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Abstract. The work is devoted to the description of the question-answer system
QA-RiskPanel, which provides means of determining and forecasting the risks re-
lated to computer attacks. The QA-RiskPanel system uses a constantly updated
database of previous computer attacks as a source of knowledge. We thus guar-
antee the most up-to-date risk prediction. The ontological approach to the for-
malization of the object domain allows the analysis of risks at various levels of
specification/generalization. In this paper we provide a model-theoretic formaliza-
tion of the Knowledge Base of the described object domain. Then we describe the
classification of question types, which are probabilistic in this system. Finally we
present algorithms for finding the answers to all question types of our classification.

Keywords: Question-answering system, knowledge base, theory of the fuzzy mod-
els, generalized fuzzy model, information security, computer attacks, case of the
computer attack

Mathematics Subject Classification 2010: 68-T35

1 INTRODUCTION

Nowadays it is hard to overestimate the value of effective risk management in the
field of information security [1]. Big companies often report great financial losses
as consequences of hacker attacks and exposure of valuable information. When
a threat is present, it is essential to know the symptoms of the attack, potential
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losses, possible solutions and any other information that may help to quickly take
the right countermeasures and solve the problem.

To solve this problem, a knowledge base system for information risk management
was developed at Novosibirsk State University [2]. The system allows the informa-
tion security administrator to explicitly work with cases of computer attacks and
take measures to prevent attacks and protect computer systems from damage. The
system also assists the administrator in stopping destructive actions at the first
stages and promptly handle its consequences in order to minimize the damage.

The software system RiskPanel is modular, which allows plugging in of new
modules in case of need. For instance, core modules were complemented by the
early attack recognition module [3], based on JSM-method [4] and formal concept
analysis [5].

This work describes the question answering system QA-RiskPanel, developed
as a part of the software system RiskPanel. The Knowledge Base of the described
system is based on the case model approach. The user of the QA-RiskPanel sys-
tem can ask probability questions, directed towards computer attack prediction and
studying of related risks.

2 RELATED WORK

Currently, there are two main domains of question answering research: information
retrieval systems and intelligence support systems [6].

Question answering systems, developed in the context of information retrieval
approach, aim to find text fragments on the Internet that answer the question of
the user [7]. Conventionally, question-answering systems using this approach are
divided into two types: open domain and restricted domain systems [8, 9].

Open domain systems are general, because their purpose is to answer questions
from any object domain. Similarly, restricted domain systems are specialized and
developed to answer only questions from some specific object domain.

However, both kinds of these systems use natural language processing and text
mining methods. The only difference is the degree of the ontology development.

Open domain question answering systems use general ontologies of the natural
language (e.g. WordNet). Therefore, such issues of the natural language processing
as synonymy, lexical ambiguity, polymorphism etc. have to be addressed in these
systems [10, 7]. As a rule, there is a limited class of questions that modern question
answering systems with open domain can formalize for further processing. Such
questions are called factographic. Factographic questions can be divided into several
subclasses: questions about people, time, toponyms, lists of some things, definitions
etc. [11].

Question answering systems with restricted domain use dedicated ontologies.
On the one hand, it helps to solve the problem of ambiguity of the natural language
words. On the other hand, such systems can find answers to more specific questions
of the object domain.
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Studies of artificial intelligence led us to the development of knowledge-based
question answering systems, which use various Knowledge Bases as data sources.
Obviously, such systems have a restricted object domain. It is important to note
that knowledge-based systems can only find answers in the information contained
in the Knowledge Base, and therefore are less flexible in construction of ques-
tions.

However, the main advantage of this approach lies in the conceptual model
of the object domain, represented by the structure of the Knowledge Base. This
model allows advanced methods of structured information processing to be used,
such as logical deduction, analogical reasoning etc. This, in its turn, shifts the
goals of development of such systems. Usually, they focus not on searching and
localizing the requested information, but on revelation of hidden rules and pat-
terns, analysis of critical situations and description of risks in the given object
domain.

For instance, the system L&C [12], developed for medical tasks, solves the
problem of integrating expert medical knowledge with personal information about
patients. The Demner-Fushman’s question answering system [13] is based on the
application of statistical methods to clinical medicine. The Diagnostic Panel sys-
tem [14] designed for “spinal deformity and degenerative diseases of the spine” object
domain and is based on the methods of statistical processing of the data retrieved
from the medical documents written in natural language. System [15] is devoted
to methods for identifying payment plans and services by mobile operators which
are the best for the given subscribers. The WEBCOOP system [16] uses logical
deduction to generate answers in the field of tourism.

3 THE KNOWLEDGE BASE OF COMPUTER SECURITY

3.1 The Structure of the Knowledge Base

The object domain ∆ = “Computer attacks” is formalized in terms of the Fuzzy
Model Theory [17] with use of the Description Logic methods [18]. The first step
is to introduce the set P of atomic concepts of the object domain ∆. All atomic
concepts are divided into six subsets:

P1 : “Symptoms”;

P2 : “Threats”;

P3 : “Vulnerabilities”;

P4 : “Consequences”;

P5 : “Losses”;

P6 : “Countermeasures”.



1200 G. Yakhyaeva, A. Karmanova, A. Ershov

The set of all atomic concepts P is formed from the content of the National
Vulnerability Database (the agency NIST1). NVD is the U.S. government reposi-
tory of standards based vulnerability management data. It is a regularly updated
database of security vulnerabilities. The vulnerability description contains informa-
tion about the version of software that has the vulnerability, ways of exploiting the
vulnerability, possible countermeasures, etc.

Each subset Pi of the atomic concepts is hierarchically ordered set. The ontology
of the object domain ∆ (let us call it TBox , which is traditional in Description
Logic) includes the set P and the set of all specialization axioms which represent
the hierarchical structure of the set P.

The set of all concepts CON of the object domain ∆ is built according to the
syntax of the Description Logic. Each concept φ ∈ CON is a Boolean combination
of the atomic concepts from P.

TBox is the first component of the Knowledge Base of the object domain ∆.
Description of the computer attack cases is the second component of the Knowledge
Base. The information about computer attacks for QA-RiskPanel mainly comes
from NIST and MITRE2 databases. Each attack e is characterized by the pres-
ence/absence of traits from classes Pi. Therefore, the atomic concept at this stage
is regarded as a unary predicate, i.e. P (x) ∈ P.

Further, we supplement the knowledge about truth of the atomic concepts for
various computer attack cases through the use of axioms from TBox . Let us intro-
duce the following notation:

ABox = {P (e) | atomic concept P (x) is true on the case e}.

In what follows the pair KB = ⟨TBox ,ABox ⟩ will be called Knowledge Base of
the object domain ∆. The Knowledge Base will be expanded with the appearance
of new concepts of the given object domain (e.g. new threats, vulnerabilities etc.)
or new cases of computer attacks. However, the structure of the Knowledge Base
remains the same.

3.2 Theoretical-Modal Formalization of the Knowledge Base

We use a Case Model and a Fuzzy Model of the object domain ∆ for statistical
processing of data [17]. We construct these models on the basis of the class of
interpretations of the Knowledge Base KB.

Let us consider the finite set of computer attacks E = {e1, . . . , en} which were
previously used to describe ABox and the class P of unary predicates describing
TBox .

1 http://www.nist.gov/
2 http://www.mitre.org/

http://www.nist.gov/
http://www.mitre.org/
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Definition 1. The algebraic system AE = ⟨E,P ⟩ is called Interpretation of the
Knowledge Base KB if AE |= ABox (i.e. AE |= φ(ei) for each sentence φ(ei) ∈
ABox ).

Definition 2. Ordered triple Case(AE) = ⟨{a}, P, τ⟩ is called Case Model gener-
ated by the Interpretation AE = ⟨E,P ⟩ if for each concept φ(x) ∈ CON we have
τ(φ(a)) = {e ∈ E|AE |= φ(e)}.

The Case Model associates each concept with the set of computer attack cases
that have this concept. Notice, that model Case(AE) is a Boolean-valued model.
This model associates each sentence of the signature P ∪ {ca} with an element of
the Boolean algebra ρ(E) [17].

Most methods of statistical data processing use an objective and/or subjective
probability concept. The objective probability is the relative frequency of actual
occurrences of some event within a total set of observations. Another interpreta-
tion of the objective probability is the relation of the amount of ‘positive’ observa-
tions to the total amount of observations. The subjective probability is a degree
of confidence of an expert or a group of experts that some particular event will
happen [19].

The proposed approach uses concept of the Fuzzy Model to describe objective
probability.

Definition 3. The ordered triple Fuz (AE) = ⟨{a}, P, µ⟩ is called Fuzzy Model of
the object domain ∆ generated by the InterpretationAE = ⟨E,P ⟩ if for each concept
φ(x) ∈ CON the following is true:

µ(φ(a)) =
∥{e ∈ E | AE |= φ(e)}∥

∥E∥
.

The truth value of sentence (concept) is a number from the interval [0,1] on
the Fuzzy Model. This number represents the objective probability that the con-
cept is true on the potential computer attack. The works [17, 20] contain more
detailed description of the properties of the Case Models and the Fuzzy Mod-
els.

It is worth mentioning that the information from the Internet is often incomplete.
Therefore, there is a class of various Interpretations of the Knowledge Base KB. Let
us denote this class by IE, i.e. IE = {AE = ⟨E,P ⟩ | AE |= ABox}.

Definition 4. An ordered triple Fuz (IE) = ⟨{a}, P, ξE⟩ is called Generalized Fuzzy
Model generated by the class of Interpretations IE if for each concept φ(x) ∈ CON
we have

ξE(φ(a)) = {µ(φ(a)) | Fuz (AE) = ⟨{a}, σ∆, µ⟩ and AE ∈ IE} .

Therefore, truth values of sentences are subsets of rational numbers from the
interval [0, 1] on the Generalized Fuzzy Model. Furthermore truth values of sentences
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are the intervals defined on the set

Qn =

{
0,

1

n
, . . . ,

n− 1

n
, 1

}
where n = ∥E∥ is the number of cases in the Knowledge Base [21].

In strictly mathematical sense the Generalized Fuzzy Model Fuz (IE) is not
the interval model. However if n → ∞ then truth values of sentences will be
approximated to the intervals on the set [0, 1] ∩ Q. Therefore we can consider the
truth values on the model Fuz (IE) as intervals of rational numbers in practice.
Based upon that, let us denote

Fuz (IE) |=[α,β] φ(a)

where α = inf(ξE(φ(a))) and β = sup(ξE(φ(a))). In the special case when α = β,
we denote Fuz (IE) |=α φ(a). We say that φ(a) is true on the model Fuz (IE) if
Fuz (IE) |=1 φ(a) and false if Fuz (IE) |=0 φ(a).

Consider the following subsets of the set of cases E:

T (E,φ) = {e ∈ E | ∀AE ∈ IE : AE |= φ(e)}, (1)

F (E,φ) = {e ∈ E | ∀AE ∈ IE : AE ̸|= φ(e)}, (2)

N(E,φ) = E\(T (E,φ) ∪ F (E,φ)). (3)

Let Fuz (IE) |=[β1,β2] φ(a). Then, by the Definitions 3 and 4 we have

∥T (E,φ)∥ = β1∥E∥, (4)

∥N(E,φ)∥ = (β2 − β1)∥E∥, (5)

∥F (E,φ)∥ = (1− β2)∥E∥. (6)

Notice that inf(ξE(φ(a))) = sup(ξE(φ(a))) if and only if N(E,φ) = ∅. Further-
more

Fuz (IE) |=1 φ(a) ⇔ ∥E∥ = ∥T (E,φ)∥,

Fuz (IE) |=0 φ(a) ⇔ ∥E∥ = ∥F (E,φ)∥.

3.3 Optimal Restrictions of the Knowledge Base

To find answers to conditional questions (see Section 4.4) we need to restrict the
Knowledge Base KB, leaving as many cases of computer attacks from the set E as
necessary to make the Knowledge Base satisfy the given condition. Moreover, we
try to exclude only the minimum necessary amount of cases from the Knowledge
Base, so that it remains as big as possible.
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Definition 5. Let E1 ⊆ E(E1 ̸= ∅) and the model AE = ⟨E,P ⟩ be the Interpreta-
tion of the Knowledge Base KB. Then

1. Model AE1 is called Restriction of the Interpretation AE on the set of cases
E1 (denoted AE1 ⊆ AE).

2. Class of models IE1 = {AE1 = ⟨E1, P ⟩ | ∃AE ∈ IE : AE1 ⊆ AE} is called the
Restriction of the class IE to the set E1.

3. Generalized Fuzzy Model Fuz (IE1) generated by the class IE1 is called the Re-
striction of the model Fuz (IE) and denoted Fuz (IE1) ⪯ Fuz (IE).

Let ρ(Fuz (IE)) denote the set of all Restrictions of the model Fuz (IE). The
signature P of the Generalized Fuzzy Model Fuz (IE) is purely predicative. Hence
each model Fuz (IE1) ⪯ Fuz (IE) is uniquely defined by the set of cases E1 ⊆ E. It
is easy to prove that partially ordered set ⟨ρ(Fuz (IE)),⪯⟩ is a Boolean lattice.

Let φ(x) ∈ CON and α ∈ [0, 1]. Consider the following subsets of the set
ρ(Fuz (IE)):

M(φ ≥ α) = {Fuz (IE1) ⪯ Fuz (IE) | ξE1(φ(a)) ⊆ [α, 1]},

M(φ ≤ α) = {Fuz (IE1) ⪯ Fuz (IE) | ξE1(φ(a)) ⊆ [0, α]}.

Note that

M(φ ≥ α) = ∅ ⇔ α ̸= 0 and Fuz (IE) |=0 φ(a),

M(φ ≤ α) = ∅ ⇔ α ̸= 1 and Fuz (IE) |=1 φ(a).

Let Fuz (IE) |=[β1,β2] φ(a). If α ≤ β1 then Fuz (IE) ∈ M(φ ≥ α). Consequently
this model is the largest in the ordered set ⟨M(φ ≥ α),⪯⟩.

On the other hand if α = 1 then M(φ ≥ α) = {Fuz (IE1)|E1 ⊆ T (E,φ)}. Hence
the model Fuz (IT (E,φ)) is the largest in the ordered set ⟨M(φ ≥ α),⪯⟩.

By analogy if α ≥ β2 then model Fuz (IE) is the largest in the ordered set
⟨M(φ ≤ α),⪯⟩. And if α = 0 then the model Fuz (IF (E,φ)) is the largest in the
ordered set ⟨M(φ ≤ α),⪯⟩.

In other cases, if the setsM(φ ≥ α) andM(φ ≤ α) are not empty then partially
ordered sets ⟨M(φ ≥ α) ⪯⟩ and ⟨M(φ ≤ α),⪯⟩ have more than one maximum
element.

Proposition 1. Let E1 ⊆ E(E1 ̸= ∅).

1. If model Fuz (IE1) is the maximum in the ordered set ⟨M(φ ≥ α);≤⟩ then
T (E1, φ) = T (E,φ).

2. If model Fuz (IE1) is the maximum in the ordered set ⟨M(φ ≤ α);≤⟩ then
F (E1, φ) = F (E,φ).
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Proof. Let us prove the item 1. The item 2. is proven the same way.
Consider the model Fuz (IE1) ∈ ρ(Fuz (IE)) such that Fuz (IE1) ∈ M(φ ≥ α)

and T (E,φ) \ T (E1, φ) ̸= ∅. Let us prove that the model Fuz (IE1) is not maximum
in the set ⟨M(φ ≤ α);⪯⟩.

If Fuz (IE1) ∈M(φ ≥ α) then α ≤ ∥T (E1,φ)∥
∥E1∥ . And if T (E,φ) \T (E1, φ) ̸= ∅ then

there is at least one case e such that e ∈ T (E,φ) \ T (E1, φ).
Consider the model Fuz (IE1∪{e}). Obviously Fuz (IE1) ⪯ Fuz (IE1∪{e}).
From the equalities

∥T (E1 ∪ {e}, φ)∥ = ∥T (E1, φ)∥+ 1 and ∥E1 ∪ {e}∥ = ∥E1∥+ 1

it follows that

α ≤ ∥T (E1, φ)∥
∥E1∥

≤ ∥T (E1 ∪ {e}, φ)∥
∥E1 ∪ {e}∥

.

This means that Fuz (IE1∪{e}) ∈ M(φ ≥ α), i.e. the model Fuz (IE1) is not the
maximum in the set ⟨M(φ ≥ α);⪯⟩. 2

Definition 6. Let φ(x) ∈ CON and α ∈ [0, 1]. Model Fuz (IE1) is called (φ ≥ α)-
Optimal Restriction ((φ ≤ α)-Optimal Restriction) of the model Fuz (IE), if
it satisfies the following conditions:

1. Model Fuz (IE1) is maximum in the partially ordered set ⟨M(φ ≥ α),⪯⟩(⟨M(φ ≤
α),⪯⟩);

2. If model Fuz (IE2) is maximum in ⟨M(φ ≥ α),⪯⟩ (⟨M(φ ≤ α),⪯⟩) then condi-
tion ξE2(φ(a)) ⊆ ξE1(φ(a)) is true.

Theorem 1. Consider φ(x) ∈ CON and α ∈ [0, 1]. Let Fuz (IE) |=[β1,β2] φ(a).

1. If model Fuz (IE1) is (φ ≥ α)-Optimal Restriction of the model Fuz (IE) then

∥E1∥ = min

{
⌊β1
α
∥E∥⌋, ∥E∥

}
;

inf(ξE1(φ(a))) = kβ1;

sup(ξE1(φ(a))) = min{1, kβ2}.

2. And if model Fuz (IE1) is (φ ≤ α)-Optimal Restriction of the model Fuz (IE)
then

∥E1∥ = min

{
⌊1− β2
1− α

∥E∥⌋; ∥E∥
}
;

inf(ξE1(φ(a))) = max{0; 1− k(1− β1)};

sup(ξE1(φ(a))) = 1− k(1− β2)]),

where ⌊x⌋ is the integer part of number x and k = ∥E∥
∥E1∥ .
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Proof. Let us proof the item 1. The item 2. is proven the same way.
If α ≤ β1 then model Fuz (IE) is its own (φ ≥ α)-Optimal Restriction. Consider

a case when α > β1.
Model Fuz (IE1) is (φ ≥ α)-Optimal Restriction of the model Fuz (IE). Then

(by Proposition 1) we have T (E1, φ) = T (E,φ). Furthermore, by virtue of the fact
that Fuz (IE) |=[β1,β2] φ(a) we get

∥T (E1, φ)∥ = ∥T (E,φ)∥ = β1∥E∥.

As Fuz (IE1) ∈M(φ ≥ α) then α ≤ ∥T (E1,φ)∥
∥E1∥ . Consequently, we get the following

inequality:

∥E1∥ ≤ ∥T (E1, φ)∥
α

=
β1
α
∥E∥.

Also, by virtue of the fact that the model Fuz (IE1) is maximum in the partially
ordered set ⟨M(φ ≥ α),⪯⟩ we have

∥E1∥ ≤ β1
α
∥E∥ and ∥E1∥ − ∥T (E,φ)∥ ≤ ∥F (E,φ)∥+ ∥N(E,φ)∥.

Let us show that the number ⌊β1

α
∥E∥⌋ satisfies these conditions. Obviously, that

number ⌊β1

α
∥E∥⌋ is the biggest number that satisfies the first inequality. Accept

⌊β1
α
∥E∥⌋ − ∥T (E,φ)∥ > ∥F (E,φ)∥+ ∥N(E,φ)∥.

Then we get
β1
α
∥E∥ − β1∥E∥ > (1− β2)∥E∥+ (β2 − β1)∥E∥.

If we divide this inequation in ∥E∥, we get β1−αβ1

α
> 1 − β1. Consequently,

β1 − αβ1 > α− αβ1. Therefore, α < β1, i.e. we have a contradiction.
Next, from ∥T (E1, φ)∥ = β1∥E∥ follows that

inf(ξE1(φ(a))) =
∥T (E1, φ)∥

∥E1∥
=
β1∥E∥
∥E1∥

= kβ1.

On the other side, since the model Fuz (E1) is (φ ≥ α)-Optimal Restriction of
the model Fuz (IE) then

sup(ξE1(φ(a))) = min

{
1,

∥T (E1, φ)∥+ ∥N(E,φ)∥
∥E1∥

}
= min

{
1,
β2∥E∥
∥E1∥

} = min{1, kβ2
}
.

2
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Consequence 1. Consider φ(x) ∈ CON and α ∈ [0, 1]. Let Fuz (IE) |=[β1,β2] φ(a),
β1 < α, model Fuz (IE1) is (φ ≥ α)-Optimal Restriction of the model Fuz (IE) and

k = ∥E∥
∥E1∥ . Then

1. if α ≥ β1

β2
, then Fuz (IE1) |=[kβ1;1] φ(a);

2. if α < β1

β2
, then Fuz (IE1) |=[kβ1;kβ2] φ(a).

Proof. By Theorem 1, sup(ξE1(φ(a))) = min{1, kβ2}. Consider the case when
α ≥ β1

β2
. Then

∥E1∥ = ⌊β1
α
∥E∥⌋ ≤ ⌊β2∥E∥⌋ ≤ β2∥E∥,

i.e. ∥E1∥ ≤ β2∥E∥. Then k = ∥E∥
∥E1∥ ≥ 1

β2
. Consequently, kβ2 ≥ 1. Therefore, we get

that sup(ξE1(φ(a))) = 1.
On the other side, if α < β1

β2
then k < 1

β2
So we get sup(ξE1(φ(a))) = kβ2. 2

Consequence 2. Consider φ(x) ∈ CON and α ∈ [0, 1]. Let Fuz (IE) |=[β1,β2] φ(a),
α < β2, model Fuz (IE1) is (φ ≤ α)-Optimal Restriction of the model Fuz (IE) and

k = ∥E∥
∥E1∥ . Then

1. if α ≤ 1− 1−β2

1−β1
then Fuz (IE1) |=[0;1−k(1−β2)] φ(a);

2. if α > 1− 1−β2

1−β1
then Fuz (IE1) |=[1−k(1−β1);1−k(1−β2)] φ(a).

Proof is analogous to the proof of the Consequence 1.

4 FORMALIZATION AND CLASSIFICATION OF QUESTION TYPES

Question-answering systems are aimed satisfying a user’s informational need. How-
ever, analysis, understanding, and satisfying this need is a complicated task even
for a human, not to speak about software systems. That is why the formalization of
question-answering relationships is an important task. Obviously, the quality and
the effectiveness of interaction between a user and a QA-system will depend on the
quality of the formalizing process.

A set of all questions, that a user can ask in natural language form, is infinite
even under a narrow subject domain, and consequently, the formalization of this
set seems to be impossible. Accordingly, we can only describe some of the typical
question templates. The selection of the formalization applies some restrictions on
those question types that can be processed by a question-answering system. In the
current work, the Knowledge Base of a question-answering system is formalized as
an algebraic system Fuz (IE). It will let us make a formalization and a classification
in the spirit of the erotetic logic, which foundational ideas can be found in the
work [22].

Traditionally, in erotetics two types of questions are considered: “whether-
questions” and “what-questions”. As our judgements are of a probabilistic nature,
we will consider one more question type – “the probabilistic questions”.
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4.1 “Whether-Questions”

Questions of “whether” type are aimed to explore the truth value of a judgement.
Often a question of this type starts with “Whether true or not that. . . ” As an an-
swer, we expect to get “yes” or “no”. From a theoretical-modal point of view, the
“whether-question” is formalized as “query”: whether the current judgement is true
or not within the given algebraic system.

In the QA-RiskPanel system “whether-questions” are modified. Because, on the
one hand, the aim of the system is a definition of the probability value of some risks
occuring and, on the other hand, the system base of knowledge is formed as General-
ized Fuzzy Model Fuz (IE). Consequently, while formulating a “whether-question”,
we will point out not only a judgement itself but also probability characteristics of
this judgement. Let us take an example:

Whether true or not that the probability of unreliable password use in a com-
puter attack is less than 0.3?

Whether true or not that the probability of SQL-injection use in a computer
attack is equal to 0.8?

4.2 Probabilistic Questions

A probabilistic question is a demand to estimate the probability of some judgement.
For an example, a user’s informational need is, that he wonders how often a vulner-
ability “unreliable password” is used in computer attacks. In this case the question
will look like this:

What is the probability, that an unreliable password will be used in an attack?

The answer will be an interval of rational numbers from [0; 1].
In a more general case, if we consider the interpretation of questions on models

with truth-functions of a different nature (for instance, Boolean-valued or case mod-
els [23]), then we will get evaluative questions. The general scheme is the following:

What is the truth value, that ⟨judgement⟩?

In case of interpretation on classical model evaluative question will be equal to
“whether-question”.

4.3 “What-Questions”

In erotetics, “what-question” is interpreted as evaluating the value of the question
subject. Each “what-question” is considered as a set (possibly, infinite) of differ-
ent “whether-questions”. The answer is a list of subjects for which the answer on
“whether-question” is true.
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In our approach every “what-question” will be split into a finite amount of
“whether-questions”. Let us give an example of “what-question”:

What hidden attacks can appear with probability of more than 0.8?

An algorithm to find an answer to “whether-question” should be understood as
a procedure, that consists of three steps:

1. detection of a subset C of all atomic concepts set P ;

2. estimation of truth values of all concepts from C;

3. detection of subset C ′ ⊆ C, so that truth values of its elements satisfy the
probability characteristics from the question.

The answer to the question of this type is a list of concepts from C ′.

4.4 Conditional Questions

Conditional questions are questions that contain a condition and require an answer
only in the case when this condition is true. Conditional questions play an important
role in formalization of question-answering systems. The fact is that the real world
questions are intended to mean, that the questioner has some preliminary knowledge
about a question domain, and disregarding this knowledge can result in reduction of
pertinence of the answer, that has been elicited by the question-answering system.
As a result, a user will receive an answer that does not satisfy his need, and we
should mention that the main aim of QA systems is to produce relevant answers
that match the user’s need.

In the developed system there is an opportunity to add a condition to a question
of every type. Consequently, a user can ask conditional “whether-questions”, con-
ditional probability questions, conditional “what-questions”, and conditional modal
questions (see Section 4.5). If we do not add a condition to a question, let us call
this question unconditional.

Let us consider an example of the conditional question:

“If there is no network encryption, what is the probability of information
disclosure in an attack?”

This question may be understood as a “query”, and the purpose is to find a con-
ditional probability of the event “there is an information disclosure”, upon the
condition, that an event “there is no network encryption” is veracious. From the
theoretic-model point of view, in order to get an answer to a question like this we
should find out the truth value within the Generalized Fuzzy Model that is (φ = 1)-
optimal submodel of the model Fuz (IE), where φ = “there is no network encrypting”
(see Section 3.3).
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Notice, that in our case the judgements are of a probability nature, and then,
conditions may be held with some value of probability. Let us give an example of
a question of this type:

If there is no network encryption in at least 30% of cases, what is the prob-
ability of information disclosure in attack?

To retrieve an answer we should find (φ ≥ 0.3)-Optimal Restriction, on which we
will evaluate the truth value of the judgement “there is an information disclosure”.
Note, that in the general case, we will get a class of Optimal Restrictions with the
target condition.

4.5 Modal Question

Computer attacks can be divided into two classes: single-stage attacks and multi-
stage attacks [24]. In a single-stage attack an intruder uses a vulnerability directly
in order to accomplish his final purpose. In a multistage attack an intruder can use
an existing vulnerability to open a new one, that will be used to perform another
attack.

For analysis of multistep attacks in the QA-RiskPanel system we construct at-
tack graphs. A set of graph nodes is a set of single-stage attacks E = {e1, . . . , en}.
An edge between two attacks built if one attack creates the conditions that are
necessary for performing another attack. In such a way, a multistage attack turns
out to be a path in a directed graph that has every next node reachable from the
previous one by a directed edge single transition.

Thus, we have the ability to get statistical information about multistage at-
tacks while adding different modalities to a question of any type. Currently, in
the QA-RiskPanel system the opportunity to ask modal questions of two types –
the “possibly” questions and “soon or late” questions – is implemented. Let us
provide an example of the unconditional probability question of the “possibly”
type:

What is the possibility that as the result of a multistage attack, there will be
database contamination?

And the conditional probability question of “soon or late” type:

If the possibility of buffer overflow is not less than 0.8, what is the possibility
that in the result of a multistage attack there will be a database contamina-
tion?

For the purposes of formalization of questions and retrieval of answers about
multistage attacks, we will use modal logic methods and model checking algo-
rithms.
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5 ALGORITHMS FOR RETRIEVING ANSWERS

5.1 Unconditional Questions

An algorithm to find an answer to unconditional “whether-question” and an algo-
rithm to find an answer to an unconditional probability question are very similar to
each other. In both cases we need to find the truth value of a sentence φ(a) (that
was generated by a concept φ ∈ CON ) on the model Fuz (IE). This truth value is
the answer to the probability question. An answer to a “whether-question” is the
result of the comparison of the current truth value with the restriction which was
given in the question.

“What-question” sets an infinite set of sentences φ1(a), . . . , φn(a); for each of
them we need to evaluate truth values on the model Fuz (IE). An answer to this
question is a list of sentences with truth values that satisfy requirements from the
question.

Thus, the core of the algorithm for answering any of the unconditional questions
is the procedure of searching the truth value of the given sentence on the Fuzzy
Model.

Note that the truth value of the sentence φ(a) on the Generalized Fuzzy Model
Fuz (IE) should be built as a union of truth values of this sentence on all Interpre-
tations from the class IE. Each interpretation A∆ ∈ IE is a finite model, and its
signature consists of a finite number of monadic predicates. That is why the proce-
dure of calculation of the truth value of the sentence on the model A∆ is solvable
and can be solved by propositional logic methods.

Class IE is also finite. However, its cardinality exponentially depends on the
degree of uncertainty in the Knowledge Base KB. Accepting that Knowledge Base
KB consists of 10 000 fully described precedents of computer attacks and in only
10 cases there is no information about virus usage in these computer attacks. This
inconspicuous uncertainty generates 210 different Interpretations. Obviously, com-
plete enumeration of all Interpretations is too much time-consuming and could not
be implemented in software.

In [21] there is a consideration of an algorithm that evaluates the truth value
of a quantifier-free sentence on the generalized Fuzzy Model, the signature of which
consists of a finite number of monadic predicates. The current algorithm is based on
the idea of decomposition of the Generalized Fuzzy Model into the direct product
of generalized precedents and has polynomial complexity.

5.2 Modal Questions

Let us describe theoretical-modal formalization of the questions of “possibly” and
“soon or late” types. Let us introduce a binary relation R on set E: attacks e1 and
e2 are in relation R if the consequences of the attack e1 open vulnerabilities that
are typical for the attack e2. In the current work the transitive closure RT of the
relation R lies in the area of our interest.
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Let us complete the terminology TBox of Knowledge Base KB with a role-
based concept RT . Let us introduce a designation: TBox ′ = TBox ∪ {RT}. This
will result in an extension of the set of truthful atomic concepts ABox to ABox ′-set
and, consequently, the extension of the Knowledge Base KB′ and the generalized
Fuzzy Model Fuz (IE)

′ that formalizes this Base.
Let φ ∈ CON , i.e. it does not contain role-based concept RT in its signature.

Then, according to the description logics syntax, “probably” questions will be for-
malized with the help of concept φ⋄ = φ ∨ ∃RT .φ and “soon or late” questions will
be formalized with the help of concept φ2 = φ ∨ (∀RT .(∃RT .φ)). Answers to these
questions will depend on the truth values of relevant judgements on the Generalized
Fuzzy Model Fuz (IE)

′.
For realization of judgements φ⋄ and φ2 truth values estimation we consider

graph G = ⟨E,RT ⟩. We will make postfix traversal of the graph G. In the result of
graph traversal, we will assign one of three values, TRUE, UNKNOWN or FALSE,
to every node of graph according to the current rule:

e ∈ T (E,φ⋄/2) ⇒ e := TRUE;

e ∈ F (E,φ⋄/2) ⇒ e := FALSE;

e ∈ N(E,φ⋄/2) ⇒ e := UNKNOWN.

This marking of the graph allows us to estimate inf and sup of truth values
of the judgements. In work [25] the description of FuzGLEMP and FuzGLEMN
algorithms is given; these algorithms estimate the truth values of judgements of
φ⋄-type and φ2-type on the Generalized Fuzzy Model Fuz (IE)

′. An algorithm of
creating the graph from [26] was taken as the basis and it was modified for work
with the incomplete knowledge.

5.3 Conditional Questions

Currently, the QA-RiskPanel system has answering algorithms for two types of con-
ditional questions:

If φ ≥ α then ⟨unconditional modal/nonmodal question⟩?

If φ ≤ α then ⟨unconditional modal/nonmodal question⟩?

Therefore, the answering algorithm for a conditional question reduces to finding
(φ ≥ α)-Optimal Restriction or (φ ≤ α)-Optimal Rectriction Fuz (IE1), where E1 ⊆
E. Then we run one of the algorithms from Sections 5.1 and 5.2 on the model
Fuz (IE1).

Let Fuz (IE) |=[β1,β2] φ(a). If α ≤ β1 or α = 1 then there is only one (φ ≥ α)-
Optimal Restriction, and if α ≥ β2 or α = 0 then there is only one (φ ≤ α)-Optimal
Restriction of the model Fuz (IE). This Optimal Restriction is used to run the
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algorithm of finding the truth value of the sentence ψ(a), which formalizes the
corresponding unconditional question.

In other cases there is a class Kφ≥α of the (φ ≥ α)-Optimal Restrictions and
a class Kφ≤α of the (φ ≤ α)-Optimal Restrictions. Our goal is to find such mod-
els Fuz (IEmin

),Fuz (IEmax) ∈ Kφ≥α (or Fuz (IEmin
),Fuz (IEmax) ∈ Kφ≤α) that the

following conditions are met:

inf(ξEmin
(ψ(a))) = min{inf ξE′(ψ(a)) | Fuz (I ′

E) ∈ Kφ≥α/φ≤α};

sup(ξEmax(ψ(a))) = max{sup ξE′(ψ(a)) | Fuz (I ′
E) ∈ Kφ≥α/φ≤α}.

Consider the algorithm of choosing Fuz (IEmin
) and Fuz (IEmax) for the class

Kφ≥α. In this case the condition β1 < α < 1 is true. According to the Consequence 1,
there are two cases.

Case 1. The condition α ≥ β1

β2
is met. Then for each model Fuz (I ′

E) ∈ Kφ≥α we

have E ′ = T (E,φ) ∪ N , where N ⊆ N(E,φ). Therefore, the range of truth
values of the sentence ψ(a) on models from the class Kφ≥α depends only on the
choice of cases from the set N(E,φ). Let us divide the set N(E,φ) into three
subsets (according to formulas from (1)):

T (N(E,φ), ψ), F (N(E,φ), ψ), N(N(E,φ), ψ).

To construct the model Fuz (IEmin
) we, in the first place, choose cases from the

set F (N(E,φ), ψ). After that if ∥F (N(E,φ), ψ)∥ < ∥N∥ we choose cases from
the set N(N(E,φ), ψ). And if ∥F (N(E,φ), ψ)∥ + ∥N(N(E,φ), ψ)∥ < ∥N∥ the
final step is to choose cases from the set T (N(E,φ), ψ).

To construct the model Fuz (IEmax) the priority of choice is the following:

T (N(E,φ), ψ), N(N(E,φ), ψ), F (N(E,φ), ψ).

Case 2. The condition α < β1

β2
is met. Then for each model Fuz (I ′

E) ∈ Kφ≥α we

have E ′ = T (E,φ) ∪ F , where F ⊆ F (E,φ). Then (similar to the case 1) we
divide the set F (E,φ) into three subsets:

T (F (E,φ), ψ), F (F (E,φ), ψ), N(F (E,φ), ψ).

To construct the model Fuz (IEmin
) the priority of choice is the following:

F (F (E,φ), ψ), N(F (E,φ), ψ), N(F (E,φ), ψ).

To construct the model Fuz (IEmax) the priority of choice is the following:

T (F (E,φ), ψ), N(F (E,φ), ψ), F (F (E,φ), ψ).
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The algorithm of choosing Fuz (IE1) and Fuz (IE2) for the class Kφ≤α, accord-
ing to the Consequence 2, also has two cases: α ≤ 1 − 1−β2

1−β1
and α > 1 −

1−β2

1−β1
.

6 CONCLUSION

This article describes the mathematical formalization and algorithms used in the
QA-RiskPanel, the question-answering system with restricted domain. The system
implements the case-based methodology of object domain modelling, and allows the
user to ask probability questions about the definition and prediction of computer
attack risks.

The Knowledge Base of the QA-RiskPanel system contains a set of computer
attack cases. These cases are used to estimate the probability of various statements
related to the security of corporate information systems.

Currently, the question-answering system QA-RiskPanel contains modules for
processing question of three types: unconditional, conditional and modal. The first
module is designed to handle situations when there is no information about the
ongoing computer attack. The second module handles the cases when there is some
probability information about the attack. The purpose of the third module is to
provide information about multi-step attacks.

Question patterns and answering algorithms are developed for each module. All
algorithms are based on the Fuzzy Model Theory and have polynomial complex-
ity.
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