of diagrams. These diagrams are made up of several simple
elements that describe the activities performed by the business process. However,
BPMN does not have formal behavioral semantics.

Table 1 provides the essential BPMN elements for business process modeling,
such as tasks, sub-process, gateways, and events.
The basic categories of elements are:

• Flow objects, such as tasks, events, and gateways ;

• Connecting objects, such as sequence flows, message flows, and associations ;

• Swimlanes, such as pools and lanes ;

• Artifacts, such as data objects, text annotations, and groups.

BPMN defines the organization of these elements through either orchestration
(which happens within processes) or choreography (communications between pro-
cesses). BPMN models have three elementary types of sub-models [1]:

Formalization and Model checking of BPMN 1087

Tasks

Manual Service Send Receive User Script

Sub-process

Classic sub-process Sub-process called AD-HOC Event sub-process

Gateways

Parallel gateway Exclusive gateway Inclusive gateway Complex gateway

Events

Start event Intermediate event End event Message start event

Cancel intermediate catching event Message intermediate catching event

Message end event Message non interrupting start event

Timer Start Event Timer Non Interrupting Start Event

Connection objects

Sequence flow Message flow Association

Table 1. Basic BPMN elements

1. Orchestration,

2. Choreographies,

3. Collaborations.

The collaboration diagram shows the relationship and interactions between two
or more participants, and it describes a global view. Pools represent the partici-
pants in the collaboration, and the messages exchanged are represented by message
flows.

1088 T.M. Maarouk, M.E. Souidi, N. Hoggas

In a choreography diagram, we are not interested in the activities between the
participants, but the emphasis will be on the messages exchanged and their logical
relation. On the other hand, the orchestration diagram formalizes a central process
that controls and coordinates all the participants.

3.2 The Distributed D-LOTOS Language

DD-LOTOS [15] is a formal language that extends the D-LOTOS [27] language.
D-LOTOS for durational LOTOS is a formal language defined on maximality se-
mantics to explicitly consider the duration of action. It keeps the same syntax as
LOTOS, but the semantic model escapes the hypothesis of structural and temporal
atomicity. The actions are not atomic and of execution time different from null.

The DD-LOTOS extension takes into account the following aspects:

• Parallel and distributed behaviors in distributed computing;

• Communication and synchronization between processes through the message
exchange paradigm;

• True concurrency semantics;

• Temporal constraints.

The DD-LOTOS syntax is defined in Table 2.

E ::= Behaviors
stop | exit{d} | ∆dE | X[L] |
g@t[SP];E | i@t{d};E | hide L in E |
E[]E | E | [L] | E | E ≫ E | E[> E |
a!v{d};E |
a?xE

S ::= Systems
ϕ | S | S | l(E)

Table 2. Syntax of DD-LOTOS

The expression a{d} represents a temporal restriction. The expression ∆dE rep-
resents the delay operator and means that the expression E starts after the flow of
d. g@t[SP];E is a behavioral expression, where t is a temporal variable, and SP
is a logical predicate. HideL inE is an interiorization. E[]E is a nondeterministic
choice, E|[L]|E is a parallel composition, E ≫ E is a sequential composition, and
E [> E is a preemption. The expression a!v{d};E expresses emission of the mes-
sage v on the gate a; this emission is limited by the temporal interval [0, d]. The
expression a?xE expresses the receipt of a message on the gate a.

A system can be empty, a composition of two systems or a behavioral expres-
sion E defined in a locality l.

Formalization and Model checking of BPMN 1089

Definition 1. The actions in the global system are:

• Communication actions, these actions represent the exchange of messages be-
tween localities Actcom ::= a!m | a?x | τ (sending, receiving and the silent
action);

• Set of observable actions, the silent action and the terminating action Act =
G ∪ {i, δ}.

Definition 2. The set L ranged over by l, denotes set of localities. ϑ an infinite
set of channels defined by users ranged over by a, b, . . . channels are used for com-
municating messages between localities.

3.2.1 Structured Operational Semantics

The operational semantics of DD-LOTOS extend that of D-LOTOS. In this context,
we limit the proposed work to the rules used for sending and receiving messages,
remote communication, and time progression:

Process. a!v{d};E In the configuration M [a!v{d};E], the sending of the message
v starts only if all the actions in the set M terminate. In rule 1 below, the
condition Wait(M) = false, which means some actions have not completed
their executions. Rules 2 and 3 express a passage of time. Rule 4 expresses that
the sending action must respect the temporal restriction operator; otherwise, it
is transformed to Stop.

1.
¬Wait(M)

M [a!v{d};E]
Ma!vx−→ {x:a!v:t} [E]

x = get(M),

2.
Wait(Md′) or (¬Wait(Md′) and ∀ε > 0.Wait(Md′−ε)) d′ > 0

M [a!v{d};E]
d′−→Md′ [a!v{d};E]

,

3.
¬Wait(M)

M [a!v{d′ + d};E]
d−→M [a!v{d′};E]

,

4.
¬Wait(M) and d′ > d

M [a!v{d};E]
d′−→M [stop]

.

Process. a?xE As in the previous configuration M [a?xE], the reception begins once
all actions in the set M complete their execution.

¬Wait(M)

M [a?xE]
Ma?xy−→ {y:a?x:0} [E]

.

1090 T.M. Maarouk, M.E. Souidi, N. Hoggas

Remote communication. The sending and receiving of messages via the same
communication gate consume the silent action, is expressed by the following
rule:

−
M [l(a!v{d};E1)]|M ′ [k(a?xE2)]

τ−→M [l(E1)]|M ′ [k(E2{v/x})]
.

Time evolution on system.

E
d−→ E ′

l(E)
d−→ l(E ′)

,

S1
d−→ S ′

1 S2
d−→ S ′

2

S1 | S2
d−→ S ′

1 | S ′
2

.

3.2.2 Communicating Durational Action Timed Automaton (C-DATA)

C-DATA [15] is a semantic model that allows taking all of the aspects present in
the DATA* (Durational Action Timed Automaton) into account, such as the tem-
poral and structural nonatomicity of actions, urgency of the actions, deadlines, and
temporal constraints. In C-DATA, each locality is represented by a DATA*. The
global system is represented by the set of DATA* s locals, which communicate by
exchanging messages through communication channels.

Definition 3. A Communicating DATA (C-DATA) A(S, LS, s0, ϑ,H,Π, TD) is
a subsystem in which

• S is a finite set of states,

• LS : S → 2
Φt(H)
fn is a function which associates with each state s the set F of

ending conditions (duration conditions) of actions possibly in execution in s,

• s0 ∈ S is the initial state,

• ϑ is the alphabet of the channels on which messages flow between the subsystems,

• H is a finite set of clocks,

• Π = Act com ∪ Act is the set of internal and communication actions of A, and

• TD ⊆ S × 2
Φt(H)
fn × 2

Φt(H)
fn × Π × H × S is the set of transitions, where tran-

sition (s,G,D, α/(a(!/?)v)/i, z, s′) represents switching from state s to state
s′, either by starting execution of action α ∈ Act or actions (Sending or Re-
ceiving) or synchronization for the accomplishment of communication (silent
action) and updating clock z, G is the corresponding guard which must be
satisfied to fire this transition, and D is the corresponding deadline which re-
quires, at the moment of its satisfaction, that action α must occur. Note that

(s,G,D, α/(a(!/?)v)/τ, z, s′) can be written as s
G , D , alpha / (a (!/ ?)v) /i), z−−−−−−−−−−−−−−−−−−−−→ s′.

Formalization and Model checking of BPMN 1091

Definition 4.

System: A system of n C-DATAs is a tuple S = (A1, . . . , An) in which Ai =
(Si, LSi

, s0i , ϑ,Hi,Πi, TiD) is a C-DATA.

States: GS(S) = (s1, v1)× · · · × (sn, vn)× (ϑ∗)p is the set of states.

Initial state: The initial state of S is q0 = ((s01, 0), . . . , (s0n, 0) : ϵ1, . . . , ϵp) such
that ϵ is the empty word of the alphabet ϑ.

System states: Let S = (A1, . . . , An) be a system of n C-DATAs, Ai = (Si, LSi
, s0i ,

ϑ,Hi,Πi, TiD). A global state of S is defined by the state of each subsystem and
the states of each channel, and a state of S is an element of (s1, v1) × · · · ×
(sn, vn)× (ϑ∗)p such that vi(h) are valuations on H.

4 GENERATION OF C-DATA FROM BPMN DIAGRAMS

In [13], we have defined a formal semantics to interpret BPMN diagrams in terms
of the formal language DD-LOTOS. For this purpose, we implemented a tool called
BPMN2DDLOTOS for transforming BPMN elements into DD-LOTOS specifica-
tions.

The idea is to assign to each element of the collaboration diagram a behaviorally
equivalent DD-LOTOS pseudo-code. As an example, the task of sending a message
represented by the graphic element.

Figure 2. Message reception task

Is transformed by the behavioral expression DD-LOTOS:
a?x:message

Expresses the reception of a message through the communication channel a.

4.1 Operational Semantics of the C-DATA

With the aim of analyzing and verifying a DD-LOTOS specification by model check-
ing tools, it must be transformed into a semantic model, hence we have defined the
C-DATA model. We generate a C-DATA model from a DD-LOTOS specification.
This generation is defined on the operational semantics of C-DATA, where the latter
is defined in the form of a formal system of inference rules. The semantic generation
rules are presented in Definition 5.

Definition 5. Let S = (A1, . . . An) be a system of n C-DATAs such that each
Ai = (Si, LSi

, s0i , ϑ,Hi,Πi, TiD) (1 ≤ i ≤ n). The transition T between the state
s = ((q1, v1), . . . , (qn, vn) : x1, . . . , xp) and the state s′ = ((q′1, v′1), . . . , (q′n, v′n) :
x′1, . . . , x′p) can be either an emission (ER), a reception (RR), an execution of a local

1092 T.M. Maarouk, M.E. Souidi, N. Hoggas

action (LR), a passage of time (PR), or a synchronization by appointment (SR). The
semantics of the system S is defined by the smallest transition relation meeting the
following rules:

1. ER (emission rule)

((qi, vi) , a!v, (q
′
i, v

′
i)) ∈ TD xj : word of the channel a

(. . . , (qi, vi) , · · · : . . . , xj, . . .)
a!v→ (. . . , (q′i, v

′
i) , · · · : . . . , xj.v, . . . ,)

.

2. RR (reception rule)

((qi, vi) , a?x, (q
′
i, v

′
i)) ∈ TDxj : word of the channel a

(. . . , (qi, vi) , . . . : . . . , xj.v, . . .)
a?x→ (. . . , (q′i, v

′
i) , . . . : . . . , xj, . . .)

.

3. LR (execution of a local action)

((qi, vi) , α,G,D, z, (q′i, v
′
i)) ∈ TD v |= G

(. . . , (qi, vi) , . . . : . . . , xi, . . .)
α→ (. . . , (q′i, v

′
i) , . . . : . . . , xi, . . .)

whereG is a temporal constraint or guard , D is the corresponding deadline which
requires at the time of its satisfaction that the action α must be activated, and
z is a clock which must be reset.

4. PR (passage of time)

d ∈ R+∀d′ ≤ d(vi + d) ⊭ D

(. . . , (qi, vi) , . . . : x1, . . . , xp)
d→ (. . . , (qi, vi + d) , . . . : x1, . . . , xp)

.

5. SR (synchronization by appointment; for this rule, the channels xi and xj do
not contain messages)

((qi, vi) , a?x, (q
′
i, v

′
i)) ∈ TD

(
(qj, vj) , a!v,

(
q′j, v

′
j

))
∈ TD i ̸= j

(. . . , (qi, vi) , . . . , (qj, vj), . . . : x1, . . . , xp)
τ→
(
. . . , (q′i, v

′
i) , . . .

(
q′j, v

′
j

)
, . . . : x1, . . . , xp

) .
The two rules ER and RR express the exchange of messages between two local-

ities; this communication is asynchronous.
The ER rule represents an emission of a message v on the communication chan-

nel a. The premise of the rule expresses the change of configuration in the locality
concerned by the emission. The conclusion expresses the emission and storage of
the message v in channel a, xj represents the message already in channel a.

The RR rule expresses the reception of a message via the channel a.
The RR rule expresses the execution of an action in a specific locality, so the

rule does not affect the rest of the system.
The PR rule expresses the time progression on the system, so all clocks are

incremented by d units of time.

Formalization and Model checking of BPMN 1093

The SR rule expresses the synchronization between two processes in the same
locality, so it is a local and synchronous communication. The first process waits for
the reception of a message and the second sends the message v.

4.2 From DD-LOTOS to C-DATA

The C-DATA semantic model is defined from the interpretation of the DD-LOTOS
specifications. To generate a C-DATA model from a DD-LOTOS specification, the
rules of the operational semantics of C-DATA are applied [16].

The tool checks the lexicon and the syntax of the specification; for this, we have
defined the grammar for DD-LOTOS. Once the specification is correct, the step of
generating C-DATA begins. Algorithm 1 summarizes the idea of generation.

The algorithm takes as input a specification and returns three sets; the set of
C-DATA configurations denoted S, the set of transitions denoted T , and the set
of clocks denoted by X . Each configuration is made up of all the actions being
executed with their duration.

Algorithm 1 Generation of the C-DATA model

Procedure Generation C-DATA { S: Spec }
Creat initial configuration C0;
S = {C0}; ▷ Countable set of configurations
T = ϕ; ▷ Countable set of transitions
X = ϕ; ▷ Countable set of clocks
ForEach (P: Process) Do {
ForEach (B: Behavior) Do {
Extract behavior(B);
Choice (B) In {
action: Treat Action(S, T ,X); ▷ Call a function
predicate: Treat Predicate(S, T ,X);
operators: Treat Operator(S, T ,X); ▷ operators in {[], [>,>>, |[L]|}
send-receipt: Treat Send-Receipt(S, T ,X);
delay: Treat Delay(S, T ,X);
termination: Treat Exit-stop(S, T ,X);
}

▷ The loop continues execution until there are no more behaviors in the process.
}
EndFor
Extract Next-process(P)
}
EndFor
EndProcedure

1094 T.M. Maarouk, M.E. Souidi, N. Hoggas

5 CASE STUDIES

We have evaluated the proposed approach with two case studies. The first case,
ordering pizza, has already been treated in the context of our work [13]. The second
case is a biometric passport request [28].

5.1 Ordering Pizza

Figure 3 shows a BPMN diagram describing the process of ordering pizza. Knowing
that, we have only taken into consideration the customer process.

The customer begins his process by choosing a pizza (Spizza), then he launches
his order (Opizza), which triggers sending of the preparation message (p!x). If the
elapsed time exceeds 60 minutes, the customer requests his pizza again. If the
elapsed time does not exceed 60 minutes, and the customer receives his pizza (p?x)
then he has to pay (Paypizza), and he eats (Eatpizza), before the end of the process.

Hungry
for pizza

Spizza Opizza

Askpizza

Paypizza Eatpizza

Hungry
satisfied

pizza

received

P
iz
za

C
u
st
om

er

pizza
order

60 minutes

Figure 3. Ordering pizza

The DD-LOTOS specification generated by the BPMN2DDLOTOS tool is given
as follows:

Specification Pizza[p]:=

Behavior L(pizzaCustomer);

where

process pizzaCustomer[p](timer):=

[true]->(Spizza;Opizza;p!x;

(

[timer>=60]-> Askpizza;

[]

[timer<60]-> (p?x;Paypizza;Eatpizza;exit)

Formalization and Model checking of BPMN 1095

))

EndProc

EndSpec

The specification is composed of a single locality L, which contains the running
pizzaCustomer process. The C-DATA model is generated as follows:

In the initial configuration, no action is being performed. This configuration is
represented by the behavioral expression:

ϕ[pizzaCustomer]︸ ︷︷ ︸
c0

.

The first action to be performed in the configuration c0 is Spizza:

ϕ[pizzaCustomer]︸ ︷︷ ︸
c0

ϕ, Spizza, x−−−−−−−→c1
{x≥t1}[P1]︸ ︷︷ ︸.

P1:=(Opizza;p!x;

(

[timer>=60]-> Askpizza;

[]

[timer<60]-> (p?x;Paypizza;Eatpizza;exit)

)

)

where t1 is the time required for the execution of the Spizza action. Timer is a clock
that calculates the time elapsed from the request for pizza until it is received. It is
initialized to zero once the Opizza action is executed.

Given the semantics of the prefix operator “;”, the Opizza action can only begin
execution when the Spizza action ends:

c1 t−→ ϕ[P1]︸ ︷︷ ︸
c2

where t represents a duration of time greater than t1. Once the Spizza action
ends, the Opizza action can begin execution in the interval]t1,+∞[. Based on
configuration c2, the Opizza action can be executed:

c2ϕ,Opizza, y−−−−−−−→ {y≥t2}[P2]︸ ︷︷ ︸
c3

.

where t2 is the time required for the execution of the Opizza action.

P2:=(p!x;

(

[timer>=60]-> Askpizza;

1096 T.M. Maarouk, M.E. Souidi, N. Hoggas

[]

[timer<60]-> (p?x;Paypizza;Eatpizza;exit)

)

)

Similarly, the action of sending p!x on the p channel is executed once the Opizza
action is completed:

c3 t−→ ϕ[P2]︸ ︷︷ ︸
c4

,

c4 ϕ, p!x, {z, timer}
−−−−−−−−−−−−→ {z≥t3}[P3]︸ ︷︷ ︸

c5

.

where t3 is the time required to complete the send pizza order p!x action.

P3:=(

[timer>=60]-> Askpizza;

[]

[timer<60]-> (p?x;Paypizza;Eatpizza;exit)

)

c5 t−→ ϕ[P3]︸ ︷︷ ︸
c6

.

If the system has exceeded 60 units of time since the pizza was ordered, the cus-
tomer still requests the pizza. In this case, the Askpizza action is offered to the
environment:

c6 ϕ,Askpizza, timer ≥ 60, x−−−−−−−−−−−−−−−−−−→ {x≥t6}[P4]︸ ︷︷ ︸
c7

.

P4:= Stop

and the process stops without success.
In the second case, where the system has not exceeded 60 units of time since

the pizza was ordered, the customer receives the pizza and then pays, so the receive
action p?x on the channel p is offered to the environment:

c6 ϕ, p?x, timer < 60, x−−−−−−−−−−−−−−→ {x≥t4}[P5]︸ ︷︷ ︸
c8

where t4 is the time required for executing the action of receiving pizza p?x.

P5:=(Paypizza;Eatpizza;exit);

The customer pays for the pizza once the receiving action is complete, so the
Paypizza action is offered to the environment:

c8 t−→ ϕ[P5]︸ ︷︷ ︸
c9

,

Formalization and Model checking of BPMN 1097

c9 ϕ,Paypizza, x ≥ t5, y−−−−−−−−−−−−−−−→ {x≥t5}[P6]︸ ︷︷ ︸
c10

where t5 is the time required for executing the action Paypizza.

P6:=(Eatpizza;exit);

c10 t−→ ϕ[P6]︸ ︷︷ ︸
c11

,

c11 ϕ,Eatpizza, y ≥ t6−−−−−−−−−−−−→ {y≥t6}[P7]︸ ︷︷ ︸
c12

where t6 is the time required for executing the action Eatpizza.

P7:=exit;

After executing the different steps detailed in this section, we can consider that
the process is successfully completed. Figure 4 shows the C-DATA model generated
from the initial specification.

s0start s1 s2 s3

s4

s6s7s8

s9 s5

{ϕ} {x ≥ t1} {y ≥ t2} {z ≥ t3}

{x ≥ t6}

{x ≥ t4}{y ≥ t5}{z ≥ t6}

Spizza, Cϕ ≥ d, x := 0 Opizza, x ≥ t1, y := 0 p!x, y ≥ t2, z := 0

timer := 0

A
sk

p
izza

,
x

:=
0

tim
e
r
≥

6
0

p?x
, tim

er < 60,
x :=

0

stop

Paypizza, x ≥ t4, y := 0Eatpizza, y ≥ t5, z := 0
e
x
it

Figure 4. C-DATA: Ordering pizza

5.1.1 Model Checking

In this section, we propose checking of the following property classes:

1. Safety properties, which make it possible to verify that the system will never be
in an undesirable state.

2. Liveness properties, which make it possible to verify that the system will reach
a certain desirable state.

3. Reachability and non-blocking properties.

The following properties are expressed in TCTL logic and are checked with the
UPPAAL model-checker:

1098 T.M. Maarouk, M.E. Souidi, N. Hoggas

1. The absence of deadlock.
In UPPAAL a state is defined as a deadlock state if there are no outgoing action
or delay successor transitions.

To check the absence of deadlock we have the property:

A[]not deadlock

This is a safety property. In our case, it is satisfied.

2. Always the customer will end up having his pizza.

A<> customerPizza.Eat

This property is not satisfied in our system. In this case, the UPPAAL model
checker provides a counterexample. The latter is generated when a property is
violated.

The counterexample is a trace in the UPPAAL model, loaded into the simulator
after verification. It can be browsed and displayed in the simulation pane or
saved as a file. We can generate the shortest or the fastest.

3. If the time since the pizza was ordered exceeds 60 units of time, the customer
never gets to eat pizza.

A[](timer >= 60 imply A<>

not customerPizza.Eat)

UPPAAL:

timer >= 60 --> not customerPizza.Eat

This property is satisfied in our system.
Once the command time exceeds 60 units of time, the system ends with stop

(unsuccessful termination). We can modify the specification to avoid the problem
of starvation by adding a recursive process after the action Askpizza so that the
client can execute the action Eat:

Specification Pizza[p]:=

Behavior L(pizzaCustomer);

where

process pizzaCustomer[p](timer):=

[true]->(Spizza;Opizza;p!x;

(

[timer>=60]-> Askpizza;B,

[]

[timer<60]-> (p?x;Paypizza;Eatpizza;exit;)

))

EndProc

process B[p](timer):=

Formalization and Model checking of BPMN 1099

(

[timer>=60]-> Askpizza;B,

[]

[timer<60]-> (p?x;Paypizza;Eatpizza;exit;)

)

EndProc

EndSpec

With this new specification, we can confirm that the customer always ends up
getting pizza. The property can be expressed in TCTL as follows:

A<> customerPizza.Eat

In this case, this is a liveness property.

5.2 Biometric Passport Request

In this section, we present a case study of BPMN modeling of the business process
“biometric passport request”.

The process begins with booking an appointment with any municipality, then
entering the request, enrolling biometric data, and finally issuing a receipt. After-
wards, the citizen receives an SMS inviting them to come to the filing location to
receive their biometric passport.

The proposed BPMN collaboration diagram contains two pools, “Citizen” and
“Biometric Passport”. The details of the processes are illustrated in Figures 5 and 6.

5.2.1 Data Enrollment Cycle

The data enrollment process is depicted in Figure 6. A passport application can be
either a renewal, a new application, or a replacement of a lost, stolen, or damaged
passport. These applications are verified and processed.

5.2.2 DD-LOTOS Specification of the Biometric Passport
Application Process

The BiometricPassport process begins by executing the appointment request action,
followed by receiving and sending data. In the case of a request regarding the
passport’s renewal, and if the expiry date of the passport is greater than six months,
the request is refused. If the date is less than six months, the request is sent, followed
by the Enrollment process. In the Enrollment process, if the applicant’s age is over
45 years old, the passport will be issued directly. On the other hand, if the age is
less than 45 years old, then a verification step of the information is necessary.

Specification BiometricPassportApplication

[App_Request ,Receipt_date ,Fix_app ,Enter_req]() :=

Behavior

1100 T.M. Maarouk, M.E. Souidi, N. Hoggas

Figure 5. Biometric passport application process

Formalization and Model checking of BPMN 1101

Figure 6. Enrollment cycle sub-process

L(BiometricPassport);

Where

Process BiometricPassport[App_Request ,Receipt_date ,

Fix_app ,Enter_req]:=

App_Request;Receip_data;Fix_app!date;

([date > 6] → exit;

[]

[date <= 6] → (Enter_req!request;

Enrollment(request)>>

DN_transfert[DN_receipt]>>Deliverance;

exit)

)

EndProc

Process Enrollment(request):=

[request =’Renewal ’] →
(

[date >6] → exit

[]

[date <=6 and age >45] → Deliverance;exit

[]

[date <=6 and age <=45] → Enrollment(request)

>>Deliverance

)

[]

[request =’Loss ’or theft or damage] →
(

1102 T.M. Maarouk, M.E. Souidi, N. Hoggas

[age >45] → Deliverance

[]

[age <=45] → Enrollment(request)>>Deliverance

)

[]

[request =’New ’or Reject] →
(Enrellment;Deliverance;exit)

Endproc

Process DN_transfert[DN_reception]:=

DN_reception!DN;

(

[DN =’valid ’] →
passport_printing;passport_sending;

Regulatory_depart;exit

[]

[DN =’invalid ’] → Enrollment(request);exit

)

Endproc

Process Deliverance :=

Get_receipt;passport_prod;Receipt_passport;exit

Endproc

Endspec

From this specification, we generate the equivalent C-DATA model. The system
is described in Figure 7 and is composed of three automata.

Figure 7. System in UPPAAL

Formalization and Model checking of BPMN 1103

5.2.3 Model Checking

Figure 8 shows the model checking of some properties using the UPPAAL tool for
the biometric passport case.

Figure 8. Model checking of TCTL properties

1. The absence of deadlock.

A[]not deadlock

It is a safety property. In our case, it is satisfied.

2. Each citizen must obtain a receipt once they have filed a passport application.
In TCTL this property is expressed by the following expression:

A[]((BiometricPassport.Appoint and

BiometricPassport.Enroll)imply

1104 T.M. Maarouk, M.E. Souidi, N. Hoggas

A<> Citizen.Get)

UPPAAL:

(BiometricPassport.Appoint and

BiometricPassport.Enroll)--> Citizen.Get

Appoint is a logical assertion attached to a state in the system; it indicates
that the citizen has applied for a passport.

Enroll indicates that the citizen provided this information and that the expiry
date of their passport is less than six months away.

Get indicates that the citizen received a receipt.

This is a liveness property. In our case, it is satisfied.

3. For each citizen older than 45 years whose passport expiration date is less than
six months away, the request is accepted. In TCTL this property is expressed
by the following expression:

A[]((BiometricPassport.Enroll and age>45

and date<=6) imply Citizen.Passport)

Passport indicates that the citizen has to recover their passport.

This is a liveness property. In our case, it is satisfied.

6 CONCLUSION AND FUTURE WORK

One of disadvantages of the BPMN notation is the lack of formal semantics concern-
ing its diagrams. This insufficiency can lead to inconsistencies in the development
process. Several works have been proposed to provide different solutions to this
problem. However, most works proposed different formalizations in terms of the
model of specification, such as CCS, CSP, LOTOS, Maude, Petri nets. The major
drawback of these approaches is that they are defined on an interleaving semantics.
In other words, that the actions are instantaneous and atomic with null durations.
In the proposed approach, we escape this hypothesis by the fact that DD-LOTOS
language supports structural and temporal non-atomicity of actions.

Consequently, in this work, we have proposed a model-based formal verifica-
tion approach for BPMN collaboration diagrams. The first step is to transform the
BPMN collaboration diagram into a formal DD-LOTOS code. The second step con-
sists of generating the semantic model for a possible verification step. The semantic
model defined for DD-LOTOS is the C-DATA.

In the verification step, we have proposed checking properties to ensure the
safety and liveness of the system.

As future work, we are interested in validating the choreography diagrams. This
work will involve carrying out an automatic approach from the modeling by the
choreography diagrams to the generation of the C-DATA semantic model, to which
we will then apply the model-based checking.

Formalization and Model checking of BPMN 1105

REFERENCES

[1] OMG: Business Process Model and Notation (BPMN). Object Management Group,
2011. Availaible at: https://www.omg.org/spec/BPMN/2.0/.

[2] van der Aalst, W.—La Rosa, M.—Santoro, F.M.: Business Process Man-
agement – Don’t Forget to Improve the Process! Business and Information Systems
Engineering, Vol. 58, 2016, No. 1, pp. 1–6, doi: 10.1007/s12599-015-0409-x.

[3] Fortiş, A.: Business Process Modeling Notation – An Overview. Annals Computer
Science Series, Vol. 4, 2006, No. 1, pp. 41–49.

[4] Takemura, T.: Formal Semantics and Verification of BPMN Transaction and Com-
pensation. Proceedings of the 3rd IEEE Asia-Pacific Services Computing Conference
(APSCC 2008), Yilan, Taiwan, 2008, pp. 284–290, doi: 10.1109/apscc.2008.208.

[5] Dijkman, R.M.—Dumas, M.—Ouyang, C.: Semantics and Analysis of Busi-
ness Process Models in BPMN. Information and Software Technology, Vol. 50, 2008,
No. 12, pp. 1281–1294, doi: 10.1016/j.infsof.2008.02.006.

[6] Martens, A.: Analyzing Web Service Based Business Processes. In: Cerioli, M.
(Ed.): Fundamental Approaches to Software Engineering (FASE 2005). Springer,
Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 3442, 2005, pp. 19–33,
doi: 10.1007/978-3-540-31984-9 3.

[7] Raedts, I.—Petković, M.—Usenko, Y. S.—Van der Werf, J.M.—
Groote, J. F.—Somers, L.: Transformation of BPMN Models for Behaviour Anal-
ysis. Proceedings of the 5th International Workshop on Modelling, Simulation, Verifi-
cation and Validation of Enterprise Information Systems (MSVVEIS 2007), Funchal,
Madeira, Portugal, pp. 126–137, doi: 10.5220/0002428801260137.

[8] Decker, G.—Weske, M.: Interaction-Centric Modeling of Process Chore-
ographies. Information Systems, Vol. 36, 2011, No. 2, pp. 292–312, doi:
10.1016/j.is.2010.06.005.

[9] Wong, P.Y.H.—Gibbons, J.: Verifying Business Process Compatibility. The
Eighth International Conference on Quality Software, Oxford, UK, 2008, pp. 126–131,
doi: 10.1109/qsic.2008.6.

[10] Wong, P.Y.H.—Gibbons, J.: A Relative Timed Semantics for BPMN. Elec-
tronic Notes in Theoretical Computer Science, Vol. 229, 2009, No. 2, pp. 59–75,
doi: 10.1016/j.entcs.2009.06.029.

[11] El-Saber, N.—Boronat, A.: BPMN Formalization and Verification Using Maude.
Proceedings of the 2014 Workshop on Behaviour Modelling – Foundations and Ap-
plications, ACM, 2014, Art. No. 1, pp. 1–12, doi: 10.1145/2630768.2630769.

[12] Corradini, F.—Fornari, F.—Polini, A.—Re, B.—Tiezzi, F.—Vandin, A.:
A Formal Approach for the Analysis of BPMN Collaboration Models. Journal of Sys-
tems and Software, Vol. 180, 2021, Art. No. 111007, doi: 10.1016/j.jss.2021.111007.

[13] Maarouk, T.M.—Merah, E.—Ghaoui, S.—Rahabi, N.: Formal Semantics
and Transformation of BPMN Models. International Journal of Business Process
Integration and Management, Vol. 9, 2019, No. 3, pp. 158–169, doi: 10.1504/I-
JBPIM.2019.100922.

https://www.omg.org/spec/BPMN/2.0/
https://doi.org/10.1007/s12599-015-0409-x
https://doi.org/10.1109/apscc.2008.208
https://doi.org/10.1016/j.infsof.2008.02.006
https://doi.org/10.1007/978-3-540-31984-9_3
https://doi.org/10.5220/0002428801260137
https://doi.org/10.1016/j.is.2010.06.005
https://doi.org/10.1109/qsic.2008.6
https://doi.org/10.1016/j.entcs.2009.06.029
https://doi.org/10.1145/2630768.2630769
https://doi.org/10.1016/j.jss.2021.111007
https://doi.org/10.1504/IJBPIM.2019.100922
https://doi.org/10.1504/IJBPIM.2019.100922

1106 T.M. Maarouk, M.E. Souidi, N. Hoggas

[14] Saidouni, D. E.—Courtiat, J. P.: Relating Maximality-Based Semantics to Ac-
tion Refinement in Process Algebras. In: Hogrefe, D., Leue, S. (Eds.): Formal Descrip-
tion Techniques VII (FORTE 1994). Springer, Boston, IFIP Advances in Information
and Communication Technology, 1995, pp. 293–308, doi: 10.1007/978-0-387-34878-
0 24.

[15] Maarouk, T.M.—Saidouni, D. E.—Khergag, M.: DD-LOTOS: A Distributed
Real Time Language. Proceedings 2nd Annual International Conference on Advances
in Distributed and Parallel Computing (ADPC 2011) Special Track: Real Time and
Embedded Systems (RTES 2011), Published and organized by Global Science and
Technology Forum (GSTF), Singapore, 2011, pp. 45–50.

[16] Maarouk, T.M.—Saidouni, D. E.—Mahdaoui, R.—Houassi, H.: Interpreta-
tion of DD-LOTOS Specification by C-DATA*. In: Morzy, T., Valduriez, P., Bella-
treche, L. (Eds.): New Trends in Databases and Information Systems (ADBIS 2015).
Springer, Cham, Communications in Computer and Information Science, Vol. 539,
2015, pp. 414–423, doi: 10.1007/978-3-319-23201-0 42.

[17] Corradini, F.—Morichetta, A.—Muzi, C.—Re, B.—Tiezzi, F.: Well-
Structuredness, Safeness and Soundness: A Formal Classification of BPMN Collabo-
rations. Journal of Logical and Algebraic Methods in Programming, Vol. 119, 2021,
Art. No. 100630, doi: 10.1016/j.jlamp.2020.100630.

[18] Corradini, F.—Morichetta, A.—Polini, A.—Re, B.—Rossi, L.—
Tiezzi, F.: Correctness Checking for BPMN Collaborations with Sub-Processes.
Journal of Systems and Software, Vol. 166, 2020, Art. No. 110594, doi:
10.1016/j.jss.2020.110594.

[19] Krishna, A.—Poizat, P.—Salaün, G.: Checking Business Process Evo-
lution. Science of Computer Programming, Vol. 170, 2019, pp. 1–26, doi:
10.1016/j.scico.2018.09.007.

[20] Kheldoun, A.—Barkaoui, K.—Ioualalen, M.: Formal Verification of Com-
plex Business Processes Based on High-Level Petri Nets. Information Sciences,
Vol. 385–386, 2017, pp. 39–54, doi: 10.1016/j.ins.2016.12.044.

[21] Cheikhrouhou, S.—Kallel, S.—Guermouche, N.—Jmaiel, M.: Toward
a Time-Centric Modeling of Business Processes in BPMN 2.0. The 15th International
Conference on Information Integration and Web-Based Applications and Services
(IIWAS 2013), Austria, 2013, pp. 154–163, doi: 10.1145/2539150.2539182.

[22] Mallek, S.—Daclin, N.—Chapurlat, V.—Vallespir, B.: Enabling Model
Checking for Collaborative Process Analysis: From BPMN to ‘Network of Timed
Automata’. Enterprise Information Systems, Vol. 9, 2015, No. 3, pp. 279–299, doi:
10.1080/17517575.2013.879211.

[23] Güdemann, M.—Poizat, P.—Salaün, G.—Dumont, A.: VerChor: A Frame-
work for Verifying Choreographies. In: Cortellessa, V., Varró, D. (Eds.): Fundamen-
tal Approaches to Software Engineering (FASE 2013). Springer, Berlin, Heidelberg,
Lecture Notes in Computer Science, Vol. 7793, 2013, pp. 226–230, doi: 10.1007/978-
3-642-37057-1 16.

[24] van der Aalst, W.M.P.—ter Hofstede, A.H.M.: YAWL: Yet Another
Workflow Language. Information Systems, Vol. 30, 2005, No. 4, pp. 245–275, doi:
10.1016/j.is.2004.02.002.

https://doi.org/10.1007/978-0-387-34878-0_24
https://doi.org/10.1007/978-0-387-34878-0_24
https://doi.org/10.1007/978-3-319-23201-0_42
https://doi.org/10.1016/j.jlamp.2020.100630
https://doi.org/10.1016/j.jss.2020.110594
https://doi.org/10.1016/j.scico.2018.09.007
https://doi.org/10.1016/j.ins.2016.12.044
https://doi.org/10.1145/2539150.2539182
https://doi.org/10.1080/17517575.2013.879211
https://doi.org/10.1007/978-3-642-37057-1_16
https://doi.org/10.1007/978-3-642-37057-1_16
https://doi.org/10.1016/j.is.2004.02.002

Formalization and Model checking of BPMN 1107

[25] Wynn, M.T.—Verbeek, H.M.W.—van der Aalst, W.M.P.—ter Hof-
stede, A.H.M.—Edmond, D.: Business Process Verification – Finally a Real-
ity! Business Process Management Journal, Vol. 15, 2009, No. 1, pp. 74–92, doi:
10.1108/14637150910931479.

[26] Wynn, M.T.—Verbeek, H.M.W.—van der Aalst, W.M.P.—ter Hofst-
ede, A.H.M.—Edmond, D.: Reduction Rules for YAWL Workflows with Cancel-
lation Regions and OR-Joins. Information and Software Technology, Vol. 51, 2009,
No. 6, pp. 1010–1020, doi: 10.1016/j.infsof.2008.12.002.

[27] Saidouni, D. E.—Courtiat, J.-P.: Taking into Account the Duration of Action
in Process Algebras Through the Use of Maximality Semantics. Protocol Engineering
(CFIP 2003), 2003 (in French).

[28] Hoggas, N.: Checking Business Process BPMN: Logical Approach. Master Thesis,
2020 (in French).

Toufik Messaoud Maarouk is Lecturer in the Department
of Mathematics and Computer Science, Faculty of Sciences and
Technology, University of Khenchela, Algeria. He received his
Ph.D. in computer science from the Constantine University, Al-
geria, in 2012. His main areas of research include formal meth-
ods, concurrency theory, formal semantics and distributed com-
puting.

Mohammed El Habib Souidi is Lecturer in the Department
of Mathematics and Computer Science, Faculty of Sciences and
Technology, University of Khenchela, Algeria. He received his
Ph.D. in computer science from the Harbin Institute of Technol-
ogy (China), in 2017. His main areas of research include multi-
agent task coordination, reinforcement learning, game theory
and path planning.

Nadia Hoggas received her M.Sc. in computer science from the University of Khenchela,
Algeria in 2020.

https://doi.org/10.1108/14637150910931479
https://doi.org/10.1016/j.infsof.2008.12.002

