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İbrahim Delibaşoğlu

Software Engineering
Faculty of Computer and Information Sciences
Sakarya University
54050, Sakarya, Turkey
e-mail: ibrahimdelibasoglu@sakarya.edu.tr

Abstract. Building segmentation from aerial images is essential in applications
such as facilitating urban planning and estimating the population. Fully convolu-
tional networks (FCNs) and especially UNET have achieved promising results in
segmentation problems, after deep learning methods have significantly advanced
the performance of many computer vision problems. However, in Convolutional
Neural Networks (CNNs) with the standard convolution operations, there are prob-
lems such as the overfitting and precise extraction of the boundaries of the objects
with different sizes and shapes. In this study, we have used Inception blocks with
UNET to enhance feature extraction by implementing two-level Inception approach
covering the entire encoding stage. In the proposed architecture, structured form of
dropout (DropBlock) is used to prevent overfitting, and spatial/channel attention
modules are applied to enhance important features by focusing key areas. We eval-
uate the proposed INCSA-UNET architecture on publicly available Massachusetts
dataset and apply two fold cross-validation experiments for better analyzes. The
experimental results show that the proposed architecture does not significantly in-
crease the number of parameters of UNET and has a significant improvement in
terms of F1 and Kappa quantitative measures.
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1 INTRODUCTION

The increase in spatial resolution of satellite imagery and camera-mounted un-
manned aerial vehicles (UAV)/drones provide images with sufficient structural and
texture information. These images with the high spatial resolution are widely
used in mapping, estimating population and facilitating urban planning by auto-
matically observing changes in urban areas [1, 2]. The automatic building detec-
tion/segmentation plays a significant role in urban applications. In the literature,
many studies have been carried out on the detection of buildings in aerial images.
In the first studies, it is seen that classical image processing-based methods includ-
ing edge, shadow, shape and color based controls have been examined for building
detection in the literature [3, 4, 5, 6]. To achieve promising results in classical meth-
ods, multi-stage processes must be applied. In a relatively more complex multi-stage
algorithm, shadow is used as evidence for buildings, and classification is made at
the pixel level with second-level graph optimization [7]. The basis of the algorithm
is to find the initial shadow areas, and it is crucial to combine the regions found at
this stage. The general problem of classical methods is that extracted features may
be insufficient for different kinds of images.

Machine learning techniques such as fuzzy-genetic algorithm [8], support vec-
tor machine [9], maximum likelihood [10] have also been used to detect buildings
from aerial images. Unfortunately, these pixel-level algorithms could not perform
well due to a lack of ability to use object-level features. Any feature such as
edges, shapes, and textures used in classical methods can be considered to im-
prove classification accuracy. Occlusions and buildings with different structures
and sizes are also other challenges [11]. Besides classical methods, recent studies
show that more successful results have been obtained in the segmentation prob-
lem with Convolutional Neural Network (CNN) based methods. CNN is a kind of
machine learning method, and it is extremely capable of learning how to extract
high and low-level features by using labeled data. Thus, the feature extraction
from the input image is included inside the model with convolutional filters during
the training process. CNN-based segmentation methods combine feature extrac-
tion and classification of each pixel within an architecture. It mainly improves
prediction performance by extracting deep features using large training sets. The
automatic feature extraction with CNN has been very effective in remote sensing
studies, e.g., change detection [12], hyperspectral image classification [13], and ob-
ject detection [14].

The major contribution of this work is to propose a new UNET based architec-
ture using DropBlock [15], spatial attention [16], channel attention and Inception
blocks. We aim to improve the performance of classification by the proposed ar-
chitecture. The underlying hypothesis behind the proposed architecture is that
the model can effectively extract features in parallel Inception layers in addition
to sequential layers in the encoding stage. It employs structured form of dropout
(DropBlock), the original convolutional blocks of UNET and Inception blocks to
prevent overfitting. Attention modules are also applied after the encoding step to
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enhance important features. We compare the proposed architecture with different
architectures, which have shown good performance on medical and aerial images
segmentation.

The remainder of this paper is organized as follows: Section 2 presents the re-
lated work in the literature, Section 3 represents the details of proposed network
architecture and implementation details, Section 4 describes the dataset and eval-
uation metrics, Section 5 is a discussion of performance and Section 6 presents
conclusions.

2 RELATED WORK

CNNs have made breakthroughs in many image analysis problem and fully convolu-
tional networks (FCNs) were proposed to accomplish pixel-wise classification [17]. In
FCN, convolutional layers replaced fully connected layers of CNN for classification
and deconvolutional layers are used to upsample feature maps for same resolution
as the input. Thus, FCNs created a precedent for pixel-based encoder–decoder ar-
chitectures. UNET [18] modified the FCN by using advantage of both low-level
and high-level features. UNET is a common and well-known backbone network,
widely used in fields such as medical image segmentation and building segmen-
tation. UNET consists of encoder(downsampling)-decoder(upsampling) layers and
a “skip connection” between them. In a recent study, UNET is enhanced with
DropBlock and spatial attention. This proposed lightweight network model, called
SA-UNET [19], prevents overfitting, as shown in SD-UNET [20]. SA-UNET archi-
tecture is evaluated against UNET and SD-UNET, and it achieves state-of-the-art
performance for two medical image segmentation datasets. Also, SCAU-Net [21] ar-
chitecture investigates using spatial and channel attention modules to enhance the
UNET architecture. It shows that using spatial attention is effective to enhance the
UNET.

Due to the good performance of UNET, it is also used for building segmenta-
tion, and different UNET based architectures are proposed in the literature. Some
papers modify the standart UNET because it is not deep enough to gain higher
performance. A UNET based architecture combining RESNET [22] and UNET
called RES-UNET is proposed in a study for building detection [23]. It applies
a pre-processing step for input images and features such as differential vegetation
index (NDVI) and the first component of the principal component are fed into
the network. It uses pre-trained RESNET weights for feature extraction. Incep-
tion module [24] is a type of neural network architecture that leverages feature
detection at different scales through filters with different kernel sizes. It allows
us to make the networks wider. Another method [25] proposes using Inception
modules for UNET architecture. Inception blocks and sequential convolutional fil-
ters are used in parallel layers of the network in the feature extraction(encoding)
stage. It is named as “Inception UNET-V2” and evaluated against UNET, Incep-
tion UNET, and UNET++ [26]. It outperforms the other architectures for two
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different aerial images dataset. Delibasoglu and Cetin [27] also reported that UNET
expanded with Inception blocks has remarkably better performance compared to
UNET and classical state-of-the-art methods for building segmentation. UNET++
architecture re-designs skip connections in UNET and adds new layers between
encoder and decoder sub-networks. New dense convolution blocks bring the seman-
tic level of encoder features closer to the features in the decoder, but it increases
the trainable parameters and floating point operations (FLOPs). In UNET++,
ImageNet weights can optionally be used as pre-trained weights for feature extrac-
tion.

Although the CNN-based segmentation methods have achieved promising re-
sults, there are still some problems such as precise extraction of the boundaries of
the objects. Therefore, some post-processing methods such as fully connected CRFs
or Markov random fields (MRFs) was used to improve segmentation result [28, 29].
In another study [30], it is reported that recurrent neural networks could also refine
the segmentation results by employing a feedback connection. In this study, we
aimed to enhance Inception based UNET with attention and DropBlock modules
as a solution to the drawbacks by taking into account the performance of the SA-
UNET and Inception based UNET proposed in [25]. In the proposed architecture,
attention mechanism is used to weight lower-level features into the final output fea-
ture to build boundaries information. Inception blocks are used to enhance feature
extracting in the encoding stage.

Figure 1. Diagram of proposed INCSA-UNET architecture
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3 METHODOLOGY

3.1 Network Architecture

Figure 1 shows the proposed architecture (INCSA-UNET) with Inception blocks
(INC), spatial attention (SA) and DropBlock. Proposed architecture consists of
three main parts: two parallel layers (classical sequential and Inception) in the en-
coding stage and decoding part on the bottom which is composed of conventional
convolutional layers. Inception block consists of filters with multiple sizes operating
on the same level. Besides, another set of parallel blocks is added parallel with
Inception blocks. Thus, it could be considered that a complex “Inception” block is
implemented that covers the entire encoding process in the proposed architecture.
The skip connections make the learning easier, and it is seen that the proposed ar-
chitecture has skip connections to transmit extracted features with both Inception
and classical sequential layers. The architecture applies DropBlock after each convo-
lutional layer in Inception and other layers. In proposed architecture, max pooling
is applied after DropBlock layer in encoding stage while DropBlock is at the last
step in the decoding stage. DropBlock is better than dropout to regularize CNNs
by preventing overfitting problem, as shown in different studies [15, 20, 19, 31]. En-
coding layer for classical UNET, Inception UNET-V2 and proposed INCSA-UNET
is shown in Figure 2.

Proposed encoding stage consists of 5 classical sequential and 4 Inception layers
parallel to each other. Let us assume, xl is the input feature of a layer, fnxn denotes
filter with n× n kernel size, α denotes rectified linear unit (ReLU) activation func-
tion, fDB denotes DropBlock and fBN denotes Batch Normalization. The output
of classical sequential layer in encoding stage is:

xl+1 = MaxPooling
(
α
(
α
(
xlf

3×3
)
f 3×3

)
fDB

)
. (1)

The output of Inception layer in encoding stage (xInception
l+1 ) is obtained by con-

catenating paralel filters output (Equations (2), (3), (4) and (5)) as given in Equa-
tion (6):

xa = α
(
α
(
xlf

3×3
)
fDBfBNf 3×3

)
fDBfBN , (2)

xb = α
(
α
(
xlf

5×5
)
fDBfBNf 5×5

)
fDBfBN , (3)

xc = α
(
α
(
xlf

3×3
)
fDBfBNf 1×1

)
fDBfBN , (4)

xd = α
(
xlf

1×1
)
fDBfBN , (5)

xInception
l+1 = [xa, xb, xc, xd]. (6)

Details of proposed Inception block are also shown in Figure 3. Filters with
3× 3− 3× 3, 5× 5− 5× 5, 3× 3− 1× 1 and 1× 1 kernel size are used in Incep-
tion block, as shown in Equations (2), (3), (4) and (5). xa, xb, xc and xd represent
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Figure 2. Encoding blocks: UNET (left), Inception UNET-V2 [25] (middle), Proposed
with DropBlocks (right)

different sequential filters used in proposed Inception block. Each convolution is
followed by ReLU activation function, DropBlock and Batch Normalization (BN),
as illustrated in Figure 3. In the last step of encoding, xInception

l+4 and xl+5 features
are concatenated after applying attention module. Unlike the convolutional block
of Inception UNET-V2, using DropBlock prevents overfitting, as shown in training
accuracies for training set-I and II in Figure 6. Figure 6 also shows the validation
accuracies and it is seen that validation accuracy is better for training set-I con-
taining more training images while convergence is slightly lower with DropBlock
modules. The training graphs obtained with both training sets show that using
DropBlock reduces the accuracy for training set while increasing the accuracy for
validation. Considering that the training set is better predicted in case of overfit-
ting, DropBlock seems to prevent this situation and clearly increases the validation
accuracy.
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Figure 3. Inception block [25] (left), Proposed Inception block with DropBlocks (right)

3.1.1 Attention Modules

Attention modules are used to enhance important features/some spatial locations
by focusing on key features/areas. In this study, we improve our two-level Inception
approach using DropBlock with two types of attention mechanisms. Firstly, spatial
attention block is used to build a spatial attention map by establishing the spatial
relationship in the proposed architecture. It applies average and max pooling oper-
ations on input feature (FH,W,C) along the channel axis in the first step to generate
one dimensional features (FH,W,1

av and FH,W,1
max ). Then, extracted features are concate-

nated and spatial attention map (Fmap) is generated with a convolutional layer with
a kernel size of 7 (f 7×7) followed by the Sigmoid activation function (θ), as shown in
Equation (7). Figure 4 shows the diagram of spatial attention module. In the last
step, Fs output feature is obtained by multiplying attention map learned focusing
spatial location (Fmap) and input feature (F ) for adaptive feature refinement, as
calculated in Equation (8).

Fmap = θ
(
[MaxPooling(F ),AveragePooling(F )]f 7×7

)
, (7)

Fs = Fl∅Fmap. (8)
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In addition to spatial attention, channel attention module similar to used in [32]
is also implemented. The diagram of proposed channel attention module is shown
in Figure 5. It uses two consecutive layers features, FH,W,C

l−1 and FH,W,C
l . Gating

module including f 1×1, BN , and ReLU is applied for FH,W,C
l−1 . Gating module output

(Fg) is upsampled and concatenated with FH,W,C
l filtered with f 2×2, as shown in

Equation (9) on which Ω respresents the upsampling operation. Then, α, f 1×1, θ,
and Ω operations are applied to acquire feature weights (w), as shown in Figure 5
and Equation (10). In the last step, Fs output feature is obtained by multiplying
w and input feature (Fl) to generate a global distribution of channel features, as
calculated in Equation (11).

Fcon = [Ω(Fg), Flf
2×2], (9)

w = Ω(θ(α(Fcon) ∗ f 1x)), (10)

Fs = (Fl∅w)f 1×1fBN . (11)

Figure 4. Spatial attention module [19]

Figure 5. Channel attention module
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Figure 6. Effect of DropBlock module in training (left) and validation (right) accuracy

3.2 Implementation Details

The proposed architecture is implemented using TensorFlow library. Adam algo-
rithm is used for training and initial learning rate is set to 0.00001. NVIDIA RTX
2070 is used to accelerate training. Early stopping criteria with the patient value of
10 is used for validation during training process. It is important to monitor whether
the network is overfitting.

Dice coefficient is used as a loss function to measure the error between estimated
segmentation mask and ground truth to optimize the network parameters. Figure 8
and Figure 9 show training and validation accuracies for the training set-I and the
training set-II, respectively. INCSA-UNET* represents the architecture using chan-
nel attention, while INCSA-UNET represents the architecture using spatial atten-
tion in the figures. Accordingly, the biggest number of training epochs is obtained
with SA-UNET for training set-I, while INCSA-UNET* has the biggest number of
training epochs for training set-II. UNET also has a higher training epochs for both
training sets and it is seen that Inception UNET has the least number of training
epochs of all. Proposed INCSA-UNET has the best validation accuracy for both
validation sets while UNET++ has the lowest performance. It is seen that using
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DropBlock and attention modules in INCSA-UNET increases the convergence time
during training compared to Inception UNET-V2, but training and validation accu-
racies show that INCSA-UNET prevents overfitting and has better performance, as
detailed in Section 5.

4 EXPERIMENTS

4.1 Dataset

Proposed INCSA-UNET architecture is evaluated on Massachusetts building data-
set [33]. The dataset contains images with a spatial resolution of 1 meter and
1 500× 1 500 resolution, covering the urban and suburban areas of Boston. Sample
images from dataset are shown in Figure 7. The dataset is split into a training
set of 137 images, a test set of 10 images, and a validation set of 4 images. In this
study, 27 training images with many missing regions are excluded, and the remaining
110 images are used for the training.

Figure 7. Sample images and corresponding labelled buildings from dataset

We extract patches from images to train the network with lower resolution im-
ages. A total of 6 076 sub-images are obtained by subtracting 224× 224 resolution
patches from all images in the dataset with the sliding window approach. We create
two training sets by using 6 076 sub-images to apply two-fold cross-validation ex-
periments. 5 390 sub-images are extracted from 110 training set images for training
set-I. 196 and 490 sub-images are extracted for validation and test, respectively. In
the training set-II, 3 675 sub-images are used for training, 2 205 sub-images are used
for test, and 196 sub-images are used for validation. In short, about 88 percent of
the total number of sub-images is used for training in training set-I, while about
60 percent is used in training set-II.
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Figure 8. Training (top) and validation (bottom) accuracies of training set-I
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Figure 9. Training (top) and validation (bottom) accuracies of training set-II
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4.2 Evaluation Metrics

In order to evaluate proposed model, we compare the segmentation results with the
corresponding ground truth. Specifity (Sp), Precision (P ), Recall (R), F-score (F1)
and Kappa metrics are used for quantitative performance comparison. Sp measures
how many of the background pixels are correctly predicted. P represents the ratio
of the number of pixels correctly classified as buildings to the total number of pixels
estimated as buildings. R is the ratio of the number of pixels correctly classified as
buildings to the actual number of building pixels. The F1 is the harmonic mean of
the P and R values. In Equations (12), (13) and (14): TP (True Positive) refers
to the number of correctly classified building pixels, TN (True Negative) refers to
the number of the background pixels classified by the model as background, FN
(False Negative) refers to the number of building pixels classified by the model
as background, and FP (False Positive) refers to the number of background pixels
classified by the model as building. Cohen’s Kappa coefficient is also used to measure
the reliability of comparison [34]. Kappa score can handle imbalanced data well
according to F1. If a class is much more dominant than the other, F1 score may
have a higher value. But Kappa score will be lower and give a warning about the
validity of the model. So that we also used Kappa in the performance comparison.

Sp =
TN

TN + FP
, (12)

P =
TP

TP + FP
, (13)

R =
TP

TP + FN
, (14)

F1 =
2PR

P +R
. (15)

5 RESULTS

Firstly, we evaluate the effect of using DropBlock in Inception UNET-V2 to prove
that it can improve the performance of segmentation. The ablation experiment given
in Table 1 shows that using DropBlock improves the segmentation performance in
all metrics for both training sets.

The performance evaluation of the proposed architecture is carried out with qual-
itative and quantitative analyzes. For qualitative evaluation, the estimated building
segmentation results from sample images on the dataset are shown in the Figure 10.
Red, yellow and green colors over Figure 10 indicate missed building pixels (FN),
true detections (TP ) and wrong estimations (FP ), respectively. While the clearest
results are obtained with the proposed architecture, details and exact borders are
missed with the classical UNET and SA-UNET, as shown on the fourth row. In
the third row in Figure 10, the image contains relatively smaller buildings and it is
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Method Sp P R F1 Kappa

test INC UNET-V2 0.9507 0.7923 0.8105 0.8009 0.7538
set-I INC UNET-V2

+ DropBlock
0.9555 0.8030 0.8264 0.8141 0.7710

test INC UNET-V2 0.9596 0.6815 0.7574 0.7126 0.6691
set-II INC UNET-V2

+ DropBlock
0.9539 0.7513 0.8055 0.7764 0.7358

Table 1. Ablation study for Dropout block

seen that INCSA-UNET segmentation result produces the least red color (missed
buildings). It means that INCSA-UNET has lowest wrong detections between all
methods as seen on first and second rows also. It is remarkable that the right-
est building in the image in the first row can only be detected with the proposed
method.

Figure 10. Annotations and segmentation results for sample image patches on Mas-
sachusetts dataset. Yellow: TP , Red: FN , Green: FP .

Tables 2 and 3 show the performance metrics obtained with UNET, Inception
UNET, Inception UNET-V2, UNET++, SA-UNET and proposed INCSA-UNET.
INCSA-UNET* represents the results of using channel attention in the proposed
architecture. Even if using both attention mechanisms improve the performance,
the experiments show that spatial attention is more effective. Quantitative perfor-
mance comparison shows that best R, F1 and Kappa results are obtained with the
INCSA-UNET while SA-UNET has the best Sp and P value. Already, the best
true detections ratio in qualitative results also supports the best R value of INCSA-
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UNET. Quantitative results also show that even if SA-UNET has best P value,
it has lower R value compared to UNET and Inception UNET. Inception blocks
enhance the UNET performance and models including Inception blocks are also
better compared to UNET++. Using DropBlock prevents the overfitting, spatial
attention module enhances key areas and restrains irrelevant areas. In brief, it has
been observed that combining Inception, DropBlock and spatial attention modules
in an architecture gives good results. According to the results of the quantitative
and qualitative evaluations, it is seen that INCSA-UNET architecture outperforms
the other models for the most important metrics F1 and Kappa scores.

Methods Sp P R F1 Kappa

UNET 0.9473 0.7717 0.7798 0.7752 0.7223

INC UNET 0.9522 0.7862 0.7802 0.7823 0.7323

INC UNET-V2 0.9507 0.7923 0.8105 0.8009 0.7538

UNET++ 0.9499 0.7597 0.7439 0.7494 0.6924

SA-UNET 0.9684 0.8345 0.7501 0.7875 0.7415

INCSA-UNET 0.9574 0.8097 0.8184 0.8135 0.7706

INCSA-UNET* 0.9600 0.8099 0.7895 0.7984 0.7529

Table 2. Performance comparison of INCSA-UNET and other methods on test set-I

Methods Sp P R F1 Kappa

UNET 0.9144 0.6605 0.7427 0.6959 0.6485

INC UNET 0.9277 0.6893 0.7262 0.7033 0.6585

INC UNET-V2 0.9236 0.6815 0.7574 0.7126 0.6691

UNET++ 0.8879 0.6188 0.7346 0.6652 0.6118

SA-UNET 0.9704 0.7937 0.6967 0.7363 0.6947

INCSA-UNET 0.9575 0.7638 0.8025 0.7819 0.7430

INCSA-UNET* 0.9675 0.7988 0.7675 0.7813 0.7440

Table 3. Performance comparison of INCSA-UNET and other methods on test set-II

Number of trainable and total parameters for each architecture is also given
in Table 4. Inception UNET model uses Inception blocks in both of encoding and
decoding stages, so that it extremely increases the number of parameters. But
Inception UNET-V2 applies Inception blocks only in encoding stage and number
of filters are reduced to decrease the the number of total parameters. UNET has
about 7.7M total trainable parameters while SA-UNET and INCSA-UNET have 9M
and 13.8M, respectively. Experiments show that INCSA-UNET has performance
improvements up to about 3% and 5% for F1 scores and does not extremely increase
the number of parameters.
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Methods
Number of Parameters
Trainable Total

UNET 7 760 385 7 760 385

INC UNET 67 155 905 67 174 497

INC UNET-V2 11 987 921 11 991 281

UNET++ 37 648 292 37 698 666

SA-UNET 9 093 219 9 098 851

INCSA-UNET 13 879 517 13 882 877

INCSA-UNET* 13 313 787 13 318 683

Table 4. Number of trainable and total parameters

6 CONCLUSIONS

In this study, the UNET model, which is successful in segmentation problems, is
used as a backbone network for building detection from aerial images. Proposed
architecture is inspired by the success of Inception UNET architecture expanded
with Inception blocks, and SA-UNET architecture using DropBlock and attention
modules. The architecture applies attention blocks in the middle of the network.
We have seen that two different attention modules used in the proposed architecture
increase the performance, but spatial attention performs slightly better. Compared
to the classical UNET and SA-UNET, the model has a good ability to learn buildings
with different shapes and size. The experimental results demonstrate that spatial
attention module and DropBlock are effective to focus on important features and
prevent overfitting, respectively. Two level Inception approach in encoding stage
also enhances the feature extraction in the proposed method. We conclude that
INCSA-UNet is a general network and can be applied to different segmentation
problems.
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[14] Ševo, I.—Avramović, A.: Convolutional Neural Network Based Automatic Object
Detection on Aerial Images. IEEE Geoscience and Remote Sensing Letters, Vol. 13,
2016, No. 5, pp. 740–744, doi: 10.1109/LGRS.2016.2542358.

[15] Ghiasi, G.—Lin, T.Y.—Le, Q.V.: DropBlock: A Regularization Method for
Convolutional Networks. 2018, arXiv: 1810.12890.

[16] Woo, S.—Park, J.—Lee, J. Y.—Kweon, I. S.: CBAM: Convolutional Block
Attention Module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (Eds.):

https://doi.org/10.1109/iscis.2008.4717854
https://doi.org/10.1109/tgrs.2012.2207123
https://doi.org/10.1109/icpr.2010.350
https://doi.org/10.1016/j.isprsjprs.2013.09.004
https://doi.org/10.1016/j.compenvurbsys.2013.01.004
https://doi.org/10.1016/j.isprsjprs.2007.05.011
https://doi.org/10.3390/rs3040781
https://doi.org/10.3390/s18113921
https://doi.org/10.1109/tnnls.2016.2636227
https://doi.org/10.1109/TGRS.2016.2584107
https://doi.org/10.1109/LGRS.2016.2542358
http://arxiv.org/abs/1810.12890


INCSA-UNET: Spatial Attention Inception UNET for Aerial Images Segmentation 1261

Computer Vision – ECCV 2018. Springer, Cham, Lecture Notes in Computer Science,
Vol. 11211, 2018, pp. 3–19, doi: 10.1007/978-3-030-01234-2 1.

[17] Long, J.—Shelhamer, E.—Darrell, T.: Fully Convolutional Networks for
Semantic Segmentation. Proceedings of the 2015 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2015, pp. 3431–3440, doi:
10.1109/CVPR.2015.7298965.

[18] Ronneberger, O.—Fischer, P.—Brox, T.: U-Net: Convolutional Networks for
Biomedical Image Segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A.
(Eds.): Medical Image Computing and Computer-Assisted Intervention – MIC-
CAI 2015. Springer, Cham, Lecture Notes in Computer Science, Vol. 9351, 2015,
pp. 234–241, doi: 10.1007/978-3-319-24574-4 28.

[19] Guo, C.—Szemenyei, M.—Wang, W.—Chen, B.—Fan, C.: SA-UNet:
Spatial Attention U-Net for Retinal Vessel Segmentation. 2020 25th Interna-
tional Conference on Pattern Recognition (ICPR), 2021, pp. 1236–1242, doi:
10.1109/ICPR48806.2021.9413346.

[20] Guo, C.—Szemenyei, M.—Pei, Y.—Yi, Y.—Zhou, W.: SD-Unet: A Struc-
tured Dropout U-Net for Retinal Vessel Segmentation. 2019 IEEE 19th International
Conference on Bioinformatics and Bioengineering (BIBE), 2019, pp. 439–444, doi:
10.1109/bibe.2019.00085.

[21] Zhao, P.—Zhang, J.—Fang, W.—Deng, S.: SCAU-Net: Spatial-Channel Atten-
tion U-Net for Gland Segmentation. Frontiers in Bioengineering and Biotechnology,
Vol. 8, 2020, Art. No. 670, doi: 10.3389/fbioe.2020.00670.

[22] He, K.—Zhang, X.—Ren, S.—Sun, J.: Deep Residual Learning for Image Recog-
nition. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770–778, doi: 10.1109/cvpr.2016.90.

[23] Xu, Y.—Wu, L.—Xie, Z.—Chen, Z.: Building Extraction in Very High Reso-
lution Remote Sensing Imagery Using Deep Learning and Guided Filters. Remote
Sensing, Vol. 10, 2018, No. 1, Art. No. 144, doi: 10.3390/rs10010144.

[24] Szegedy, C.—Liu, W.—Jia, Y.—Sermanet, P.—Reed, S.—Anguelov, D.—
Erhan, D.—Vanhoucke, V.—Rabinovich, A.: Going Deeper with Convolutions.
Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2015, pp. 1–9, doi: 10.1109/cvpr.2015.7298594.

[25] Delibasoglu, I.—Cetin, M.: Improved U-Nets with Inception Blocks for Building
Detection. Journal of Applied Remote Sensing, Vol. 14, 2020, No. 4, Art. No. 044512,
doi: 10.1117/1.jrs.14.044512.

[26] Zhou, Z.—Siddiquee, M.M.R.—Tajbakhsh, N.—Liang, J.: Unet++: A Nest-
ed U-Net Architecture for Medical Image Segmentation. In: Stoyanov, D. et al. (Eds.):
Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical De-
cision Support (DLMIA 2018, ML-CDS 2018). Springer, Cham, Lecture Notes in
Computer Science, Vol. 11045, 2018, pp. 3–11, doi: 10.1007/978-3-030-00889-5 1.
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