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Abstract. This research lays down foundations for a stronger presence of machine
learning in the emergency department. Using machine learning to make predic-
tions on a patient’s situation can increase patient’s health and decrease the waiting
time. This paper explores to what extent it is possible to accurately predict ER
outcome. These predictions will be based on routinely available ER data from
a Dutch hospital. The data set used is representative for any Dutch Hospital.
Prediction performance is compared between ML predictors. Using random for-
est and stacked ensemble gathered the best results. This research found that for
more than half of the adult patients, the algorithm can very accurately predict
hospitalization, with similar results for children and during the COVID-19. More-
over, it is investigated which characteristics and events contribute to the direction
of the patient. Finally, several plans are introduced to substantially improve the
ER process, for example by quickly reviewing patients selected by the algorithms.
These might lead to an ER process that is significantly quicker, with more accurate
diagnosis.
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1 INTRODUCTION

Each year, there are about 2 million visits to an Emergency Room (ER) in the
Netherlands [1]. During these visits, patients receive acute healthcare and are diag-
nosed. All knowledge about these patients is stored inside a database. The ER is
often met with patients that stay there too long. A stay of more than 4 hours is rela-

https://doi.org/10.31577/cai_2022_1_154


Using Machine Learning Techniques to Support the Emergency Department 155

tively common. This is undesirable, since the ER has a limited capacity, knowledge
and facilities for enduring treatment.

Therefore, we investigate possibilities to optimize the diagnostic intake process
by finding patterns in data for which patients are very likely to be submitted. The
hospital is currently doing limited analysis on their data, while it has a huge potential
due to the level of detail.

We will explore if, with a combination of Machine Learning (ML) techniques
and an extensive ER data set, we are able to predict diagnosis and risk factors in
patient health or ER-time. The information we gather using data mining can be
used to optimize the process.

A straightforward aspiration is to minimize the time patients stay at the ER.
This improves the patient’s health and well-being while reducing costs. Moreover,
the algorithms might be able to assist in the diagnosis, enhancing accuracy. And we
can better schedule patients and resources, while anticipating on a patient influx.
The ER data is spread over 2019 and the first months of 2020. This includes the
rise of COVID-19, which had a large impact on hospitals.

The goal of this research is to explore how new ML techniques can be applied
to data acquired on the patient during an ER visit. With this, the hospital will
better estimate if the patient needs to be submitted. This improves patient service
and staff scheduling, ensuring no time or cost is spent unnecessarily. To reach this
aim, we focus on answering the following question: To what extent is it possible to
accurately predict ER outcome based on patient and event data?.

The remainder of the paper is organized as follows. Section 2 discusses how other
works approach this problem, while our view is introduced in Section 3. Section 4
shows the results achieved in this research. Finally, we conclude the paper with
further discussions in Section 5 and conclusions in Section 6.

2 RELATED WORK

Similar work regarding the use of ER data to derive indications for patients has,
compared to reference models, consistently outperformed. However, this research
took place in countries where patient influx is different than in the Netherlands.

Multiple approaches all over the world can be found. Riata et al. [2] used
data from the US CDC to predict hospitalization using ML, outperforming their
reference model. Sun et al. [3] investigated the use of regression models at a hos-
pital in Singapore. Choi et al. [4] (predicting the KTAS level) and Kwon et al. [5]
(focusing on deep learning with a massive data set) both took place in South Ko-
rea.

These articles are relevant, as for example their triage processes are quite close
to a Dutch Triage process. An interesting point made in [4] is that they used both
logistic regression in a way familiar to [3] and the Random Forest and XGBoost
similar to [2]. They found that these last techniques consistently outperformed the
logistic regression. This supports our choice to focus on Random Forest. In [3],
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they identify the overcrowding issue and see the potential of the technique to find
patients that can be admitted to the hospital earlier.

A similar approach should be viable for the Dutch hospital we cooperate with.
We aim to extend and contribute by exploring the value of additional data, like from
events at the ER. Moreover, we investigate categorical predictions on the direction of
the patient. We also introduce ways to implement the findings in the ER workflow.

3 METHODOLOGY

3.1 Data Set

Variables used. This section describes the data used for the analysis. No personal
identifiable information was visible for this research, anonymization was carried
out by the hospital in advance. The data is then sorted and coupled in a way
that each row represents a single trace, or unique visit, of a patient to the ER. In
this context, we considered the following features, among others: admission ID,
age, gender, specialism, arrival time, triage color, transport, weight, complaint,
temperature, dismissal to.

The data available for this research includes personal characteristics, indepen-
dent of the current medical situation. Age, gender and weight describe certain
risk factors the patient has. In past research (see Section 2) basic characteristics
gave good results.

Triage takes the first measurements of the patient situation. Here, priority is
assigned and vitals are observed. During the visit, the patient will undergo
several tests and acute treatments, and might need an x-ray scan. Details for
all activities are stored in the form of event-specific codes, time and free text
fields. We treat radiology and activity data in the same way, which form the
event data. Before leaving the ER, all patients will be diagnosed by a doctor.
The information stored includes the direction of the patient and the diagnosis.
In this paper, we assume the doctor is always right in his review and use the
direction of the patient as a dependent variable.

We derive more knowledge from the data than directly available, such as calcu-
lating the time patients spent in the hospital, how many patients are at the ER
at the same time, account for nights and weekends and if the patient visited the
ER multiple times.

Generalisability. Our research includes data from 2019 and 2020, consisting of
76 000ER visits in total. The average age of the patient was 42 years. The
average time they were at the ER is 3 hours. 22% stayed in the ER for more
than 4 hours, and thus overstayed. The characteristics of the data from this ER
are compared with the characteristics of general data sets in the Netherlands.
In 2012, more than 75% of the ERs got less than 30 000 visitors [1]. The ER
of this research in 2019, with 46 000 visits, likely belongs to one of the more
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visited ERs in the Netherlands. Moreover, the ER researched is a level-1 ER.
According to Panneman et al. [1], only 20% of the ERs in the Netherlands are
level 1. A level 1 ER has the most advanced facilities and is able to care for all
kinds of injuries 24/7 [6].

We can further explore generalisability by looking at certain descriptives. First
of all, this hospital has significantly more infants at the ER than normal for
the Netherlands. Not unexpected: the hospital is specialized in children care.
Overall, the age distribution is pretty similar to the Dutch total of [7]. Slightly
more males visited this ER in 2019 (51,7%), compared to Dutch average of
50% [1].

With regards to arrival modes the amount of references from the GP is relatively
familiar, compared to [7]. However, we do see a difference between the ambu-
lance usage in this hospital and the Dutch average. This does not exceed the
confidence interval of this average in [7]. It seems likely that since this hospital is
a level 1 trauma hospital, it receives more acute cases. The dismissal directions
are numerous, but only a few directions together form the majority, as seen in
Table 1. Overall, the dismissal directions in this ER are quite comparable to
the directions set in other Dutch ER’s. The analysis on the descriptives lead us
to believe that the results of this research are viable for other hospitals in the
Netherlands.

This Hospital The Netherlands

Hospitalized 31.1% 32%
Dismissed, no future checks 27.1% 26%
Dismissed, check by Clinic 28.2% 24%
Dismissed, check by GP 5.0% 5%

Table 1. Direction of patients compared to Dutch averages (RIVM 2016 [7])

3.2 Stages

To generate the results of Section 4, four stages are considered:

1. Loading – Performing the initial setup for further analysis;

2. Cleaning – Filtering anomalies in the dataset;

3. Encoding – Translating the dataset into a language understood by ML;

4. Predicting – Making estimates, and evaluating their performance.

The stages are constructed in separate Python scripts, in order to optimize
running times. This makes loaded, cleaned and encoded data frames available for
all kinds of predictors. The structure between these scripts is stated in Figure 1.
Here, rectangles represent python scripts and trapezoids are one or multiple data
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frames. We see that the encoder generates multiple data frames, which is due to the
fact that each of the predictors need different variables in the dataset. These final
data frames included little over 40 columns, with the exact amount depending on
the predictors and what we are aiming to predict.

Figure 1. Flowchart program structure

Cleaning data. A sizable amount of our data is quantitative and clinical, which has
the nice property that almost all correct entries are within a standard boundary.
This is due to humans rarely being alive if their critical values are much higher
or lower than usual. In our dataset, these kind of errors were present: someone
with an oxygen level of just 4% that was sent home. Together with staff from
the ER, we sat boundaries to determine which data entries are realistic.

Some patients might not have a departure date, or have a departure date more
than 24 hours after arrival. These anomalies are removed, as are patients that
left against advice. The cleaning script drops all traces that did not have
a TriageTime or Triage color. Further choices on missing values are made by
the predictors. Lastly, it does not make sense to include all possible choices.
Therefore, the categories are narrowed down.

Sequential event data. We see two possible approaches to process event data.
Either embed supervised learning in the process model (use process mining tech-
niques with decision point analysis), or use the supervised learning and embed
information gathered on the workflow in the input data. This project focuses
on the latter. We will investigate how the index encode method [8] can help
us retain as much information as possible. The encoder uses this index encode
variation to pivot all rows in the Activity, Radiology and Orders data frames,
so each row corresponds to exactly one trace. In the columns, the sequence in
which the events took place is preserved. This technique also ensures predictors
are able to use the data in a categorical manner, improving accuracy compared
to an one hot encoded analysis. First, each event gets a number, by sorting
all activities over time, after which they are grouped by patient. Then we add
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the slug of the category to the numbers (in this case activity ). This makes the
columns for each different event category uniquely identifiable.

The encoder also checks whether the activities took place within a predefined
time after arrival. Almost all events occur within the first hour of the patient
entering the ER. Therefore, a filter to ensure predictions are made using infor-
mation that is available at the time of the prediction is not required as long as
the predictions are used at least an hour after arrival. Only the first 3 activ-
ities and the first radiology event are included, patients with more events are
quite rare. This makes the data compact: otherwise, the amount of columns for
a specific event is equal to the maximum number of events that a patient might
endure.

Natural language processing. Complaint information is a free-text field. There-
fore, a list is made of the 100 most used terms, which are then manually nar-
rowed down into a filter including some of the occurring synonyms and spelling
mistakes. It is also possible to use the complaint information to correct mea-
surements. An application of this in our research would be that if people list
fever as a complaint, and their temperature is not measured, we list their tem-
perature as 38.5°C. The reverse is also true: if people have a temperature above
38 degrees, we list them as having a fever.

Medication, unlike complaints, is a relative standard noted field. Therefore, it
makes more sense to allow clustering. For medication, all medication that a sin-
gle patient got during its ER visit is grouped and put into a variable Med list.
Using technique of the complaints, we can check if the Med list includes one
of the most used medicines, so this can become an indicator on its own. Im-
portant, since the ML algorithm cannot distinguish all individual medicine in
the Med list, instead, it groups each patient with all patients that received ex-
actly the same cocktail of medication. Thus, we separately one-hot encode most
used medicine, so the algorithm can conclude that getting a specific medication
administered is of importance.

Predictors The data set is split into a training (70%) and test set (30%). From
training set, the machine learning libraries used will make samples for tuning
hyper parameters and performing cross-validation: the validation sets. Each
run, another part of the training set is left out for validation. The main focus is
Random Forest. We use both the H2O and the scikit approach on the estimators,
highlighting strengths and weaknesses for each of them. Apart from that, we
use the H2O AutoML algorithm, which finds what (combination of) machine
learning approaches could give the best predictive performance.

An overview of the main differences between the used approaches can be seen
in Table 2. The table shows the resemblance between Random Forest and Gradient
Boosting, both based on decision trees. A major advantage of using Random Forest
over other techniques is that we can distinguish important features better. There-
fore, we make accurate predictions while retaining information about why a certain



160 R.A. J. J. van Delft, R.M. de Carvalho

Name Concept Categorical Vari-
able Support

Variable
Impor-
tance

Missing Values

H2O Random
Forest

Random Forest al-
gorithm

Yes, using the
enum method

Visible Separate cate-
gory

SciKit Ran-
dom Forest

Random Forest al-
gorithm

No, separate
one-hot encoding
needed

Visible Replaced with
averages

AutoML Comparing com-
mon ML algorithms

Yes, method de-
pending on algo-
rithm

Hidden Either of above

Gradient
boost

Decision tree en-
semble

Yes, using the
enum method

Visible Separate cate-
gory

Linear Model Logistic regression No, one-hot en-
coding used

Visible Replaced with
averages

Deep learning Neural Network Yes Visible Replaced with
averages

Table 2. Comparison of prediction algorithms

prediction is made. A familiar argument can be made for gradient boosted deci-
sion trees. In neural networks, this process is harder to observe due to the use
of hidden/deep nodes. Another benefit is that Random Forest is often faster and
more accurate then techniques like AdaBoost [9]. In H2O Random Forest, several
ways of implementing categorical variables are possible [10]. Using the H2O auto
setting, which equals the enum method, tends to give the best results. This enumer-
ation method maps the categories to integers. It then uses ordinal or perfect group
splits. This leads to each category still being a separate category. The integers
tied to the categories are then irrelevant [10]. Another advantage H20’s Random
Forest implementation has over other techniques is the way missing values are used.
The documentation [10] describes that missing values are “interpreted as containing
information, i.e. missing for a reason”. This seems to be a closer representation
to the reality at the ER. The values missing in our data set are not missing be-
cause of software failures, but because the nurse did not see any reason to measure
them.

SciKit, the standard used package, needs one-hot encoded categorical variables
on beforehand. Moreover, SciKit is unable to process missing values, which means
that we need to fill them with averages. In our implementation, this is slightly
tweaked. For example, when filling the averages for weight, the gender is taken into
consideration and the average weight of Dutch males and females according to the
Central Bureau of Statistics is used.

The last predictor which is interesting to point out is AutoML. This algorithm
is able to automatically select the best performing predictor for a given dataset.
It includes a stacked ensemble model: this is effectively a super-learner, that takes
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the predictions made by all other models as input, and uses them as independent
variables to be able to make a final prediction that maximises performance on a pre-
defined metric. In [11], it is shown that this technique worked especially well in case
of imbalanced binary outcomes. In this paper, since just 30% of the patients are
hospitalized, this imbalance is present.

After training the predictors, we use Python to generate predictions on the
test set. We compare these estimates with the actual outcomes to determine the
performance metrics.

3.3 Improvement Assessment

For a data-driven prediction to take place, stakeholders are to be convinced of its
added value. So besides accurately predicting ER outcome, we need to review if
the predictions are usable in the ER environment and if there is a drive towards
this direction. The presented methodology is on its own not sufficient for long
term change. Leavitt [12] introduces a model that describes the factors needed for
sustainable organizational change. This model, Process, People and Technology, will
be used to asses the proposed changes. Each of the factors needed for successfully
implementing improvements in the ER will be described.

4 RESULTS

4.1 Estimating Hospitalization

Predictor performance. In Section 3.2, we identified possible predictors. In order
to determine the best performing predictors, we gathered prediction outcomes
based on all data of adults, excluding 3 months of the first corona wave: (Age >
16) ∩ ((ArrivalTime < 20-3-2020) ∪ (ArrivalTime > 20-6-2020))

The resulting metrics are displayed in Table 3. We compare the overall perfor-
mance in terms of the array under the ROC curve (AUC). The H2O Random
Forest and the Stacked ensemble Machine Learning methods seem to have a clear
advantage, so we use H2O Random Forest for the remainder of this section. Lo-
gistic regression performs the worst, expected since logistic regression has more
trouble handling data that is heterogeneous and possibly redundant.

In Table 3, we also included other metrics, like the array under the precision-
recall curve (AUCPR). Since a majority of the traces are not hospitalized, the
data is imbalanced (64%–36%). Therefore, AUCPR is more informative, as it
respects the imbalance in the data [13]. With AUCPR, the ranking of predictors
remain the same. For all predictors, running time was not an issue.

Important variables. A better understanding of how each variable influences the
final decision makes it possible to develop better predictors in the future. The
ten most important variables are listed in Table 4.
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AUC AUCPR Accuracy MSE Sensitivity Specificity

[H2O] Random Forest 0.917 0.879 0.844 0.109 0.813 0.819
[SciKit] Random Forest 0.890 0.833 0.827 0.128 0.687 0.905
[H2O] AutoML (Stacked
ensemble)

0.920 0.883 0.846 0.108 0.819 0.861

[H2O] Logistic Regression 0.849 0.792 0.774 0.152 0.756 0.784
[H2O] Neural Network 0.902 0.860 0.828 0.116 0.800 0.844
[H2O] Gradient Boosting 0.909 0.862 0.836 0.113 0.807 0.852

Table 3. Metrics of predictors

Variable Relative Importance Scaled Importance

0 Weight 254 932 1.00
1 Respiratory rate 107 209 0.42
2 Medication list 80 382 0.32
3 Temperature 72 944 0.29
4 Radiology 1 70 963 0.28
5 Pulse rate 59 256 0.23
6 Specialismecode 58 684 0.23
7 Age 43 451 0.17
8 Systolic 38 887 0.15
9 Diastolic 31 477 0.12
10 Natriumchloride 29 381 0.12

Table 4. List of variable importance for hospitalization

Although most factors are expected, one factor jumps out: Weight. This major
influence might be more visible due to the way the variables are handled. Not
having weight measured is also an indicator the machine learner is allowed to
use. Since weight is important to know when controlling the doses for anesthesia,
it might be that there is an embedded bias in which people have their weight
measured: If the nurse knows that someone might need to be anesthetized, their
weight is measured in advance. We can observe that when weight is excluded
as an independent variable for the predictor in this data set, the accuracy is
affected as well: instead of 84.1%, the accuracy is 81.6%. Variable importance
is observed differently among ML predictors. For example, when we check the
five states that contribute the most to the Neural Network predictor, we see:

1. weight = unmeasured,

2. POB = True,

3. Specialismcode = CHI,

4. Medication = Null,

5. Specialsimcode = CAR.

We observe the presumed bias that makes weight not being measured indicative.
Besides, it uses POB (an abbreviation for pain in the chest), looks if people used
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medicine during their stay, and checks if people belong to CHI (Surgery) or CAR
(Cardiology). These predictors seem intuitive: a person having heart problems
is likely to be monitored overnight.

Event data inclusion. Index encoded event data and the use of natural language
processing decreased the error rate by 13% compared to a model only including
the basic triage information. Also, there was a difference between an AUC of
0.917 with, and an AUC of 0.887 without event data. Since we already had 80%
accuracy without the event data, all steps that extend and improve our model
are important to consider for reaching an optimal accuracy. The use of event
data and natural language processing is an interesting factor to improve the
reliability of the prediction. Especially if the outcome of event measurements
are available, they would be able to contribute even more.

Compared to related work. This section compares the performance of our ap-
proach with the performance of past research, as discussed in Section 2. The
results should not be over interpreted: there is a vast difference between the
used data sets. For instance, the data set reported by Raita et al. [2] contained
a significantly lower hospitalization rate of 16.2%. In this research, 36% of the
patients are hospitalized and in the other research discussed this amount is also
close to 30%. For all research, except for Sun et al. [3], the Random Forest
metrics are included in Table 5.

Research AUC AUCPCR Sensitivity Specificity

Random Forest Model (H2O Default) 0.917 0.879 0.813 0.862
Riata et al. [2] 0.810 – 0.770 0.710
Kwon et al. [5] 0.738 0.557 – –

Random Forest Model (T = 0.7) 0.917 0.879 0.532 0.974
Sun et al. [3] 0.849 – 0.334 0.968

Table 5. Comparison between research models

Raita et al. [2] did not specify the threshold used by the ML algorithms in their
research. Since they seem to cope with issues regarding the sensitivity compared
to their reference model, it is possible they did not change thresholds. We there-
fore used the standard measure of the maximising f1 threshold for calculating
metrics. This is H2O default behaviour. Sun et al. [3] uses a classic logistic
regression model. They used the threshold around 0.7 to ensure Specificity. In
order to compare their results with ours, we used a similar technique. Since
the amount of visits that result in hospitalization is quite similar to that of [3]
(36.0% in this research and 30.2% in theirs), a similar threshold of 0.7 is used
to provide the comparison.

Tuning for application. We can increase the prediction accuracy with two thresh-
olds: one for the patients that should be admitted, and one for the patients that
can be safely sent home. If these thresholds are not equal to each other, we
are left with a third group of patients: those for which the situation is undeter-
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mined. In the current application, this is perfectly acceptable: these patients
walk through normal process at the ER and are admitted or sent home the usual
way. Since the accuracy of the Random Forest predictor is 84.4%, it is needed
to fine-tune its behaviour for practical use. Using threshold adjustments lead to
the confusion matrix displayed in Table 6. The total test data set contained 30%
or 14 640 of all patient visits. Only 7 668 traces are included in the confusion
matrix, the predictor left 47.6% undetermined when we tuned the thresholds.

Actual Negative Actual Positive Error Rate

Predicted Negative 4 672 196 4.02%
Predicted Positive 155 2 645 5.55%
Total – – 4.58%

Table 6. Confusion matrix at Tnegative = 0.13 and Tpositive = 0.73

This means that for a bit more than half of the patient visits, 52.4%, we are
able to predict the hospitalization with an 95.4% accuracy. The sensitivity and
specificity of this predictor are then 94.5% and 96.0% respectively.

COVID. We can predict hospitalization for specific complaints. In Zheng et al. [14],
a ML predictor on deterioration of patients was highly effective in assessing
which patients require hospitalization. Our predictor will be less accurate, since
lab measurement results are not available. However, it can give an indication on
how ML can help to quickly triage patients in case of an unexpected influx. In
the data set of the first COVID-19 wave, 1 573 cases with comments of possible
coronavirus infection are included. Unlike the regular scenario, a slight majority
of the patients, 54%, get hospitalized. The random forest model based on all
patients during the wave has an AUC of 0.877, while the AUCPR is higher, at
0.898. Understandable, since there are more patients taken in, than sent home.
Overall, the accuracy is slightly lower compared to when the whole data set is
used.

Therefore, although the corona situation is unique, it does not seem to require
a separate predictor model. When including the months of the corona wave,
and including COVID-19 as a possible complaint, we can actually reach slightly
better prediction results than without, which is shown in Table 7.

AUC AUCPR Accuracy MSE Sensitivity Specificity

RF incl. COVID 0.915 0.872 0.846 0.111 0.791 0.877
RF for children 0.953 0.863 0.917 0.061 0.778 0.952

Table 7. Random Forest model, with 1. COVID data added, 2. Children

Children. Children have their own set of acceptable measurements, with different
problems than adults. Therefore, we have build a separate Random Forest model
to predict their hospitalization. Of all patients with age < 16, 20% will be
hospitalized. The results can be seen in Table 7. Interestingly, children seem to
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be even better predictable than adults. However, when inspecting the AUCPR,
knowing that less children get hospitalized, we can conclude that the predictor
does not perform significantly better depending on the age of the patients.

Variable Relative Importance Scaled Importance

1 Systolic 97 117 1
2 Diastolic 70 541 0.726
3 Medication list 52 037 0.535
4 Respiratory rate 26 725 0.275
5 Activity 1 21 484 0.221

Table 8. List of variable importance for children

Young patients have their own set of important variables, as seen in Table 8.
For them, blood pressure has more importance than it has for adults. Also,
their weight is of less influence. This might implicate that the inherent bias of
measuring weight, proposed in Section 4.1, is not that influential after all. It
can also be due to the variance the weights of children have: a weight of 40kg
is very high for a 5 year old and quite low for a 15 year old, which we did not
normalize.

4.2 Estimating Admission Department

These results are based on all traces that were hospitalized. We removed the 706
patients that were moved to another hospital and 168 patients that have no direction
registered. The remaining dataset contains 16 552 patients. We are not able to look
at the amount of people dismissed to the IC, as some of the past research in Section 2.
This information was not available. We predict for the departments where the most
ER patient arrive. In total, 44% of the patients go to the AODA department. This
is understandable: the department of Acute admission and Diagnostics might be
viewed as a follow up on their stay in the ER. The H2O random forest predictor
is used to estimate a binomial outcome on whether patients are admitted to this
department. The resulting metrics are displayed in Table 9.

AUC AUCPR Accuracy MSE Sensitivity Specificity

Random Forest AODA 0.852 0.801 0.747 0.156 0.853 0.673
Random Forest CCU 0.981 0.805 0.953 0.031 0.855 0.962

Table 9. Random forest model predicting AODA and CCU admissions

With threshold tuning, one would be able to predict for 7.86% of the total
amount of hospitalized patients with 90% accuracy that they would go to the AODA
department. Since this department itself is also specialized in diagnostics, this result
might be useful to explore in the future. The next department with high admis-
sion rates is the CCU, the heart monitoring department. 9.0% of the hospitalized
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patients will go to this department. At first glance, results in Table 9 seem pretty
good. However, this is due to very imbalanced data. When looking at the AUCPR,
we can see that this predictor is likely not good enough yet. The important variables
for this predictor are interesting: apart from the specialism code and the weight,
two new variables show up, which are not observed that close before. POB (pain on
the chest), and all closely related complaint texts, forms an important part of this
predictor. This seems intuitive, as is the inclusion of the medicine Ticagrelor, which
is a heart function related medicine. Both are typical for heart patients. To make
the predictor better for the CCU, it is possible to include more of these typical heart
related characteristics.

4.3 Process Improvement

Several ML implementations in the ER process are assessed by their impact on the
workflow, their current status and the potential benefits they could bring. This
is displayed for all the plans in Table 10. As proposed in Section 3.3, for each of
the plans, the new process idea is introduced and technological needs are described.
Lastly, feedback from an ER doctor is included.

Improve-
ments

Workflow Current Status Potential Benefits

Indication No impact Technology – Support – Diagnose Accuracy ++
Quick
review

Small impact Technology + Support + Diagnose Accuracy + Pro-
cess Time ++ Service +

Auto.
forwards

Major impact Technology – Support – Process Time +++ Service
++

Event
priorities

No impact Technology = Support + Processing Time +

Var.
Importance

No impact Technology + Support + Diagnose Accuracy ++

Inform
overstay

No impact Technology= Support+ Service +

Table 10. Assessments for the proposed improvements

Indication at diagnosis. A doctor can view the indication given by the algorithm
on the direction of the patient. He can use this to improve diagnosis. In our data
set, 3.0% returned to the ER within 48hrs after being sent home. Assuming this
as a rough proxy estimate on the error rate of doctors, we can see how the pre-
dictor is able to help out. In future, given enough measurements and diagnostics
in the past, the predictor will be able to not only predict a global direction, but
also which diseases and risks the patients have. It can even estimate specific
progress of disease [14]. Technology-wise, the system would show the indication
in the information system the doctor inspects when looking at a patient. This
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indication needs to be sufficiently accurate. If the system is not good in the pre-
dictions, the indications given are either neglected or used in a way that makes
the diagnosis less accurate then without the indication. Currently, the main
objective for reaching the required accuracy should be researching the inclusion
of more data. Initial feedback on this proposal was that it is very difficult to
implement due to a lot of grey areas. For example, someone with stomach issues
can eventually fall into any of URO, GYN, CAR or CHI specialisms.

Quick review. The doctor does not always have enough time to weigh in all factors
or do additional tests. Therefore, patients with relative clear indications are
forwarded as soon as possible. The algorithm then helps in making the decision
which patients are able to be quick reviewed: that is, which patients are very
likely to be submitted to a specific hospital department or to be sent home.
This can slightly improve diagnose accuracy, since we know beforehand that
these patients are likely to be submitted or not. More effect is noticeable for
processing time: if a doctor is assigned to quick reviewing patients, it can handle
a lot of cases in a short amount of time, while still being able to dedicate time
to the more complex patients. This also increases the overall capacity of the
ER: in case of a sudden spike in admissions, quick reviewing helps to make
a distinction between patients. Currently, it is possible to predict hospitalization
with an accuracy of 95% for half of the patients. This means that, especially if
carefully looked at additional improvements, like increasing the data available to
the ML predictor, technology is present. Besides the predictor performance, the
system would benefit from integration with current systems. It can also perform
independent, relying only on the database connection: in this case a screen with
patients that are ready for quick review is placed in a strategic location. Support
on this plan is present as well, the specialist found it an ideal solution. It is quite
often clear when someone could be submitted early on.

Automatic forwarding. Use the indications as a strict guideline. The algorithm
can be trained to have an acceptable small amount of false positives for certain
directions. If the algorithm is assured of the direction of the patient, the patient
can be forwarded by a nurse. Then, no more additional tests are carried out
at the ER and the doctor will not review the situation of the patient, unless
a patient and/or the nurse have doubts about the estimate. In that case a patient
will be treated in the usual way. Theoretically, this plan would have a major
impact on processing time. The main technological challenge for this plan is
increase accuracy up to an acceptable level. If the predictions are improved, the
implementation would not be extremely difficult, especially if the quick review
mechanism is already present. However, as explained by the ER doctor, this
plan is possible, but legally complex. For any decision made, someone should
sign for responsibility according to the Dutch law.

Priority of events. Events, like lab tests or radiology, are executed in a specific
sequence. The ones with most discriminating power can be scheduled first. By
doing so, the accuracy of a diagnosis can be improved in a shorter amount
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of time. Unfortunately, since results do not yet contribute to the prediction
performed, this plan is harder to execute with the current data set. Apart from
re-prioritising, problems in process time for highly informative events can be
identified and measures to improve these specific event processing times can be
taken. Since radiology seems to have the most impact on a patient’s chance to
overstay, one might consider starting here. For example, if there are scheduling
problems at the x-ray, preregistering x-ray scans might help. Preregistration
is already present, but an improvement of existing systems can be done. This
makes this plan technically realizable in a short time. However, it should be
noted that for major improvements, new variables need to be introduced to
the model. The feedback on this proposal was that for the care paths a patient
takes, some requests for lab research and radiology are already made in advance.
Improvement of this process is very welcome.

Variable importance. The weight the Random Forest gives to a variable might
uncover new diagnosis paths. Patients likely to be submitted to a certain direc-
tion possess specific characteristics. This can be used to improve diagnosis, by
combining the weights with medical expertise. As data is better registered, and
more patient traces are available, the ML predictor will be able to better distin-
guish which properties make a certain disease and its progress over time unique.
This is already technically possible, either as part of a user interface or made
into a report. It is again important to involve more data for this plan to yield
beneficial results. The ER staff found it likely to be most usable in case of a clear
diagnosis. For example, making this photo always results in hospitalization.

5 DISCUSSION

Researchers are encouraged to run this analysis on larger datasets: right now 48 000
cases are used to create the model. Increasing this number, for example by including
data from the last 5 years, is projected to improve model prediction quality. Besides
increasing the quantity of the data entries, increasing the quality is highly effective
as well. For example, a research by [14] was effective on predicting which COVID-19
patients were prone to heavy deterioration and need hospitalization the most. To
make these predictions, it included results of lab measurements, which were not
available for us.

This research did not have access to ethnic and demographic information, which
was a major factor in predicting hospitalization in other research [2, 3]. For outcome,
a classifier indicating critical care was unavailable. Most of the research discussed in
Section 2 got very interesting results predicting critical care as well. With regards
to the support for ML techniques in the ER , this research did not measure support
under patients. It could be that patients value the increased service, but perceive
predictions about them made by computers as scary.

This research, and the related work, does not incorporate findings on which
treatments are only acute care. For example, some patients have wounds that need
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acute treatment to stop bleeding and infections, but are after this treatment at the
ER safe to go home. The necessity and the frequency of these activities is hard to
determine with the data set provided. For assessing the impact of implementing
prediction technology in the ER in future, it is instrumental to keep this in mind.

Since all activities were performed within one hour after arrival according to the
dataset, this research did not include a notice about the accuracy at different times
in the ER process (e.g. at arrival, after X hours). It should be examined if the used
information is available at the time predictions are made.

6 CONCLUSION

This research aimed at applying machine learning techniques to the ER process, to
improve the diagnosis and decrease the time patients spent at the ER. We found
that we are able to predict the hospitalization for more than half of all ER visits
with an accuracy of 95%. This leads us to conclude that it is definitely possible
to predict the direction of a patient after ER using the available data. As seen in
Section 3, this conclusion is likely applicable to all hospitals in the Netherlands.
Using the Random Forest algorithm, we can identify the importance of variables for
hospitalization. Based on which variable to predict, these indicators change. For
example, when looking at the time patients spent at the ER, the amount of other
patients at the ER becomes an important variable, both intuitively and in practice.
We saw that event data improved the accuracy of the predictions.

With regards to which technique to use, Stacked ensemble and a specific Random
Forest package yielded the best results out of the six techniques inspected. Lastly,
we pivoted five ideas to improve the ER process using Machine Learning. Some,
like the quick reviewing patients, seem very promising and will be investigated in
follow-up research.
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