
Computing and Informatics, Vol. 40, 2021, 1345–1369, doi: 10.31577/cai 2021 6 1345

EMPIRICAL ANALYSIS ON OPENAPI TOPIC
EXPLORATION AND DISCOVERY TO SUPPORT
THE DEVELOPER COMMUNITY

Leonardo da Rocha Araujo, Guillermo Rodŕıguez
Santiago Vidal

ISISTAN-CONICET
UNICEN
Tandil, Argentina
e-mail: {leonardo.araujo, guillermo.rodriguez,

santiago.vidal}@isistan.unicen.edu.ar

Claudia Marcos

ISISTAN-CIC
UNICEN
Tandil, Argentina
e-mail: claudia.marcos@isistan.unicen.edu.ar

Rodrigo Pereira dos Santos

UNIRIO
Rio de Janeiro, Brazil
e-mail: rps@uniriotec.br

Abstract. OpenAPI has become a dominant standard for documentation in the
service-oriented software industry. OpenAPI is used in many analysis and reengi-
neering approaches for RESTful service and microservice-based systems. An Open-
API document has several components that are usually filled by humans using
natural language (e.g. description of a certain functionality). Thus, subjectivity
may lead to inconsistencies and ambiguities. Understanding what an API does is
a challenging question. As a consequence, this issue could hinder developers from

https://doi.org/10.31577/cai_2021_6_1345

1346 L. da Rocha Araujo, G. Rodriguez, S. Vidal, C. Marcos, R. Pereira dos Santos

identifying the functionality of APIs, after reading all its components. Along this
line, we argue that developers will be provided with supportive tools to find those
APIs that better suit their needs. In this paper, we propose a step towards creating
these kinds of tools by empirically analyzing a set of 2 000 OpenAPI documents
with the goal of extracting the main topics of an API using three topic modeling
algorithms. To address this issue, we focus on three tasks: i) determine which
component of an OpenAPI document provides the most meaningful information,
ii) compare three state-of-the-art topic modeling algorithms, and iii) determine the
optimal number of topics to represent an API. Our findings show that the best re-
sults could be obtained from the Description component by using the Non-negative
Matrix Factorization (NMF) or Latent Semantic Indexing (LSI) algorithms. To
help developers find services in the OpenAPI directory, we also propose a proto-
type tool to explore the OpenAPI documents and analyze extracted topics to assess
if the APIs meet developers needs.

Keywords: RESTful web services, APIs, documentation, topic modeling, Open-
API, topic coherence

Mathematics Subject Classification 2010: 68T20, 68T50, 68U35

1 INTRODUCTION

Software developers use Application Programming Interfaces (APIs) in the software
industry as a popular way to build service-oriented software applications [1]. To
better understand what a specific API does, it is important to refer to its doc-
umentation. API documentation formats have been used in many analysis and
re-engineering approaches for RESTful web services (also known as “lightweight”
services). RESTful web services are resource-oriented services that employ the full
HTTP protocol with methods like GET, POST, PUT, or DELETE as well as HTTP
status codes to expose their functionality on the web [2]. In contrast to lightweight
services, the “Big” Web services technology stack (related to SOAP, WSDL, WS-
Addressing, WS-ReliableMessaging, and WS-Security, among others) delivers inter-
operability for both the Remote Procedure Call (RPC) and messaging integration
styles [3].

While there are several APIs documentation standards, the most commonly
used is OpenAPI1 that focuses on describing how a specific API works. OpenAPI is
based on several components. Some examples of components are the endpoints (the
points where other applications might interact with) parameters that can be used,
authentication methods, and other important information about that application.

Currently, there is a repository2 with more than 2 000 APIs documented using

1 https://www.openapis.org/
2 https://github.com/APIs-guru/openapi-directory

https://www.openapis.org/
https://github.com/APIs-guru/openapi-directory

Topic Modeling for Analyzing OpenAPI Documents 1347

OpenAPI with several components that provide information for each API. Although
each OpenAPI document can be partially generated by tools, it has components (e.g.
description of an endpoint) that are filled by humans. Thus, filling information is
subjective and can cause inconsistencies, ambiguities and a large amount of natural
language data. The manual search for the candidate APIs that meet the needs of
the application may be a daunting and time-consuming task. To do so, a software
developer should analyze the natural language text of the documentation for all
APIs to identify the most appropriate ones. This issue could lead to a demotivating,
error-prone, and tedious process [4].

A strategy to explore the identification of APIs could be the extraction of topics.
These topics could not only be used later to infer the functionality of an API, but
also to extract the OpenAPI’ topics useful for grouping similar APIs into deployment
units, such as containers [5].

In this work, we propose a first step to determine the functionality of APIs
by conducting an empirical analysis of an extensive OpenAPI dataset to extract
the main topics of the APIs. To achieve this goal, we used three topic modeling
algorithms, namely:

1. Latent Dirichlet Allocation (LDA),

2. Latent Semantic Indexing (LSI), and

3. Non-negative Matrix Factorization (NMF).

The version of the database of OpenAPI Documentation provides 2 000 APIs. How-
ever, each API has one or more endpoints. In total there are 44 038 endpoints. Since
not every endpoint has both Summary and Description, we have made an analy-
sis only on the endpoints that have both (10 505) with the goal of making a fair
comparison of the services. In summary, we are analyzing 10 505 endpoints, filtered
from a total of 44 038 endpoints, that were distributed in 2 000 APIs.

Our empirical analysis consists of three tasks. A task is to determine which
component of an OpenAPI document reveals the most meaningful information of an
API specification. Another task is to compare the results of the three aforementioned
topic modeling algorithms. Finally, we determine the optimal number of topics to
represent an API. Our results show that the Description component using NMF or
LSI algorithms obtain the optimal configuration in terms of topic coherence. Using
these results, we build a prototype tool that provide developers with a HTML page
to visualize the topics extracted from the OpenAPI dataset along with a statistical
description of the results.

Along this line, the main contributions of this paper are:

• Measuring which OpenAPI components are more descriptive in terms of topics.

• An empirical analysis of the OpenAPI dataset in terms of topic modeling algo-
rithms.

• A replication package with the datasets and scripts used on the experiment.

1348 L. da Rocha Araujo, G. Rodriguez, S. Vidal, C. Marcos, R. Pereira dos Santos

The remainder of this paper is structured as follows. Section 2 describes API
documentation. Section 3 briefly presents the topic modeling algorithms used. Sec-
tion 4 discusses the related work. Then, in Section 5, the design of the experiment
is presented. In Section 6, the results of the experiment are reported and discussed.
Section 7 presents the threats to validity of our experiment. Finally, Section 8
presents the conclusions and future work.

2 API DOCUMENTATION

There are several alternatives for API documentation. The most popular alterna-
tives usually offer a semi-automatic tool that given the design of the application
generates the structure of the documentation. Some examples are API Blueprint3,
RAML4, and OpenAPI (previously called Swagger). All these examples are stan-
dards that can be used to design, develop, implement and document APIs. OpenAPI
is presented on its website as a specification language to describe REST APIs.

Figure 1. Example of OpenAPI file

OpenAPI documents follow the structure shown in Figure 1. The structure is
written in a yaml file. The file has 3 main components, which are underlined in red:

1. “Info” provides the title, version and other general information;

3 https://apiblueprint.org/
4 https://raml.org/

https://apiblueprint.org/
https://raml.org/

Topic Modeling for Analyzing OpenAPI Documents 1349

2. “Servers” has information about the servers (url, description); and

3. “Paths” defines the endpoints of the API.

The endpoint is a point of contact of any application to the API. To establish this
contact, it is necessary to make a request (highlighted in blue) inside a “path” of
the application. For example, the API in Figure 1 offers 1 endpoint that returns
a list of users (path: /users/get).

Figure 2. Paths in LanguageTool API

As shown in Figure 2, a path (underlined in red) might have one or more end-
points (underlined in blue). Each endpoint has several components, but the most
common are Summary (an endpoint’s short explanation), Description (an endpoint’s
long explanation) and the possible responses of the request, all of them underlined
in green.

3 TOPIC MODELING ALGORITHMS

Topic Modeling is an area of artificial intelligence that focus on finding patterns of
words in document collections using hierarchical probabilistic models [26]. There
are several topic modeling algorithms, but the algorithms selected were LDA, NMF
and LSI. This selection stems from the fact that these are the most commonly used
algorithms in topic modeling research [9, 6, 7, 20, 21, 8].

The LDA algorithm creates a set of “topics” with a probability distribution for
each word to be in a topic. Then, for each text, there is a probability of each topic to
be in the text, considering the words in it. The LDA algorithm only uses statistical
analysis of the words and topics, therefore it does not correlate how close a word is
to another to create the topics [26].

1350 L. da Rocha Araujo, G. Rodriguez, S. Vidal, C. Marcos, R. Pereira dos Santos

The LSI algorithm creates a vector representation for each word and checks the
similarity between word vectors to create a topic. It also uses SVD (Singular Value
Decomposition) to reduce a word’s matrix to find synonyms. This approach allows
for a topic to have a word and its synonyms with similar weights [26].

NMF algorithms approach the representation of the text and documents as num-
bers equal or greater than 0 (non-negative). This allows this algorithm to use math-
ematical formulae with this requirement to provide a faster result for queries, such
as finding the texts that have a certain topic [27].

4 RELATED WORK

Several papers have been presented regarding topic modeling within applications [6,
7, 8]. Thomas et al. [8] analyzed the source code of well-designed software appli-
cations aiming to study changes in software versions. They applied topic modeling
algorithms on different versions of the source code. They noticed that, for each
version, the topics generated by the algorithm reflected the change in the software.

Pingclasai et al. [7] presented a bug report classification approach. They ana-
lyzed reports labeled as “bugs” or “other requests” and employed LDA to define the
topics in these reports. Furthermore, they used classification algorithms (Decision
Tree, Naive Bayes and Logistic Regression) with the topic modeled labeled data and
have developed a model to identify bugs based on the topics in a report.

Alhindawi et al. [9] explored software documentation using topic modeling. They
proposed that high-quality documentation should depict the structural organization
of the source code. Therefore, they used LDA to discover topics in both the soft-
ware’s source code and its documentation. They used the Hellinger distance to
calculate the similarity between both topics with the goal of defining how close the
topics in the documentation and the source code are.

Some papers focused on Web Services discoverability and classification. Sanchez
et al. [10] used WordNet, a lexical database of semantic relations between words, in
Web Service Description Language (WSDL) documents to classify them by function-
ality. Similarly, Shafi and Qamar [11] used a text mining technique called maximum
entropy to classify web services in a web service repository known as UDDI (Uni-
versal Description, Discovery and Integration).

Along this line, Mateos et al. [12] proposed a tool that uses text mining on
code-first web service applications to create these documents avoiding anti-patterns
caused by automatic WSDL generation. Kamath and Ananthanarayana [13] used
Weka, a data mining machine learning tool, to analyze WSDL documents to find
a web service that meets the user’s needs.

Several studies used OpenAPI documentation as their dataset. There is some
research on allowing the developer to generate code from OpenAPI documenta-
tion [1, 14, 15]. For example, Sferruzza et al. [15] used the OpenAPI standard to
directly implement web services. In another work, Sferruzza et al. [14] extended
the OpenAPI structure with more components that assist developers to implement

Topic Modeling for Analyzing OpenAPI Documents 1351

top-down web services. Both studies assist developers to automatically generate the
code to create web services. Baresi et al. [1] used a tool named DISCO (DIStribu-
tionally related words using CO-occurrences) to calculate semantic similarity based
on the co-occurrence of these words. Then, OpenAPI’s specifications are analyzed
and words are mapped with DISCO.

Most of the works described in this section have utilized only a single topic
modeling algorithm. However, we argue that it is important to compare the perfor-
mance of the most popular algorithms in a large dataset of API’s documentation.
Some of the previous research that has used the OpenAPI dataset have not assessed
which documentation components better describes an API document; furthermore,
a comparison of information gain of those components is also important.

5 EXPERIMENT PLAN

In this section, we present our empirical evaluation of topic modeling algorithms on
OpenAPI documentation following the structure proposed in [16]. The goal of this
experiment is threefold:

1. finding which component of OpenAPI documents best describes the functionality
of an API,

2. choosing the outperforming algorithm, and (3) determining the optimal number
of topics.

To achieve the above-mentioned goal, we used the topic coherence metric [17].
This metric checks the semantic correlation between words on the same topic. It
ranges from 0 to 1. Thus, a set of topics with a coherence close to 1 is most likely
to have a cohesive topic structure.

The experiment aims to answer the following research questions:

RQ#1: Which OpenAPI component obtains the best results in terms of coherence
for any algorithm and number of topics?

RQ#2: Which algorithm obtains the best results in terms of coherence for any
number of topics and OpenAPI component?

RQ#3: Which number of topics obtains the best results in terms of coherence for
any algorithm and OpenAPI component?

The directory that we are using is APIs.guru5, which has APIs definitions in
OpenAPI specification format of available documentation [18, 19]. The only restric-
tions for this directory are that the documentation added must be from an API,
it must be written in OpenAPI specification format, and it must be publicly avail-
able. Therefore, all services that are shown in our exploration prototype are public.
APIs.guru also filters non-reliable APIs, converts specifications to OpenAPI speci-
fication, and fixes mistakes on them. APIs.guru and OpenAPI themselves do not

5 The version used in the evaluation can be found at https://bit.ly/2yzFyAZ

https://bit.ly/2yzFyAZ

1352 L. da Rocha Araujo, G. Rodriguez, S. Vidal, C. Marcos, R. Pereira dos Santos

provide any information on the quality of service. Since OpenAPI is an API doc-
umentation standard, it limits itself to describe what the API does, its endpoints,
response types, parameters, but not any type of quality of service metrics.

The analyzed version of “OpenAPI Directory” contained a total of 44 038 end-
points. As stated in Section 2, a functionality is an “endpoint” defined by the GET,
POST, PUT, and DELETE operations inside a “path”.

After analysing the dataset, we found that while some endpoints have a Sum-
mary and a Description (23.85%), other only have one of these components or none
of them (Table 1). For a fair comparison of components, we only analyzed those
endpoints that have Summary and Description (= 10 505).

Endpoint quantity 44 038 100%
Endpoints with Summary 21 470 48.75%
Endpoints with Description 32 203 73.12%
Endpoints with Summary and Description 10 505 23.85%
Endpoints without Summary or Description 870 1.97%
Endpoints with only Summary 10 965 24.90%
Endpoints with only Description 21 698 49.27%

Table 1. Number of endpoints and components

5.1 Variables

In this experiment, we focus on two components of the OpenAPI specification,
namely: Summary and Description. We selected these components because they
are the main sources of information in the documentation of an API which are
written in natural language. Summary is a short text of what is done by the API,
while Description is a long text that provides information about the API behavior.
Figure 3 shows an example of an endpoint that gets a list of currently popular
media from Instagram. While Summary only indicates that the API retrieves a list
of popular media, Description adds information about the possible types of media
(images and videos). We also analyze the combination of both components, denoted
as Summary+Description by appending the text of the Summary to theDescription.
Along this line, we define these three components as the independent variables of
our analysis while the topic coherence metric will be the dependant one.

Regarding the topic modeling algorithms to be compared in the experiment, we
selected LDA, NMF and LSI, the most commonly used algorithms in topic modeling
research [9, 6, 7, 20, 21, 8]. During the experiment, we analyze different numbers of
topics ranging from 2 up to 10 topics, since it was noticed that the results are sensible
to this parameter [22]. It means that these numbers of topics return coherence values
that are strongly correlated with human-generated topics [22]. Thus, the degree of
topic generalization is shown in several situations and, in the end, the best number
of topics is chosen with the best algorithm.

Topic Modeling for Analyzing OpenAPI Documents 1353

Figure 3. Example of Instagram API endpoint

5.2 Hypotheses

From the research questions, we formulate three null hypotheses (the alternative
hypotheses follow analogously):

• H10: The coherence value is the same for any component (Summary, Descrip-
tion, or Summary + Description).

• H20: The coherence value is the same for all the algorithms in a given compo-
nent.

• H30: The topic coherence is the same for any number of topics.

5.3 Design

With the goal of answering the research questions, we considered three different
scenarios to run the algorithms:

• using only the Summary information,

• using only the Description information,

• using Summary and Description information.

In each scenario, we train a model that defines from 2 to 10 topics by using LDA,
LSI and NMF. In the end, 81 models (9 topics× 3 algorithms× 3 components) are
evaluated using the topic coherence metric to define the configuration that answers
our research questions.

5.4 Procedure

The experiment consisted of four phases6, namely

1. Extract information,

2. Preprocess text,

6 The code is hosted at https://github.com/OpenAPIAnalysis/OAPIAnalysis

https://github.com/OpenAPIAnalysis/OAPIAnalysis

1354 L. da Rocha Araujo, G. Rodriguez, S. Vidal, C. Marcos, R. Pereira dos Santos

Figure 4. Phases of the experiment

3. Run topic modeling algorithms, and

4. Evaluate results.

Figure 4 shows the four phases as groups of actions with each action summarized in
a box, these actions are explained in the following paragraphs.

1. Extract information. On the first phase, we have downloaded the OpenAPI
documentation dataset. Then, each documentation file was read and the infor-
mation on their endpoints was stored. The endpoints with both Summary and
Description were filtered, to avoid bias in the vocabulary. To extract the Sum-
mary and Description texts for each endpoint, we have stored them by defining
3 variables: summary, description, and “summary and description”.

2. Preprocess text. We preprocessed the text stored in the database by removing
symbols in the text, applying tokenization, removing stopwords and applying
lemmatization [23], as shown in the second phase of the Figure 4. Tokeniza-
tion consists of converting words to separated words (called tokens). Stopwords
removal consists of discarding words that often appear in the vocabulary and
fails to add meaning. Lemmatization consists of reducing a word to a common
root.

Topic Modeling for Analyzing OpenAPI Documents 1355

3. Run topic modeling algorithms. The corpus resulting from the prepro-
cessing was given as input to the LDA, LSI and NMF algorithms, all imple-
mented in Python’s library Gensim. The algorithms generated a model for 2
to 10 topics, with each topic being a set of words with a weight on each of
them. The weight is determined by the topic modeling algorithm. The exper-
iment was run setting the random seed to 1, so the results would be repro-
ducible.

4. Evaluate results. To evaluate the results, we used the topic modeling coher-
ence model, which focuses on finding the semantic correlation between a number
of words with the highest weight in a topic (referred in Gensim’s algorithm as
Top N words). The topic modeling coherence model has demonstrated that it
defines topics similar to topics assigned by humans [17, 24].

However, Röder et al. [24] have calculated coherence using six values, top 5 up
to 10 words, since more words might generate noise; besides, they have shown that
this number of words is enough to evaluate the topic. Additionally, the same authors
have shown that values that indicate a strong correlation are between the values of
0.6 to 0.8. Below this value, the correlation is considered weak, while above this
value the model is probably overfitted.

The coherence values were calculated for all models. A simplified pseudocode
of the process is illustrated in Listing 1. The process consists of iterating over the
number of topics to be used in the topic modeling (using the variable topic qtt), the
three different algorithms to be used (using the variable algorithm) and the possible
values for the top words (using the variable topn) and calculating the coherence.
Given each configuration and the corpus of text previously created, the model is set
and stored in the variable model. Finally, the coherence of the model is calculated, in
relation to the corpus, according to the value set in topn. As mentioned before, the
values used in this calculation are the top 5 words up to the top 10 words. Therefore,
we have created models for 3 different topic modeling algorithms (LDA, LSI, NMF),
for 3 different components (Summary, Description and Summary +Description), for
9 different topic quantities (2 up to 10), and which gave us in total 81 models. For
each model, 6 coherence values (top 5 words up to top 10 words) were calculated,
which gave us in total 486 coherence measurements. Lastly, the model with the
optimal configuration is chosen.

f o r each number o f t op i c quant i ty :
f o r each o f the t op i c modeling a lgor i thms :

f o r each number o f topn :
i f a lgor i thm i s LDA:

model = gensim . models . LdaModel (corpus , t o p i c q t t)
end i f
i f a lgor i thm i s LSI :

model = gensim . models . LsiModel (corpus , t o p i c q t t)
end i f
i f a lgor i thm i s NMF:

1356 L. da Rocha Araujo, G. Rodriguez, S. Vidal, C. Marcos, R. Pereira dos Santos

model = gensim . models .NMFModel(corpus , t o p i c q t t)
end i f
c v = CoherenceModel (model , corpus , topn)

endfor
endfor

endfor

Listing 1. Simplified pseudocode of the evaluation process

6 RESULTS

This section presents the results7 of our experiments and answers to the research
questions.

6.1 RQ#1: Which OpenAPI Component Obtains the Best Results
in Terms of Coherence for Any Algorithm and Number of Topics?

Figure 5. Coherence values by component

Figure 5 plots the results. Results show that the scenario in which only Summary
was considered has the worst coherence value in every algorithm compared to the

7 All the results can be accessed at https://bit.ly/3f7G2yH

https://bit.ly/3f7G2yH

Topic Modeling for Analyzing OpenAPI Documents 1357

other components. In fact, the highest value for only considering Summary was 0.45
and was obtained by the LSI (Figure 6). While the lowest value was obtained by the
same algorithm and was 0.16. In the case of only considering Description (Figure 7),
the highest value obtained was 0.65 for the LSI algorithm and the lowest value, 0.54
(also for the same algorithm). Moreover, the average is above Summary ’s average in
every value. When the component Summary +Description is considered, the higher
value of 0.64 was obtained for the NMF algorithm (Figure 8).

Figure 6. LSI algorithm applied to summaries

One of the reasons that might justify Summary ’s low coherence values is the
fact that it has the smallest vocabulary and small sentences that repeat keywords
often. This might make it harder for the algorithm to extract relevant information.
This also explain why Description’s coherence drops when Summary is appended to
it, since Summary generates noise to Description. Since Description’s vocabulary
is significantly larger than Summary ’s and their sentences have a higher diversity
of words, the coherence drops slightly. Also, although Summary + Description
has a coherence value close to the Description’s, the coherence drops because of
the noise generated by the Summary appended to Description. It is possible to
use either Description or Summary + Description, since both coherence values are
above the threshold to indicate a correlation between topics. Using Summary as
the component to model topics is unlikely to generate coherent topics, since its
coherence values are below 0.6, the threshold to indicate a correlation.

Although these values give descriptive insights, no conclusion can be made so far
on whether there is a significant difference between the components. A statistical

1358 L. da Rocha Araujo, G. Rodriguez, S. Vidal, C. Marcos, R. Pereira dos Santos

Figure 7. LSI algorithm applied to descriptions

Figure 8. NMF algorithm applied to Summaries + Descriptions

Topic Modeling for Analyzing OpenAPI Documents 1359

test is necessary. Our hypothesis H10 stated that the coherence value is the same
for any component. To evaluate that, we used the Analysis of Variance (ANOVA).
ANOVA is a parametric statistical test used with the objective of testing the statis-
tical significance of mean differences in different groups of scores [25]. It is calculated
as the ratio of the variance between several groups of data and the variance within
the groups.

ANOVA
F-statistic p-value

H10 509.6155 < 0.0001
H20 46.0913 < 0.0001
H30 0.8446186589 0.5621

Table 2. ANOVA results

After running the test, we were able to reject H10 with a p-value < 0.0001
(Table 2). Thus, there is statistical significance difference between the coherence
values obtained for the components.

To determine which pairs of the components are statistically different, a post-
hoc analysis is needed. We applied the Scheffé test [25] which makes a pair-wise
comparisons between the groups of data. After running the test, we found that
there is a significant difference between all the comparisons of groups (Table 3).

Scheffe
Hypothesis 1

T-Statistic p-value Inference
Sum− S +D 25.3441 1.11E−16 significant
Des− S +D 4.1411 2.19E−04 significant

Table 3. Table for Scheffé test – H1

Therefore, to answer to RQ#1, the component that obtains the best
results in terms of coherence for any algorithm is the Description.

6.2 RQ#2: Which Algorithm Obtains the Best Results in Terms
of Coherence for Any Number of Topics and OpenAPI Component?

To answer this question, a boxplot was made with the coherence values grouped by
algorithm (Figure 9). The boxplot shows that most of the values in NMF and LSI
algorithm are higher than LDA, and the mean of both also is higher, therefore both
algorithms are candidates for optimal performance.

In order to claim any significant difference, a statistical test must be applied.
Our hypothesisH20 stated that the coherence value is the same for all the algorithms
in a given component. Table 2 shows that there is a significant difference between
algorithms, since the p-value is below 0.05. After executing the Scheffé test, it was

1360 L. da Rocha Araujo, G. Rodriguez, S. Vidal, C. Marcos, R. Pereira dos Santos

Figure 9. Coherence values by algorithm

possible to detect that there is a significant difference between the algorithms LDA
and the other two algorithms, but there is not a significant difference between NMF
and LSI algorithms (Table 4).

Since in RQ#1 we found that higher coherence values were obtained by using the
component Description, we also analyzed the boxplot by only taking into account
that component (Figure 10). We found similar results than when all the components
were analyzed: lower coherence values for LDA compared to NMF and LSI and no
significant difference between NMF and LSI.

Scheffe
Hypothesis 2

T-Statistic p-value Inference
LDA−NMF 7.7767 4.24E−13 significant
LDA− LSI 8.7648 3.33E−16 significant
NMF− LSI 0.9881 6.14E−01 not significant

Table 4. Table for Scheffé test – H2

Therefore, to answer to RQ#2, the algorithms that obtain the op-
timal performance in terms of coherence for any number of topics
are LSI and NMF.

Topic Modeling for Analyzing OpenAPI Documents 1361

Figure 10. Coherence values by algorithm for description

6.3 RQ#3: Which Number of Topics Obtains the Best Results in Terms
of Coherence for Any Algorithm and OpenAPI Component?

In order to answer to this question, we analyzed the coherence values resulting from
running the algorithms with different number of topics. As stated in Section 5.1,
we run the algorithms with topics ranging from 2 to 10. Figure 11 plots our results.
As it is shown, most of the medians are between 0.4 and 0.5.

In order to claim any statistical difference, we tested our results with ANOVA.

As seen in Table 2, the p-value calculated exceeds the threshold of 0.05. There-
fore, there is no significant difference between the coherence values obtained by the
different topic numbers.

Since in RQ#1 we found that higher coherence values were obtained by using
the component Description, and in RQ#2 we found that the best algorithms are LSI
and NMF, we also analyzed the results taking into consideration only the coherence
values obtained with these variables. Figure 12 plots these results. As it can be
seen, the medians of the coherence values increased notably to the range of 0.55
to 0.6. After running the ANOVA test for these results, we were able to reject
H30 with a p-value = 0.0198. However, after running the post-hoc test, we only
found a statistically significant difference between the results obtained with 2 and
7 topics.

1362 L. da Rocha Araujo, G. Rodriguez, S. Vidal, C. Marcos, R. Pereira dos Santos

Figure 11. Boxplot representing coherence values by number of topics

Therefore, to answer to RQ#3, we can state that it was not possible
to find an optimal number of topics. However, we found a signifi-
cant difference in the coherence values obtained when only the De-
scription component and the LSI and NMF algorithms were used.

6.4 A Prototype to Explore OpenAPI Documents

The results achieved determine configurations that generate the models with the
highest coherence possible. The usage of these models varies depending on the
objective. Our objective is to evaluate the possible configurations and propose the
best option to be used to help the developers from the API Community to explore
services in OpenAPI Dataset. To help developers to find services in the OpenAPI
directory, we also propose an exploration tool that separates the endpoints in the
topics that are more related to them. To illustrate this usage, we have developed
a script that does a top-level exploration.

Our script evaluates the models generated by the files downloaded in OpenAPI
Directory, providing the configuration with the highest topic coherence. Once this is
done, we also provide a top-level visualization of the results for each topic. Our script
generates an HTML file with 2 tables, presenting information about the 12 topics
modelled. On the first table, the 5 endpoints with best score for each topic are
shown, alongside the topic number, their coherence and the words that have the

Topic Modeling for Analyzing OpenAPI Documents 1363

Figure 12. Boxplot representing coherence values for LSI and NFM algorithms for De-
scription component by number of topics

highest weight on the topic (most relevant words), while the other endpoints are
omitted. This is done to inform the 5 endpoints that are most related to each topic.
On the second table, it is shown the amount of endpoints in each topic, the coherence
of each topic and other statistical information.

The coherence value for each topic, which determines how correlated are the
top words in the topics. The average score (and standard deviation), which shows
the average of the scores, basically a numeric value to determine how aligned the
endpoints are to the topics, whether the standard deviation defines the amount
of variation in the values. The average weight of the top 5 words (and standard
deviation), which measures how important (concerning other topics) the top 5 words
in a topic is, and its standard deviation shows the variance in these values. Lastly,
the quantity of endpoints in each topic, which shows how populated each topic is,
therefore providing information on the most relevant topics for the whole dataset.
The first table helps the developers to find services related to each topic, and the
second table helps to understand how much the services in each topic represent each
topic.

Our script is a prototype of a tool that can be used to help developers find
the services they need. Nowadays if a user needs to find a service in the OpenAPI
directory, they need to manually check each service to make sure that they did not

1364 L. da Rocha Araujo, G. Rodriguez, S. Vidal, C. Marcos, R. Pereira dos Santos

Figure 13. Excerpt of first table shown in the HTML file, presenting a top level exploration
of the topics and the endpoints most related to these topics

miss what they need. An exploration tool helps the developers to execute this task
more effectively and avoid errors. Therefore, in future work, we can improve this
tool to enhance the exploration aspect. One example of enhancement of the tool is
to use the topic modeling in each topic, recursively, to generate sub-topics for each
topic.

Figure 14. Excerpt of second table shown in the HTML file, presenting a statistical ana-
lysis of the topics and endpoints related to them

Topic Modeling for Analyzing OpenAPI Documents 1365

7 THREATS TO VALIDITY

The threats to validity are divided into 4 categories: conclusion, internal, construct
and external [16].

In conclusion validity, it is analyzed the ability to draw inaccurate results from
the observations in the experiment. To avoid threats in this type of validity we
used previously tested metrics to reach the results of our models and then analyzed
them with statistical methods, such as ANOVA and post-hoc tests. Also, a relatively
large dataset was used, with over 10 000 endpoints, to generate the models, providing
models with data variation. Our original dataset had more endpoints to be used, but
some of them only had information in one component. To avoid another threat to
the conclusion validity we used only endpoints with information in both components,
so the data would not have a bias towards the component with more endpoints.

The internal validity is defined by the causal relations in the experiment. One
of the threats we could not avoid is that the text we use in our dataset is made by
humans, subjectively. Therefore, it might have orthography errors or it might not
be an accurate description of the respective endpoint.

Construct validity guarantees that the experiment done can generalize the theory
behind it. To minimize this type of threat, we chose components that have the
function to directly describe the object we are analyzing to obtain its characteristics.
We could not test if the results proposed by our study model the characteristics,
because this would require manual tests with researchers, which is not the scope of
this project. Therefore, we proposed it as future work.

The external validity is concerned with generalizing the results to other envi-
ronments. To reduce these threats, we used in our experiment a large database
containing APIs from different domains. Since the repository used was APIs Guru,
there was a limitation of only using public APIs, which were made with a long-
lived goal (persistent). Therefore, it is possible that certain vocabulary from private
API is missing, such as bank services. Alternatively, this repository also filters
non-reliable API and fixes mistakes in the definitions, which increases the internal
validity.

8 CONCLUSION AND FUTURE WORK

In this paper, we presented an empirical analysis of an extensive OpenAPI dataset
to extract the main topics of APIs. OpenAPI documentation contains numerous
components to provide information about an API, for example a Summary and
a Description of the endpoint. In this paper, we examined which component of
the OpenAPI documentation might provide better topics in terms of the coherence
metric. Such topics could later be used to gather an API’s functionality.

To conduct our empirical analysis, we used three topic modeling algorithms in
a dataset of over 2 000 OpenAPI documents, namely LDA, LSI, and NMF. Backed
up with statistical results, we found that in terms of topic coherence the component
Description of an OpenAPI document best describes the functionality of an API by

1366 L. da Rocha Araujo, G. Rodriguez, S. Vidal, C. Marcos, R. Pereira dos Santos

using the NMF or LSI algorithms. Also, we found that the coherence metric values
are stable for different number of topics. Furthermore, we have built a prototype
tool to assist developers in exploring OpenAPI documents and analyzing extracted
topics to assess if the APIs meet developers needs.

As future work, we intend to corroborate if topics can effectively be used to de-
termine the functionality of an API. Also, we plan to take advantage of the knowl-
edge gained from this experiment and explore unsupervised approaches that use
pre-trained word/sentence embeddings to cluster similar APIs from a functional
viewpoint. Another important issue is to use the model, created in this paper, to
compare against the characteristics created by researchers manually to test how well
our model is defining characteristics of APIs compared to researchers. Finally, we
intend to analyze other OpenAPI repositories with a higher number of OpenAPI
documents and focus on those documents that do not specify web APIs, such as mi-
croservices that are just made to run in a cluster and without exposing themselves
outside (to the Internet).

Acknowledgement

We acknowledge the financial support provided by ANPCyT (Argentina) under the
Project PICT 2018-01456 and by CONICET (Argentina) under a doctoral grant
and PIP 2021-2023 id 11220200100430CO. The fifth author thanks to UNIRIO and
FAPERJ (Proc. 211.583/2019) for their partial support.

REFERENCES

[1] Baresi, L.—Garriga, M.—De Renzis, A.: Microservices Identification Through
Interface Analysis. In: De Paoli, F., Schulte, S., Broch Johnsen, E. (Eds.): Service-
Oriented and Cloud Computing (ESOCC 2017). Springer, Cham, Lecture Notes in
Computer Science, Vol. 10465, 2017, pp. 19–33, doi: 10.1007/978-3-319-67262-5 2.

[2] Bogner, J.—Wagner, S.—Zimmermann, A.: Collecting Service-Based Main-
tainability Metrics from RESTful API Descriptions: Static Analysis and Thresh-
old Derivation. In: Muccini, H. et al. (Eds.): Software Architecture (ECSA 2020).
Springer, Cham, Communications in Computer and Information Science, Vol. 1269,
2020, pp. 215–227, doi: 10.1007/978-3-030-59155-7 16.

[3] Pautasso, C.—Zimmermann, O.—Leymann, F.: Restful Web Services vs. “Big”
Web Services: Making the Right Architectural Decision. Proceedings of the 17th

International Conference on World Wide Web (WWW’08), 2008, pp. 805–814, doi:
10.1145/1367497.1367606.

[4] Tyszberowicz, S.—Heinrich, R.—Liu, B.—Liu, Z.: Identifying Microservices
Using Functional Decomposition. In: Feng, X., Müller-Olm, M., Yang, Z. (Eds.):
Dependable Software Engineering. Theories, Tools, and Applications (SETTA 2018).
Springer, Cham, Lecture Notes in Computer Science, Vol. 10998, 2018, pp. 50–65,
doi: 10.1007/978-3-319-99933-3 4.

https://doi.org/10.1007/978-3-319-67262-5_2
https://doi.org/10.1007/978-3-030-59155-7_16
https://doi.org/10.1145/1367497.1367606
https://doi.org/10.1007/978-3-319-99933-3_4

Topic Modeling for Analyzing OpenAPI Documents 1367

[5] Lin, M.—Xi, J.—Bai, W.—Wu, J.: Ant Colony Algorithm for Multi-Objective
Optimization of Container-Based Microservice Scheduling in Cloud. IEEE Access,
Vol. 7, 2019, pp. 83088–83100, doi: 10.1109/ACCESS.2019.2924414.

[6] Nguyen, A.T.—Nguyen, T.T.—Nguyen, T.N.—Lo, D.—Sun, C.: Duplicate
Bug Report Detection with a Combination of Information Retrieval and Topic Model-
ing. Proceedings of the 2012 27th IEEE/ACM International Conference on Automated
Software Engineering, 2012, pp. 70–79, doi: 10.1145/2351676.2351687.

[7] Pingclasai, N.—Hata, H.—Matsumoto, K. I.: Classifying Bug Reports to
Bugs and Other Requests Using Topic Modeling. 2013 20th Asia-Pacific Soft-
ware Engineering Conference (APSEC), IEEE, Vol. 2, 2013, pp. 13–18, doi:
10.1109/APSEC.2013.105.

[8] Thomas, S.W.—Adams, B.—Hassan, A. E.—Blostein, D.: Studying Software
Evolution Using Topic Models. Science of Computer Programming, Vol. 80, 2014,
Part B, pp. 457–479, doi: 10.1016/j.scico.2012.08.003.

[9] Alhindawi, N.—Al-Hazaimeh, O.M.—Malkawi, R.—Alsakran, J.: A Topic
Modeling Based Solution for Confirming Software Documentation Quality. Interna-
tional Journal of Advanced Computer Science and Applications, Vol. 7, 2016, No. 2,
pp. 200–206, doi: 10.14569/IJACSA.2016.070227.

[10] Sánchez-Sánchez, C.—Villatoro-Tello, E.—Raḿırez-de-la-Rosa, G.—
Jiménez-Salazar, H.—Pinto, D.: WSDL Information Selection for Improving
Web Service Classification. Research in Computing Science, Vol. 144, 2017, No. 1,
pp. 83–96, doi: 10.13053/rcs-144-1-7.

[11] Shafi, S.—Qamar, U.: [WiP] Web Services Classification Using an Improved Text
Mining Technique. 2018 IEEE 11th Conference on Service-Oriented Computing and
Applications (SOCA), IEEE, 2018, pp. 210–215, doi: 10.1109/SOCA.2018.00037.

[12] Mateos, C.—Rodriguez, J.M.—Zunino, A.: A Tool to Improve Code-First
Web Services Discoverability Through Text Mining Techniques. Software: Practice
and Experience, Vol. 45, 2015, No. 7, pp. 925–948, doi: 10.1002/spe.2268.

[13] Kamath, S. S.—Ananthanarayana, V. S.: Semantic Similarity Based Context-
Aware Web Service Discovery Using NLP Techniques. Journal of Web Engineering,
Vol. 15, 2016, No. 1-2, pp. 110–129.

[14] Sferruzza, D.: Top-Down Model-Driven Engineering of Web Services
from Extended OpenAPI Models. 2018 33rd IEEE/ACM International Con-
ference on Automated Software Engineering (ASE), 2018, pp. 940–943, doi:
10.1145/3238147.3241536.

[15] Sferruzza, D.—Rocheteau, J.—Attiogbé, C.—Lanoix, A.: Extending Open-
API 3.0 to Build Web Services from Their Specification. Proceedings of the 14th In-
ternational Conference on Web Information Systems and Technologies (APMDWE),
Vol. 1, 2018, pp. 412–419, doi: 10.5220/0006923604120419.

[16] Wohlin, C.—Runeson, P.—Höst, M.—Ohlsson, M.C.—Regnell, B.—
Wesslén, A.: Experimentation in Software Engineering. Springer Science and Busi-
ness Media, 2012, doi: 10.1007/978-3-642-29044-2.

[17] Chang, J.—Gerrish, S.—Wang, C.—Boyd-Graber, J.—Blei, D.M.: Read-
ing Tea Leaves: How Humans Interpret Topic Models. In: Bengio, Y., Schuur-

https://doi.org/10.1109/ACCESS.2019.2924414
https://doi.org/10.1145/2351676.2351687
https://doi.org/10.1109/APSEC.2013.105
https://doi.org/10.1016/j.scico.2012.08.003
https://doi.org/10.14569/IJACSA.2016.070227
https://doi.org/10.13053/rcs-144-1-7
https://doi.org/10.1109/SOCA.2018.00037
https://doi.org/10.1002/spe.2268
https://doi.org/10.1145/3238147.3241536
https://doi.org/10.5220/0006923604120419
https://doi.org/10.1007/978-3-642-29044-2

1368 L. da Rocha Araujo, G. Rodriguez, S. Vidal, C. Marcos, R. Pereira dos Santos

mans, D., Lafferty, J., Williams, C., Culotta, A. (Eds.): Advances in Neural In-
formation Processing Systems 22 (NIPS 2009), 2009, pp. 288–296.

[18] Koren, I.—Klamma, R.: The Exploitation of OpenAPI Documentation for the
Generation of Web Frontends. Companion Proceedings of The Web Conference 2018
(WWW’18), 2018, pp. 781–787, doi: 10.1145/3184558.3188740.

[19] Yasmin, J.—Tian, Y.—Yang, J.: A First Look at the Deprecation of REST-
ful APIs: An Empirical Study. 2020 IEEE International Conference on Soft-
ware Maintenance and Evolution (ICSME), 2020, pp. 151–161, doi: 10.1109/IC-
SME46990.2020.00024.

[20] Řeh̊uřek, R.—Sojka, P.: Software Framework for Topic Modelling with Large
Corpora. Proceedings of the LREC 2010 Workshop on New Challenges for NLP
Frameworks, 2010, pp. 46–50, doi: 10.13140/2.1.2393.1847.

[21] Thiele, T.—Sommer, T.—Stiehm, S.—Jeschke, S.—Richert, A.: Explor-
ing Research Networks with Data Science: A Data-Driven Microservice Architecture
for Synergy Detection. 2016 IEEE 4th International Conference on Future Internet
of Things and Cloud Workshops (FiCloudW), 2016, pp. 246–251, doi: 10.1109/W-
FiCloud.2016.58.

[22] Grant, S.—Cordy, J. R.—Skillicorn, D.B.: Using Heuristics to Estimate an
Appropriate Number of Latent Topics in Source Code Analysis. Science of Computer
Programming, Vol. 78, 2013, No. 9, pp. 1663–1678, doi: 10.1016/j.scico.2013.03.015.

[23] Feldman, R.—Sanger, J.: The Text Mining Handbook: Advanced Ap-
proaches in Analyzing Unstructured Data. Cambridge University Press, 2006, doi:
10.1017/CBO9780511546914.

[24] Röder, M.—Both, A.—Hinneburg, A.: Exploring the Space of Topic Coherence
Measures. Proceedings of the Eighth ACM International Conference on Web Search
and Data Mining (WSDM ’15), 2015, pp. 399–408, doi: 10.1145/2684822.2685324.

[25] Tabachnick, B.G.—Fidell, L. S.: Experimental Designs Using ANOVA. Second
Edition. Thomson/Brooks/Cole, Belmont, CA, 2007.

[26] Alghamdi, R.—Alfalqi, K.: A Survey of Topic Modeling in Text Mining. Interna-
tional Journal of Advanced Computer Science and Applications, Vol. 6, 2015, No. 1,
pp. 147–153, doi: 10.14569/IJACSA.2015.060121.

[27] Pauca, V. P.—Piper, J.—Plemmons, R. J.: Nonnegative Matrix Factorization
for Spectral Data Analysis. Linear Algebra and Its Applications, Vol. 416, 2006,
No. 1, pp. 29–47, doi: 10.1016/j.laa.2005.06.025.

Leonardo da Rocha Araujo is Ph.D. student at the UNI-
CEN University. His primary research interests are microservice
architecture and natural language processing.

https://doi.org/10.1145/3184558.3188740
https://doi.org/10.1109/ICSME46990.2020.00024
https://doi.org/10.1109/ICSME46990.2020.00024
https://doi.org/10.13140/2.1.2393.1847
https://doi.org/10.1109/W-FiCloud.2016.58
https://doi.org/10.1109/W-FiCloud.2016.58
https://doi.org/10.1016/j.scico.2013.03.015
https://doi.org/10.1017/CBO9780511546914
https://doi.org/10.1145/2684822.2685324
https://doi.org/10.14569/IJACSA.2015.060121
https://doi.org/10.1016/j.laa.2005.06.025

Topic Modeling for Analyzing OpenAPI Documents 1369

Guillermo Rodr��guez is currently a member of the ISISTAN
Research Institute (CONICET-UNICEN), Adjunct Researcher
at the CONICET and Professor at the UNCPBA. He graduated
as Systems Engineer in 2010 (UNCPBA), and Doctor of Com-
puter Science in 2014 (UNCPBA). His main research areas are
service oriented software development and case based reasoning.

Santiago Vidal is Professor at the UNICEN University, and
also Research Fellow of the CONICET, Argentina. His primary
research interests are software evolution and maintenance. He
received his M.Sc. and Ph.D. degrees in computer science from
the UNICEN University in 2011 and 2013, respectively.

Claudia Marcos has been Professor in the School of Computer
Science at Universidad Nacional del Centro de la Provincia de
Buenos Aires (UNCPBA) since 1991. She is CIC (Comisión de
Investigación Cient́ıfica de la Provincia de Buenos Aires) Re-
searcher. Her main research area is in software evolution, re-
quirements engineering and agile development. She teaches sev-
eral undergraduate and postgraduate courses at the UNICEN
and has also national and international publications in the area.
She received her B.Sc. degree in 1993 from the UNCPBA State
University in 1993. She obtained her Ph.D. degree in computer
science in 2001.

Rodrigo Pereira dos Santos received his Ph.D. degree in
computer science from the Alberto Luiz Coimbra Institute for
Graduate Studies and Research in Engineering, Federal Univer-
sity of Rio de Janeiro (UFRJ), 2016. He is currently Associate
Professor with the Department of Applied Informatics, Federal
University of the State of Rio de Janeiro (UNIRIO), where he
leads the Complex Systems Engineering Laboratory (LabESC).
His research interests include complex systems engineering (spe-
cially software ecosystems and systems-of-systems) and software
engineering education.

