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Abstract. In conventional Ciphertext-Policy Attribute-Based Encryption (CP-
ABE), the access policy appears in plaintext form that might reveal confidential
user information and violate user privacy. CP-ABE with hidden access policies
hides all attributes, but the computational burden increases due to the attribute
hiding. In this paper, we present a Linear Secret Sharing Scheme (LSSS) access
structure CP-ABE scheme that hides only sensitive attributes, rather than all at-
tributes, in the access policy. We also provide an attribute selection method to
choose these sensitive attributes and use an Attribute Bloom Filter (ABF) to hide
them. Compared with the existing major CP-ABE schemes with hidden access
policies, our proposed scheme is flexible in selecting attributes to hide. This scheme
enhances the efficiency of policy hiding while still protecting policy privacy. Test
results show that our approach is reasonable and feasible.
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1 INTRODUCTION

Cloud storage technology is quite effective in handling massive data volumes in the
big data era. However, security issues such as leakage of user’s data and access
policy privacy of data need to be properly handled. Attribute-Based Encryption
(ABE) has provided flexible and fine-grained access control for outsourced data
stored in the cloud [1]. Goyal et al. propose Key-Policy Attribute-Based Encryp-
tion (KP-ABE) [2], and Bethencourt et al. introduce Ciphertext-Policy Attribute-
Based Encryption (CP-ABE) [3] as variants of ABE. User attributes are essential
for both KP-ABE and CP-ABE. To avoid exposing user details from the access
policy itself, Nishide et al. [4] propose CP-ABE with hidden policy. Lai et al. [5]
establish a completely safe hidden policy CP-ABE building on Nishide’s effort. Re-
cently, Yang et al. [6] and Han et al. [7] proposed CP-ABE schemes using Attribute
Bloom Filters (ABF). Their schemes incorporate a Linear Secret Sharing Scheme
(LSSS) access structure [6, 7, 8, 9, 10]. These schemes have good policy expressiv-
ity, high efficiency, and achieve desired security goals under the decisional q-BDHE
assumption.

The policy-hiding approaches of the CP-ABE schemes proposed so far fall into
two categories. One hides the entire access policy, and the other hides all attributes
in the access policy. Hence, the question arises: to reduce the computational cost,
can we design a CP-ABE scheme in which we only obfuscate some of the attributes
in the access policy rather than all of them? This idea is totally different from the
partially hidden access policy of Cui et al. [8], which hides attribute values while
leaving attribute names publicly visible.

In general, only a few attributes in the access policy violate user privacy. There-
fore, only sensitive attributes that may leak private details should be hidden. Non-
sensitive attributes that are not relevant to user privacy do not require protection,
and not hiding them lowers computational costs. For example, consider a case in
which an electronic medical record is stored on a cloud storage server with the
hospital’s access policy as:

(Alice AND patient AND department of cardiology AND municipal hospi-
tal) OR (tertiary hospitals AND cardiologist).

This access policy allows Alice, a patient in the department of cardiology in the
municipal hospital, or cardiologists from any tertiary hospital to access this record.
We observe from the policy that the attributes department of cardiology and cardi-
ologist reveal that Alice is suffering from a heart condition. Other attributes in the
access policy provide no privacy information about the patient. Thus, we only need
to obfuscate the two sensitive attributes, department of cardiology and cardiologist,
leaving the others in plaintext form in the access policy.

To achieve a better balance between privacy and efficiency, we propose a CP-
ABE scheme that hides sensitive attributes. Our contributions are as follows:
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1. We use a sensitive attribute selection method to partition attributes in the access
policy into two subsets to determine which attributes are sensitive and require
obfuscation and which are non-sensitive and do not.

2. We use modified ABF to obfuscate sensitive attributes to prevent revealing pri-
vacy or critical information.

3. We determine whether the user can decrypt a given ciphertext in advance with
obfuscated sensitive attributes.

We organize our paper as follows. We give the formal definition of a sensitive
attribute and present the sensitive attribute selection algorithm in detail in Section 2.
In Section 3, we describe the sensitive attribute hiding process through the modified
ABF Build and the sensitive attribute verification process through ABF Query.
Section 4 provides the system model, assumptions, and security model. The formal
construction of our scheme is proposed in Section 5. We give security and efficiency
analysis in Section 6. Section 7 shows the experimental results and evaluation of
our approach. Section 8 discusses some related works. Finally, we summarize our
work in Section 9.

2 SENSITIVE ATTRIBUTE SELECTION

An access policy in plaintext form easily reveals personal information. So, CP-ABE
schemes with hidden-policies are proposed to solve the problem. In practice, not all
attributes reveal sensitive information. To make the hidden access policy CP-ABE
more flexible and efficient while preserving privacy, we selectively hide the sensitive
attributes in the access policy. We formally define a sensitive attribute as follows.

Definition 1 (Sensitive attribute). Attributes X1, X2, . . . , Xk in an access policy
are sensitive attributes if, for a given threshold δ

I(Y ;X1X2 . . . Xk) ≥ δH(Y ) (1)

where I(Y ;X1X2 . . . Xk) denotes mutual information between Y and X1X2 . . . Xk,
andH(Y ) denotes entropy of Y [11, 12], Y denotes a user’s privacy, and {X1, X2, . . . ,
Xk} is the smallest set that satisfies the above conditions.

The user’s privacy Y in the above definition is an abstract concept. We illus-
trate Y using the example in Section 1. In that example, we consider a privacy Y
that if the patient has heart disease. One can deduce that the patient has heart
disease from the attributes department of cardiology or cardiologist in the access pol-
icy. From the perspective of information theory, attributes department of cardiology
and cardiologist provide more information about Y than other attributes. There-
fore, attributes department of cardiology and cardiologist are regarded as sensitive
attributes.
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2.1 Sensitive Attribute Selection Algorithm

We select and hide sensitive attributes in the access policy to achieve both security
and efficiency simultaneously. We base our sensitive attribute selection algorithm
on information theory. We determine an attribute set that reveals the greatest
amount of private information by measuring the mutual information between the
user’s privacy and the attributes.

Algorithm 1 describes the sensitive attribute selection process and consists of
three steps. In step 1, we select attributes that independently provide more infor-
mation about Y than the given threshold by calculating the mutual information
between the user’s privacy and each attribute. In step 2, we choose seed attributes
that have closer relations with Y from the remaining attributes. In step 3, we fur-
ther select attributes that collectively provide more information about Y than the
threshold based on step 2.

We note that if the privacy Y can be independently derived from different at-
tribute sets S1, S2, . . . , Sl, then the returned set of Algorithm 1 is S =

⋃l
k=1 Sk.

It is possible that multiple privacies Y1, Y2, . . . , Yt can be derived from the
attributes in a given access policy. In that case, we run the algorithm for each Yi

(i = 1, 2, . . . , t), and obtain corresponding sensitive attribute sets S1, S2, . . . , St.
The final sensitive attribute set for the access policy is defined as S =

⋃t
i=1 Si.

For a given access structure of a data object, the sensitive attribute set can be
obtained before the data owner releases the data object’s ciphertext on the cloud.

3 HIDING SENSITIVE ATTRIBUTES AND VERIFICATION

3.1 ABF Build

In the traditional CP-ABE with LSSS access structure, the attribute mapping func-
tion ρ is exposed. Since ρ directly reflects the mapping relations between the rows
and the attributes in the access matrix, as shown in Figure 1, ρ is the “arch-criminal”
of privacy leakage. To protect privacy in the access policy, we remove the attribute
mapping relations for sensitive attributes from the access structure and leave the
attribute mapping relations for non-sensitive attributes. In this way, we can blur the
position of sensitive attributes in the access policy to hide sensitive attributes. Fig-
ure 2 shows the hidden and visible parts of the LSSS access structure. We implement
the ABF Build here.

The elements of the ABF are specific λ-bit strings connected by two fixed-length
strings: the row number i with γ bits, and the attribute attx with β bits, where
γ + β = λ.

Before adding the attribute atto to the ABF, we expand both row number i
and atto to the maximum bit lengths γ and β, respectively, by left-filling the bit
strings with zeros. The algorithm takes the λ-bit strings x as input and hashes each
atto by t independent hash functions and finds the position index h1(atto), h2(atto),
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Algorithm 1 Sensitive Attribute Selection Algorithm

Require: A: all attributes in an access policy; Y : the user’s privacy; δH(Y ), 0 <
δ ≤ 1

Ensure: sensitive attribute set S
1: B = ∅, S = ∅, St = ∅;
2: Step 1 :
3: for all Xj ∈ A do
4: calculate I(Y ;Xj);
5: if I(Y ;Xj) ≥ δH(Y ) then
6: S = S ∪ {Xj}; A = A \ {Xj};
7: end if
8: end for
9: Step 2 :

10: B = A;
11: for all Xj ∈ B do
12: select X∗

j that I(Y ;X∗
j ) = max{I(Y ;Xj)};

13: St = St ∪ {X∗
j }; B = B \ {X∗

j };
14: if B == ∅ then
15: return S;
16: end if
17: end for
18: Step 3 :
19: for all Xj ∈ B do
20: select X∗∗

j that
21: I(Y ;X∗∗

j Xi1Xi2 . . . Xi|St|
) ≥ I(Y ;XjXi1Xi2 . . . Xi|St|

);
22: if I(Y ;X∗∗

j Xi1Xi2 . . . Xi|St|
) ≥ δH(Y ) then

23: St = St ∪ {X∗∗
j }; S = S ∪ St;A = A \ St; St = ∅;

24: if B == ∅ then
25: return S;
26: else
27: goto Step 2;
28: end if
29: else St = St ∪ {X∗∗

j }; B = B \ {X∗∗
j };

30: if B ̸= ∅ then
31: goto Step 3;
32: else
33: return S;
34: end if
35: end if
36: end for
37: return S;
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Figure 1. Traditional LSSS access structure

Figure 2. LSSS access structure after removing the mapping relations for sensitive at-
tributes (mapping relations for attributes in the blue dotted rectangle are marked for
removal)

. . . , ht(atto). Then, it randomly selects t − 1 x-bit strings r1, r2, . . . , rt−1, where
rt = r1 ⊕ r2 ⊕ · · · ⊕ rt−1 ⊕ x. Finally, it saves ri by hi(atto) in the ABF.

In our scheme, we use the ABF only for sensitive attributes. Non-sensitive
attributes are exposed in LSSS access structure as usual, as shown in Figure 3.

This algorithm consists of the following steps.

Step 1: Obtain the set of sensitive attributes S = {atti1 , atti2 , . . . , attik} in the
access structure.

Step 2: Obtain atto ∈ S, define element x = (i ∥ atto) in the ABF, where i
represents the γ-bit row number and atto is the β-bit attribute string.

Step 3: Hash attribute atto by t independent hash functions and obtain the position
index h1(atto), h2(atto), . . . , ht(atto).

Step 4: Randomly choose the (γ + β)-bit string r1, r2,. . . , rt−1 and make r1, r2,
. . . , rt−1 satisfy rt = r1 ⊕ r2 ⊕ · · · ⊕ rt−1 ⊕ x, where r1, r2, . . . , rt are t secret
shares of the x = (i ∥ atto).
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Figure 3. The LSSS access structure after using ABF to hide sensitive attributes (Blue
dotted rectangles represent the mapping relations for sensitive attributes that are to be
hidden by ABF)

Step 5: Store ri by hi(atto) in the ABF as

r1 −→ h1(atto),

r2 −→ h2(atto),

. . .

rt −→ ht(atto).

Step 6: Set S = S\{atto}. Repeat steps 2 through 5 until S = ∅.

3.2 ABF Query

Since the attribute mapping relations for non-sensitive attributes are unchanged in
the scheme, it is easy for a user to determine if his non-sensitive attributes are in the
access structure. However, removal of the attribute mapping relations for sensitive
attributes necessitates an additional verification process to determine if the user’s
attributes are in the access structure as being sensitive attributes.

We implement an ABF query to check whether a user’s attributes are in the
access structure (M, ρ) by comparing the user’s attribute attu with the β-bit string
of element x = (i ∥ atto) in the ABF output. If attu is the same as the β-bit string
of x = (i ∥ atto), the user’s attribute attu is in (M, ρ). Otherwise, this attribute is
not in (M, ρ). To provide an example, we suppose atto is the same as attu and carry
out the specific process by the following steps.
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Step 1: Put user attribute attu into the ABF.

Step 2: Obtain h1(attu), h2(attu), . . . , ht(attu) by hashing attu with the t indepen-
dent hash functions used in the ABF.

Step 3: According to the position index h1(attu), h2(attu), . . . , ht(attu) obtain t se-
cret shares of the attribute attu as follows:

h1(attu) := r1(attu),

h2(attu) := r2(attu),

. . .

ht(attu) := rt(attu).

Step 4: According to the t secret shares of attu, reconstruct the element x = (i ∥
atto) = r1(attu) ⊕ r2(attu) ⊕ · · · ⊕ rt(attu), which is formed after the user’s
attribute attu goes through ABF.

Step 5: Compare the user attribute attu with the β- bit string of x = (i ∥ atto)
output by the ABF.

Step 6: If the user’s attribute is in (M, ρ), it will obtain the remaining γ-bit string
i from x = (i ∥ atto). The remaining γ-bit string i denotes the position of attu
in the access matrix. If the results in step 5 are different, attu is not in (M, ρ),
and the algorithm outputs a random string. Thus, the user cannot obtain any
sensitive information from the access policy.

4 PRELIMINARIES

4.1 Liner Secret Sharing Scheme (LSSS)

We use the LSSS proposed by Cui et al. [8], so we omit its detailed description here.

4.2 Bilinear Pairings

G, GT are two multiplicative groups with the same prime order p. A bilinear map-
ping ê : G×G −→ GT has the following properties.

1. Bilinearity: ∀a, b ∈ Zp and g ∈ G ê(ga, gb) = ê(g, g)ab;

2. Non-Degeneracy: ê(g1, g2) ̸= 1;

3. Computability: ê(u, v) is comptationally efficient for all u, v.

4.3 Decisional q-BDHE Assumption

The decisional q-bilinear Diffie-Hellman exponent (Decisional q-BDHE) problem is
defined as follows.
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Definition 2. Choose a group G of prime order p according to the security param-
eter κ. Choose a, s ∈ Zp at random and let g be a generator of G, with gi denot-
ing gai . Given −→y = (g, g1, . . . , gq, gq+2, . . . , g2q, g

s), the adversary must distinguish

ê(g, g)a
q+1s ∈ GT from the random element R ∈ GT . An algorithm has advantage

in solving the decisional q-BDHE problem in G if |Pr[B(−→y , T = ê(g, g)a
q+1s) =

0]− Pr[B(−→y , T = R) = 0]| ≥ ε.

Definition 3. We say that the decisional q-BDHE assumption holds if no polyno-
mial time algorithm has a non-negligible advantage in solving the q-BDHE problem.

4.4 CP-ABE Scheme with Partial Attributes Hidden

As shown in Figure 4, the whole system consists of four entities: the cloud storage
server (CSS), the key generation center (KGC), the data owner, and the user. The
roles are as follows.

• The CSS provides computing, storage, and other related services for the whole
system. It is semi-trusted.

• The KGC generates public keys, the master key, and users’ private keys for the
system. It is fully trusted.

• The data owner establishes access policies for data objects and encrypts them
under these access policies. The user also preprocesses these access policies by
performing the sensitive attribute selection algorithm. The user partially hides
access policies using ABF.

• The user accesses data objects in the CSS. However, only users whose attributes
match the access policy can access the object.

Our scheme includes the following algorithms.

Sensitive Attribute Selection Algorithm: The data owner executes the sensi-
tive attribute selection algorithm with inputs A and δ, where A is the set of all
the attributes in the access policy and δ is the threshold value. It outputs the
sensitive attribute set S.

Setup: The KGC takes the security parameter κ as input and produces the public
key PK and master secret key MK as outputs.

Key Generation Algorithm: The KGC uses PK, MK, and a set of attributes
Su as inputs to the algorithm and generates SKu for the user u as output.

Encryption Algorithm: The encryption algorithm has three phases.

1. Offline encryption: This phase takes PK, the message M as input and
outputs IT , an intermediate ciphertext.

2. Online encryption: The online encryption phase takes PK, intermediate
ciphertext IT and the access structure (M, ρ) as inputs and outputs a ci-
phertext CT .
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Figure 4. System framework

3. ABF Build: This phase receives the sensitive attribute set S as input and
outputs the ABF.

Decryption Algorithm: The decryption algorithm consists of two phases.

1. ABF Query: This phase takes Su and the ABF produced by the ABF Build
algorithm above. It outputs the sensitive attributes and their positions in
the access matrix.

2. Decryption: The decryption phase receives SK and CT as input and returns
the message M as output if the user satisfies the access policy.

4.5 Game Between Adversary and Challenger

The game between adversary and challenger is based on selectively chosen plaintext
attacks. The details are described in Figure 5.

If the adversary outputs b′ and b′ = b, the adversary wins the game.
In polynomial time, the adversary’s advantage in this game is defined as ε =

|Pr[m = mb]− 1
2
|, where b ∈ {0, 1} and ε ∈ R+.

5 THE CP-ABE SCHEME WITH PARTIAL ATTRIBUTES HIDDEN

5.1 Our construction

We introduce partial attribute hiding and employ the sensitive attribute selection
algorithm to ensure the access policy does not violate user privacy. Our method
runs the sensitive attribute selection algorithm to extract sensitive attributes in
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Figure 5. The game between adversary and challenger

the access policy and hides them by establishing the ABF. In this section, we de-
tail the four phases of our scheme: setup, key generation, encryption, and decryp-
tion.

Setup: In this phase, the KGC executes the setup algorithm using the security
parameter κ and chooses two multiplicative cyclic groups G and GT of prime
order p. g is the generator of G, and ê : G × G −→ GT is a bilinear map.
The KGC randomly chooses h, u, υ, ω ∈ G,α ∈ Zp, and outputs the public key
PK = (G, p, g, h, u, υ, ω, ê(g, g)α) and master key MK = (α).

Key Generation: The algorithm takes the user’s attribute set Su = {att1, att2, . . . ,
attq} as input. The KGC selects random exponents a, a1, a2, . . . , aq ∈ Zp, where
a is a unique secret for each user and ai, i = 1, 2, . . . , q is a unique secret for
each attribute atti ∈ Su. The KGC then generates the private key

SK = (K0 = gαωa, K1 = ga, {Ki,2 = gai , Ki,3 = (uattih)aiυ−a}i=1,2,...,q).

Encryption Algorithm: The encryption algorithm is divided into the following
three phases.

1. Offline encryption: We define N as the maximum row number of (M, ρ).
This phase takes the public key PK as input. The data owner selects s ∈ Zp

and computes C̃ = M · ê(g, g)αs, C0 = gs. Then, the data owner randomly
chooses λ′

j, xj, tj ∈ Zp and computes Cj,1 = ωλ′
jυtj , Cj,2 = (uxjh)−tj , Cj,3 =

gtj , j ∈ 1, 2, . . . , N , where λ′
j is a random share of s and xj is a random

attribute in the access structure. The algorithm outputs the intermediate
ciphertext IT = (C̃, s, C0, {λ′

j, xj, tj, Cj,1, Cj,2, Cj,3}j∈1,2,...,N).
2. Online encryption: This algorithm receives the public key PK, an intermedi-

ate ciphertext IT , and the access structure (M, ρ) as inputs, whereM is l×n
matrix and l < N . It outputs the ciphertext CT . The algorithm randomly
chooses the vector ν = (s, y2, y3, . . . , yn) ∈ Zn

p , where s is a secret of being
shared, and computes a vector of the share of s as λi = Mi ·ν, i = 1, 2, . . . , l.
For j = 1, 2, . . . , l, the algorithm computes Cj,4 = λj−λ′

j,Cj,5 = tj(ρ(j)−xj).
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Finally, the algorithm outputs the ciphertext CT :

CT = ((M, ρ), C0, Cj,1, Cj,2, Cj,3, Cj,4, Cj,5).

3. ABF Build: The algorithm takes the sensitive attribute set S from the sensi-
tive attribute selection algorithm as input, and stores each sensitive attribute
in the ABF. Refer to Section 3 for the procedure for storing each sensitive
attribute in ABF. After all the sensitive attributes are placed in the ABF,
the data owner stores the above ABF with the partially displayed access
structure (M′, ρ′) and the ciphertext CT in the cloud.

Decryption Algorithm: The decryption algorithm has two steps. The first step
determines whether the user’s attributes satisfy the access structure via the ABF
Query if necessary. The second step performs the decryption.

Before the execution of the decryption algorithm, the user knows the non-
sensitive attributes in the access structure. Although some of the attributes
in the access structure are visible, some of the attributes in the access structure
may be hidden in the ABF, which makes it difficult for a user to determine
whether the ciphertext can be decrypted directly. The ABF Query assists with
this determination.

1. ABF Query: This algorithm compares the β-bit strings of the element x =
(i ∥ atto) formed by the user attribute through the ABF with the user’s
attribute attu. If the β-bit string of x = (i ∥ atto) is the same as attu,
then attu is in (M, ρ). Otherwise, attu does not exist in the access policy.
(Refer to Section 3 for details.) If the query succeeds, the position of user
attribute attu in the access matrix can be obtained. Otherwise, it outputs
random strings; the user could not get any sensitive information in the access
structure from the output.

2. Decrypt: Only the user whose attributes satisfy the access policy can execute
the decryption algorithm. Assume that u is the user passed the ABF Query,
the attributes of u satisfying (M′, ρ′), it can find coefficients

∑
i∈I ωiλi = s,

where {ωi ∈ ZN}i∈I . Then the user

ê(g, g)αs =
ê(C0, K0)

ê(ω
∑

i∈I Cj,4ωi , K1)

· 1

Πi∈I ê(Cj,1, K1)ê(Cj,2 · ucj,5 , Ki,2)ê(Cj,3, Ki,3)ωi
(2)

and recovers the message as M = C̃/ê(g, g)αs. Otherwise, it outputs ⊥.
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5.2 Correctness

If the user attribute set Su satisfies the access matrix, then the user obtains
∑

i∈I ωiλi

= s. Therefore,

ê(g, g)αs =
ê(C0, K0)

ê(ω
∑

i∈I Cj,4ωi , K1)
· 1

Πi∈I ê(Cj,1, K1)ê(Cj,2 · ucj,5 , Ki,2)ê(Cj,3, Ki,3)ωi

=
ê(g, g)αsê(g, g)as

ê(ω
∑

i∈I(λj−λ′
j)ωi , ga)

· 1

Πi∈I ê(ω
λ′
jυtj , ga)ê((uxjh)−tj · utj(ρ(j)−xj), gai)ê(gtj , (uattih)aiυ−a)ωi

=
ê(g, g)αsê(g, g)as

ê(g, ω)a
∑

i∈I ωiλi

= ê(g, g)αs. (3)

5.3 A Case Study

In this section, we provide an example to illustrate the process of the entire scheme.
The case study considers a hospital that stores electronic medical records in a CSS
and specifies the following access policy:

(Alice AND Patient AND Department of cardiology AND Municipal hos-
pital) OR (Tertiary hospitals AND Cardiologist).

We define our attributes as

att1: Tertiary hospitals,

att2: Cardiologist,

att3: Municipal hospital,

att4: Alice,

att5: Department of cardiology,

att6: Patient.

We define the attribute map as ρ : ρ(1) = att2, ρ(2) = att1, ρ(3) = att5, ρ(4) = att3,
ρ(5) = att4, and ρ(6) = att6. The access matrix corresponding to the above access
policy is:

To protect sensitive information in an access policy, the data owner performs
the sensitive attribute selection algorithm to select sensitive attributes that need to
be hidden. We assume that the sensitive attributes chosen by the algorithm are att2
and att5.

Then, the KGC generates PK for the data owner. The data owner obtains PK
and prepares to encrypt the data objects, assuming that the secret sharing value
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s = 2 and the vector ν = (2, 3, 1, 4, 6). Then the secret shares corresponding to each
attribute is the set M · ν⊤ = (5, 3, 13, 6, 5, 1)⊤.

After encryptingM , the sensitive attributes att2 and att5 are hidden by the ABF
Build algorithm. User u with attribute set Su = {att1, att2} sends his attribute set
to the KGC. The KGC then sends the corresponding private key to the user based
on Su = {att1, att2}. After receiving the private key, the user verifies whether he can
decrypt the ciphertext through the ABF Query. Since the user’s attribute att1 is in
plaintext form in the access structure, it does not need to be validated by the ABF
Query. However, att2 is obscured, and the system must perform an ABF Query for
att2. If the ABF Query validates the attribute att2, the user will receive the location
in the access matrix. Otherwise, the user receives a random string. If the user u can
pass the validation, he gets the position of the attribute att2 in the access matrix,
that is the 1st row of access matrix.

Therefore, the user obtains

MT
u =


0 1
1 1
0 0
0 0
0 0


from the ABF Query algorithm and finds the coefficients ωi such that

∑
i∈I ωi ·M i =

(1, 0, . . . , 0). The coefficients are ω1 = −1 and ω2 = 1.

Then, the user obtains

s =

(
3
5

)(
−1 1

)
= 2

by the ωi and the secret shares of atti, i = 1, 2.

Finally, the system computes

ê(g, g)αs =
ê(C0, K0)

ê(ω
∑

i∈I Cj,4ωi , K1)Πi∈I ê(Cj,1, K1)ê(Cj,2 · ucj,5 , Ki,2)ê(Cj,3, Ki,3)ωi
(4)

and recovers the message as M = C̃/ê(g, g)αs.
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6 SECURITY, POLICY PRIVACY, EFFICIENCY

6.1 Security

Theorem 1. No adversary can selectively break our scheme under the decisional
q-BDHE assumption in polynomial time.

Proof. In the scenario, the plaintext message m was encrypted under the access
structure (M, ρ). If an adversary wants to decrypt a ciphertext CT , he must obtain
the private key SK. According to the security model of the scheme, the attribute
set of the adversary does not satisfy the access structure (M∗, ρ∗) chosen in the ini-
tialization phase. Therefore, the adversary cannot obtain the private key. The only
thing the adversary can do here is to attack the chosen plaintext attack mentioned
in Section 6, and the adversary’s advantage ε = |Pr[m = mb] − 1

2
| is negligible.

Hence, this scheme is safe under the decisional q-DBHE assumption. □

6.2 Policy Privacy

In our scheme, the sensitive attributes in the access structure (M, ρ) are hidden by
the ABF. According to the analysis by Dong et al. [13], ABF produces far fewer
false positives than traditional bloom filters. However, with the increase of element
content in the ABF, the false positive will still increase. The sensitive attribute
selection algorithm in our scheme reduces the number of attributes that need to be
hidden by selecting sensitive attributes in the access structure and, thus, reduces
the false positive produced by ABF to some extent. Moreover, when query the
element attu, we collect all bit strings that are in hi(attu) and “XOR” together. If
the result is atti, then attu is in S. Otherwise attu is not in S, and the ABF outputs
random strings. The threshold δ in the algorithm reflects the importance of the
access policy to the data owner. If δ takes a small value, the attributes that have
a little relationship with the private information Y are selected by the algorithm.
If δ takes a larger value, the algorithm selects the attributes that are very closely
related to the privacy information Y . The data owner can flexibly set the threshold
δ according to his own needs in our scheme.

6.3 Efficiency

We use the attribute selection algorithm to extract sensitive attributes in the access
policy. Although the attribute selection process has some cost impact on the encryp-
tion phase, this process can be performed before the encryption starts. In the ABF
Build process, we only hide the sensitive attributes in the access policy, and we only
verify sensitive attributes in the access policy in the ABF query. The efficiency of
our approach is between the methods from Han et al. [7] and Hohenberger et al. [14].
Compared with both of these, our scheme does not only reduce the computational
cost but also effectively protects the access policy. The δ value directly affects the
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sensitive attribute selection algorithm. Our proposal offers flexible protection of the
policy privacy. The efficiency of our scheme is shown in Table 1.

Scheme Scheme [14] Scheme [7] Our Scheme

Attributes hidden No Total Partial
System setup ê+ exp ê+ exp ê+ exp

Key generation
(4p+ 3) exp
+ (2p+ 1)M

(3pn+ p+ 3) exp
+ (2pn+ 1)M

(4p+ 3) exp
+ (2p+ 1)M

Offline-Encrypt (5p+ 2) exp+(2p)M (5p+ 2) exp+(2p)M (5p+ 2) exp+(2p)M
Online-encrypt M M M
ABF build – (lt)H (kt)H
ABF Query – (pt)H (qt)H

Decrypt
(3p+ 1)ê+

(2p+ 1) exp+(3p)M
(3p+ 1)ê+

(2p+ 1) exp+(3p)M
(3p+ 1)ê+

(2p+ 1) exp+(3p)M

Table 1. Comparison of different schemes (k ≤ l and q ≤ p)

• k: The number of sensitives attributes in the access policy,

• l: The number of attributes in the access policy,

• p: The number of attributes of the user,

• q: The number of sensitive attributes of the user,

• n: The number of attributes type in the system,

• t: The number of the hash function in the ABF.

7 EXPERIMENTAL RESULTS AND EVALUATION

To evaluate the feasibility and efficiency of our scheme, we first implemented our
attribute selection algorithm on the Heart Disease Data Set1. We used 14 attributes:

1. age,

2. sex,

3. cp (chest pain type),

4. trestbps (resting blood pressure),

5. chol (serum cholestoral in mg/dl),

6. fbs (fasting blood sugar > 120 mg/dl),

7. restecg (resting electrocardiographic results),

8. thalach (maximum heart rate achieved),

9. exang (exercise induced angina),

10. oldpeak (ST depression induced by exercise relative to rest),

1 https://archive.ics.uci.edu/ml/datasets/Heart+Disease

https://archive.ics.uci.edu/ml/datasets/Heart+Disease
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11. slope (the slope of the peak exercise ST segment),

12. ca (number of major vessels (0-3) colored by fluoroscopy),

13. thal (normal; fixed defect; reversible defect),

14. num (diagnosis of heart disease, the predicted attribute).

The last attribute “num” is the user’s privacy Y ; that is, if the user has heart
disease. From the data set, we calculated the entropy H(Y ) = 0.995. We set
different threshold δ values to select sensitive attributes according to Definition 1,
retrieving different sensitive attribute sets, as shown in Table 2.

Threshold Final Sensitive Attribute Set (to Be
Hidden)

Sensitive Attribute Sets

δ = 1.0 ∅ /

δ = 0.95 S = {13, 12, 3, 1, 8, 11, 9} S1 = {13, 12, 3, 1, 8, 11, 9}
δ = 0.90 S = {13, 12, 3, 1, 8, 11} S1 = {13, 12, 3, 1, 8, 11}
δ = 0.85 S = {13, 12, 3, 1, 8, 11} S1 = {13, 12, 3, 1, 8, 11}
δ = 0.80 S = {13, 12, 3, 1, 8} S1 = {13, 12, 3, 1, 8}
δ = 0.75 S ={13, 12, 3, 1, 8} S1 ={13, 12, 3, 1, 8}
δ = 0.70 S = {13, 12, 3, 1, 9, 11, 2, 5, 8, 4, 7, 6, 10} S1 = {13, 12, 3, 1},

S2 = {9, 11, 2, 5, 8, 4, 7, 6, 10}
δ = 0.65 S = {13, 12, 3, 1, 9, 11, 2, 5, 8, 4, 7, 6} S1 = {13, 12, 3, 1},

S2 = {9, 11, 2, 5, 8, 4, 7, 6}
δ = 0.60 S = {13, 12, 3, 1, 9, 11, 2, 5, 8, 4, 7} S1 = {13, 12, 3, 1},

S2 = {9, 11, 2, 5, 8, 4, 7}
δ = 0.55 S = {13, 12, 3, 9, 11, 2, 1, 5, 8} S1 = {13, 12, 3},

S2 = {9, 11, 2, 1, 5, 8}
δ = 0.50 S = {13, 12, 3, 9, 11, 2, 1, 5, 8} S1 = {13, 12, 3},

S2 = {9, 11, 2, 1, 5, 8}

Table 2. Sensitive attribute selection results

In Table 2 we enumerated the sensitive attribute sets as the sequence constructed
by Algorithm 1. We enumerated the sensitive attributes as the selected sequences
of them by the algorithm 1 also. When δ = 1.0, no sensitive attribute set was
constructed. Consequently, no attribute was selected as a sensitive attribute be-
cause I(Y ;X1X2 . . . X13) < H(Y ). For other cases, the numbers of elements of two
constructed sensitive attribute sets S1 and S2 decreased along with the decrease
of δ. When δ = [0.7, 0.5], there appeared two sensitive attribute sets, that means
attributes both in S1 and S2 independently bring enough information about Y with
respect to the threshold δ. We propose that the finally selected attributes needing
to be hidden are S = S1 ∪ S2.

Since our work focuses on selectively hiding attributes in the access structure and
follows Han et al.’s scheme [7], we designed experiments to evaluate the cost of the
ABF build algorithm in the encryption process and the ABF query in the decryption
process. We used a sytem with an Intel Core i5-7300 CPU at 2.60GHz 2.71GHz
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Figure 6. Extra cost incurred by ABF Build and Query (Heart Disease Data Set)

with 8GB RAM running Windows 10 Professional to execute the ABF build and
ABF query algorithms for randomly generated attributes in different numbers. We
wrote the two algorithms in Java and ran them with Java Development Kit (JDK)
version 1.8.0. All test results are the averaged times of 10 tests. Figure 6 shows the
cost impact caused by ABF build and query. As shown in Table 2, if δ = 0.8, the
data owner hides five attributes instead of 13 in the balance between privacy and
efficiency. As a result, the data owner reduces the cost of the ABF build process from
31.1 milliseconds to 12.2 milliseconds. The ABF query cost fell from 9.5 milliseconds
to 5 milliseconds. The overall cost fell from 40.6 milliseconds to 17.2 milliseconds.
This test used 32 hash functions.

In another experiment, we randomly generated 50 attributes, hid some of them,
and measured the cost impacts. Figure 7 shows the costs of ABF build, ABF
query, and the overall cost for hiding different numbers of attributes. The costs of
comparison of plaintext attributes are negligible in all tests.

8 RELATED WORK

The identity-based encryption (IBE) method proposed by Sahai and Waters [1] is
the predecessor of attribute-based encryption (ABE). In the original ABE [2, 15,
16], the private key and ciphertext are both associated with the user’s attributes.
Later, KP-ABE [2] and CP-ABE [3] expanded ABE. In CP-ABE, private keys are
associated with attributes, and access policies are embedded into the ciphertext
to achieve fine-grained access control. However, the original CP-ABE stored the
access structure in plaintext form in the cloud, ignoring the privacy of the access
policy.
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a) Extra cost incurred by ABF build

b) Extra cost incurred by ABF query

Nishide et al. [4] introduced the concept of hiding the access policy for the
first time, considering the confidentiality of the access structure. Soon after, sev-
eral other CP-ABE schemes [5, 17] with hidden access policies were put forward.
However, all these schemes inherit the “AND” gate access structure of [4] and the
dependency of the ciphertext length on the number of attributes. So, there are not
only limitations in policy expression but also a large computational overhead. Later,
new schemes were proposed to reduce the computational cost [18, 19, 20], but the
“AND” gate access structure is limits policy expression. Compared to the “AND”
gate access structure, the LSSS access matrix is less restrictive in policy expression,
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c) Overall cost

Figure 7. Extra cost incurred by ABF build and query

so Cui et al. and Belguith et al. [8, 9, 21] proposed the fully secure CP-ABE scheme
with an LSSS access structure. In Cui’s efforts [8, 9], the attribute is composed
of the attribute name and attribute value. In their scheme, the attributes values
are hidden with attribute names in plaintext. In the CP-ABE schemes using an
access tree [5, 22, 23], attribute anonymity technology protects the security of the
policy by anonymous operation of the leaf nodes in the access tree. However, none
of those schemes solve the linear growth relation between the ciphertext and the
number of attributes. In the CP-ABE scheme with hidden access policy [24, 25],
the linear growth relation is controlled effectively. Our scheme also uses the LSSS
access structure, but we focus more on protecting sensitive attributes in the access
policy to prevent privacy disclosure while reducing redundant computation.

The diversity of access structures in different CP-ABE schemes leads to dif-
ferent policy hiding methods. The tree access structure uses attribute anonymity
technology to hide leaf nodes [22], while CP-ABE [10] with its LSSS access structure
directly hides the whole access matrix to protect privacy in the access policy and
applies hybrid encryption for determining whether the user’s attributes satisfy the
access policy. Recently, a new approach has been adopted to realize policy hid-
ing [6, 7]. In these schemes, the attribute mapping relationship is hidden, and all
the attributes in the access policy are hidden with ABF. Before the user executes
the decryption algorithm, the user is verified by the ABF Query. The user passes
the verification if his attributes satisfy the access policy and then can perform the
decryption algorithm. Otherwise, the user obtains no information related to the
access policy. So, these schemes achieve the goal of hiding access policy dexter-
ously. However, not all attributes in the access policy disclose the user’s privacy.



1156 G. Arkin, N. Helil

Thus, Han’s method [7] of hiding all the attributes increases the computational
overhead. Therefore, we consider extracting sensitive attributes in access policy
via an attribute selection algorithm and obscure only those. Our work reduces the
computational overhead of the encryption and decryption process while effectively
protecting access policy privacy to prevent the leakage of sensitive information.

9 CONCLUSION

In this paper, we have proposed a CP-ABE scheme with some attributes hidden.
In contrast to the existing approaches that hide all attributes in the access policy,
we have introduced “partial hiding.” To achieve partial hiding of attributes, we
have presented a sensitive attribute selection algorithm to partition attributes in
the access policy into two sets. According to his own need, the data owner chooses
the partition criteria and can select the sensitive attributes before data encryption
work starts. We hide selected sensitive attributes using ABF and leave the remainder
exposed in plaintext. Our security analysis showed that our scheme is selectively
secure against chosen plaintext attacks. Since we hide only some of the attributes
instead of all of them, our method is more efficient while still protecting sensitive
information in the access policy. Experimental results show that the presented
attribute selection algorithm is reasonable and feasible. In addition, by hiding some
of attributes, we reduce the cost during the ABF build and query processes. Our
attribute selection algorithm has flexibility in that δ reflects how important the
policy privacy is for the data owner.

There are some challenges to our proposal. There is no unique answer for se-
lecting sensitive attributes. Defining the privacy information Y and assessing the
privacy parameter δ is challenging. In our future work, we will further consider more
reasonable and feasible attribute selection algorithms.
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