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Abstract. Recently, combinatorial optimization problems have aroused a great deal
of interest in Machine Learning, leading to interesting advances in Neural Combina-
torial Optimization (NCO): the study of data-driven solvers for NP-Hard problems
based on neural networks. This paper studies the benefit of Transfer Learning for
NCO by evaluating how model training can be improved taking advantage of know-
ledge learned while solving similar tasks. We focus, in particular, on two famous
routing problems: the Traveling Salesman Problem (TSP) and the Vehicle Routing
Problem (VRP). The latter being a generalization of the former, we study the ef-
fect of applying Transfer Learning from a model trained to solve TSP while training
a model learning to solve the Capacitated VRP (CVRP). We present adaptations
of a state-of-the-art NCO model for implementing Transfer Learning. Our results
based on extensive empirical experiments in different settings show that Transfer
Learning may help to speed up the training process while being more sample effi-
cient.
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1 INTRODUCTION

Recent developments in deep learning and reinforcement learning have led to sig-
nificant contributions in applying machine learning to create end-to-end1 solvers for
many Combinatorial Optimization problems. Numerous Neural Combinatorial Op-
timization (NCO) models, i.e. machine learning models based on neural networks,
have thus been proposed to tackle a large variety of complex combinatorial opti-
mization problems [1]. Interestingly, compared to traditional Operational Research
approaches, such models do not rely on handcrafted and costly-to-define heuris-
tics. They correspond to parametric models that are trained using supervised or
reinforcement learning based on examples of problem instances.

Two of the ubiquitous problems widely studied under the NCO framework are
the Traveling Salesman Problem (TSP) [2, 3, 4] and the Vehicle Routing Problem
(VRP) [4, 5, 6]. Nevertheless, even if state-of-the-art NCO models compete with
optimized solvers for TSP or VRP of small sizes, new techniques have to be proposed
to make such models competing dealing with bigger instances [2, 3, 4]. In this con-
text, one of the Machine Learning approach that deserves to be studied is Transfer
Learning: an approach that can be used to take advantage of knowledge obtained
solving similar tasks prior to start training a model to solve a new problem. Yet,
it is known in the literature of Combinatorial Optimization that TSP and VRP are
related, since the latter is a generalization of the former.2 From this perspective, we
propose to study the following question: Can Transfer Learning from TSP to VRP
under the NCO framework be used to obtain better NCO models adapted to VRP?

To contribute to answering this question, we evaluate Transfer Learning (TL)
from TSP to VRP. This is the first study of this type to our knowledge. Our findings
show that TL

1. speeds up the learning process even with relatively few instances, and

2. improves the results (tour lengths) compared to a model trained from random
weights.

The rest of the article is organized as follows: Section 2 presents the TSP and
the VRP, and exposes the relationship between the two problems that make them
suitable candidates for TL. The NCO framework under which comes the models
that we train for our experiments as well as Transfer Learning are also introduced.
Section 3 describes the model used in our experiments. Section 4 presents the
experimental protocol adopted to train and test our models. Section 5 presents
and discusses the main results of our experiments. Finally, Section 6 sums up our
findings and gives future perspectives.

1 These approaches are to distinguish from hybrid approaches mixing machine learning
models and traditional problem-specific heuristics.

2 Note that algorithmic advances on the TSP often lead to advances on the VRP, we
can cite, for example, the k-opt algorithm and LKH heuristic.
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2 LITERATURE REVIEW

2.1 The Vehicle Routing Problem (VRP)

The Vehicle Routing Problem (VRP) is a widely studied NP-Hard combinatorial
optimization problem with numerous applications in transportation and logistics.
In general, the VRP considers a set of clients to which goods have to be delivered
by a fleet of vehicles initially parked in depots. Each vehicle has a limited capacity
of goods it can carry; this capacity can either be similar among the vehicles (homo-
geneous fleet) or different (heterogeneous fleet). Each client has a specific demand
of goods to be delivered. The goal is then to find an optimal plan with regard to an
objective function to optimize so that all clients are satisfied. The objective func-
tion to minimize can be the total distance to be traveled by the fleet of vehicles, the
total traveling time, or a combination of economic costs such as the price of fuel.
Constraints such as a time windows that limit the visiting time of clients to specific
time intervals can also be considered. Such constraints lead to a rich family of VRP
variants [7, 8].

In our study, we consider the Capacitated Vehicle Routing Problem (CVRP)
which is a simple VRP variant [7]. The CVRP considers a single depot and a unique
vehicle with a capacity C. In our setting, a CVRP instance (X,D) is characterized
by a set of locations X and a set of demands D. X is the set of n − 1 clients and
the depot represented by their 2D-coordinates in the Euclidean plan, i.e. X = {xi ∈
R2}i∈J0,n−1K with i = 0 the depot index.3 D = {di ∈ R}i∈J0,n−1K represents the set
of demands (d0 = 0). X can be seen as a complete graph, with nodes being the
clients and the depot, and the edges being the roads connecting the locations. All
locations are connected, and the distance between two locations (xi, xj)i,j∈J0,n−1K is
defined by ∥xi−xj∥2 (L2 norm). Finding a solution to the CVRP consists in finding
T simple circuits called tours. These tours must have a minimum cost defined as
the sum of the distances between the successive locations composing each tour.
In addition, the following conditions must be verified (with C the capacity of the
vehicle):

1. each tour begins and ends at the depot;

2. each client belongs to only one tour (di ≤ C, ∀i ∈ J0, n− 1K);
3. the sum of clients’ demand in a tour does not exceed C.

2.2 The Traveling Salesman Problem (TSP)

The Traveling Salesman Problem considers a set of cities and seeks for a Hamiltonian
cycle with the minimum traveling distance, i.e. a visiting plan that crosses each city
once and only once and returns to the departure city, such that the total travelled
distance is as low as possible. It is a special case of the VRP: a TSP is a VRP with

3 J0, n− 1K denotes the set of integer between 0 and n− 1 included.
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one single vehicle with an infinite capacity. In our setting, a TSP instance X consists
of n connected cities represented by their 2D-coordinates; X = {xi ∈ R2}i∈J0,n−1K.
It can thus be seen as a complete graph with the nodes being the cities and the edges
being the roads connecting them. We here consider Euclidean TSPs, i.e. distances
between cities are defined by the L2 norm.

For the rest of this paper, we designate by node either a city in the TSP, or the
depot or a client in the VRP.

2.3 Neural Combinatorial Optimization

Neural Combinatorial Optimization (NCO) refers to the use of deep neural networks
to tackle difficult combinatorial optimization problems. Although early work exist
on approaching such problems using neural networks [9], the NCO framework fo-
cuses on the recent developments based on deep learning and deep reinforcement
learning. The TSP and the VRP are among the two widely studied problems within
this framework, e.g. [2, 3, 10, 4, 11, 12, 13, 14]. We here provide a brief overview
of the main developments in the NCO framework, assuming knowledge in Deep
and Reinforcement learning. Readers can refer to the recent survey proposed by
Mazyavkina et al. for an overview of this framework applied to combinatorial opti-
mization problems [1].

In NCO, a sequence-to-sequence model [15] is considered to map a problem in-
stance X seen as a sequence of nodes, to the order in which each node xi ∈ X should
appear in the tour(s); such an order is also a sequence. In an autoregressive setting,
this mapping is made possible by learning a stochastic policy pθ that computes, at
each time step, a probability distribution defining the probability to select a given
node. The stochastic policy is in this case a neural network parametrized by θ. Let
n ∈ N be the number of nodes in an instance4, (i.e. |X| = n), and Y = (yi)i∈J0,KK be
a solution of a problem instance, i.e. the order in which we visit the nodes. K = n−1
for the TSP, K ≥ n − 1 for the VRP, since we may come back many times to the
depot to refill. Under these notations, we define our policy, which gives the prob-
ability of a tour Y for an instance X using the probability chain rule as follows:
Pθ(Y |X) =

∏K
i=0 pθ(yi|y0, . . . , yi−1, X).

Each term pθ(yi|y0, . . . , yi−1, X) is estimated using a parametric model. As we
will see, different neural networks have been used to that end.

Generally, sequence-to-sequence models are made of an encoder and a decoder.
The encoder is a neural network that computes a d-dimensional embedding of each
node xi ∈ X. These node embeddings are passed to another neural network called
a decoder to estimate pθ. To do so, the decoder computes a query vector that
corresponds to a decoding context (i.e. a vector representation that keeps track of
the nodes already selected). The query vector is used along with node embeddings
in an attention block to compute the probability distribution pθ. The attention
block confronts the query vector to the node representations either with an additive

4 TSP and VRP instances have been formalized in Section 2.
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module (additive attention) or a dot product module (dot product attention) to
give scores. In the additive attention, the node representations and the query are
processed using a linear transformation and added up together. A dot product with
a parametric vector is then used to compute the attention scores. In the dot product
attention, the query and the node representations are directly confronted using a dot
product to give the attention scores. The given scores are then passed into a softmax
to output a probability distribution. In the next paragraph, we present some of these
architectures.

Pointer Network [2] is one of the seminal models used to train to solve the
TSP via supervised learning. It consists of an encoder-decoder Long Short-Term
Memory (LSTM) architecture with an additive attention mechanism used to learn
a parametric policy to solve the TSP. This work was later on improved by training
the Pointer Network with a reinforcement learning algorithm (REINFORCE) using
a masking procedure that excludes already visited cities [3]. LSTM cells were later
replaced by a Transformer encoder and a multi-layer perceptron decoder [10].

An encoder-decoder architecture fully based on the attention mechanism that
considers a simple baseline based on a copy of the policy network has also been
proposed [4]. It uses a dot product attention to compute the probability distri-
butions. This approach can be used to solve a wide variety of routing problems,
e.g. TSP and CVRP. The approach mixing Pointer Network and REINFORCE [3]
have been adapted to the VRP [6]. It considers a multi-layer perceptron encoder
and a LSTM decoder, and introduces a masking procedure that takes into account
the CVRP constraints. Other approaches consider iterative improvement methods
which integrate deep neural networks [5, 16, 17].

Obtaining good quality labels for hard combinatorial optimization problems is
challenging and time-consuming, this is why it is more convenient to train these
approaches using reinforcement learning. Models trained that way achieve good
performance on instances up to 100 nodes [4, 3]. Some approaches are even able to
give good quality results on instances up to 300 nodes [5]. One main issue with re-
inforcement learning, especially policy gradient methods, is their sample inefficiency
which require them a huge amount of interactions with the environment to perform
well. In order to tackle this, we investigate whether we can save interactions for
the CVRP by taking advantage of the representational capacity already obtained
during learning to solve the TSP.

2.4 Transfer Learning

Transfer learning (TL) refers to transferring knowledge across different but related
domains. It is a widely studied technique in supervised learning [18]; it has also
proven very useful in reinforcement learning (RL) since it helps accelerate the learn-
ing process. Successful applications of TL in RL range from machine translation to
Visual Question Answering and Image captioning to cite a few [19]. In TL, we con-
sider a source domain Ds and a target domain Dt. The goal is to leverage knowledge
learned from the source policy Ps to help learning the target policy Pt. There are



Is Transfer Learning Helpful for NCO Applied to VRP? 177

several ways to approach TL in RL depending on many factors such as the domains
differences, the transferred knowledge, the sample efficiency, etc [19, 20].

In our setting, we want to perform TL from TSP to CVRP. Since the two
domains only differ in the transition dynamics (in the CVRP we can come back to
the depot many times to refill while in the TSP we never visit any node twice), we
will use the same policy Ps trained to solve the TSP and adapt it to the CVRP
domain via RL. The following metrics will be monitored:

• Jump-start performance: indicates the initial performance of the target network.
Based on that, we can deduce how sample efficient is Transfer Learning; i.e. it
can either be

1. a zero-shot transfer, in that case the Ps is directly applicable to the target
domain;

2. a few-show sample that requires only few interactions from the target domain
to adapt Ps or

3. sample efficient meaning that it requires more interactions with the target
domain than the few-shot setting but Ps still adapts to Dt.

• Asymptotic performance: to measure the final performance of Pt.

• Performance with a fixed training epochs.

3 MODEL DESCRIPTION

This section presents technical aspects of the model and training strategy considered
in our study. The approach adopted is based on the NCO architecture proposed by
Kool et al. [4] which has proven to be a good candidate for both TSP and VRP.
Adaptations to the original formulation have been made in order to fit the TL setting
considered in this paper; they will be presented hereafter.

3.1 The Model

In our experiments, we propose to use the same number of parameters θ for solving
the two problems in order to adapt them directly from TSP to VRP without the
need of learning any additional parameter. To do so, we use an Attention Model
[4] with few adjustments in order to fit our TL setting. This model is an encoder-
decoder architecture that iteratively computes, at each step t, the probability of
choosing a node over the others as described in Section 2.3.

In the original implementation, the inputs of the model for the TSP are the cities
2D-coordinates; for the VRP in addition to the clients 2D-coordinates there is their
respective demand. In our formulation, in order to avoid introducing additional pa-
rameters to the model, we use for both problems only the 2D-coordinates. Demands
are only used in the masking operation, as it will be described later. In the seminal
work of Nazari et al. [6], the authors mention that using the demands along with the
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embedding of the 2D-coordinates for the decoder brings no significant improvement,
thus we pushed further this idea by only using the clients’ coordinates in the whole
encoder-decoder approach.

Figure 1 shows the overview of the Attention Model architecture with a linear
embedding followed by an encoder and a decoder that we detail below.

Figure 1. Overview of the Attention Model architecture with its main components

3.2 The Encoder

The encoder is made of two main components: an embedding layer which maps
the 2D-coordinates to a vector in a d-dimensional feature space, and a transformer
encoder [21] that acts like a graph neural network on instances (recall that here we
consider an instance as a complete graph).

The embedding layer consists of a linear transformation of the node’s 2D-
coordinates, following the equation: hi = Wx · xi + bx, ∀i ∈ J0, n − 1K, with
hi, bx ∈ Rd, xi ∈ R2 (column vector), and Wx ∈ Rd×2. Unlike the original model,
we do not use a separate linear embedding for the depot. Although it is a special
node in the VRP, using the same linear embedding used for the clients aims at
benefiting from the TL’s representation of the coordinates learned while solving the
TSP.

For the transformer encoder, it consists of N layers of similar transformer blocks.
The first block takes as input the resulting embeddings of the 2D-coordinates, while
the others take the output of the previous layer. Each transformer block consists
of two components: a multi-head attention and a feed-forward layer. We used
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3 transformer blocks with 8 heads, as suggested in the literature [4]. The result
of the encoder is a set of d-dimensional node embeddings; the final embedding of
a node xi is denoted hN

i .

3.3 The Decoder

The decoder is used to compute the probability distribution which will provide the
probability that a partial solution has to be extended by a given node. As we
will explain hereafter, this probability distribution will be computed confronting
a context embedding with the node embeddings. In the original model, the number
of parameters defining the context embedding varies whether we are dealing with
TSP or VRP. Here, we also introduce modifications in order to preserve the same
number of parameters for both problems.

For the TSP, at each time step t, the context embedding hc is defined as a (3×d)-
dimensional vector resulting from the concatenation of:

1. the representation of the graph
(
h
N
= 1

n

∑n−1
i=0 hN

i

)
,

2. the representation of the lastly selected node hyt−1 , and

3. the representation of the first selected node hy0 .

At t = 0, two parameter vectors vl ∈ Rd and vf ∈ Rd are used to substitute
the undefined values of 2. and 3. The context embedding is thus defined by hc =[
h
N
, hyt−1 , hy0

]
when t ≥ 1, and hc =

[
h
N
, vl, vf

]
when t = 0.5

For the VRP, the context embedding hc is the concatenation of the represen-

tation of the graph h
N
, the representation of the lastly selected client (at t = 0,

we use the representation of the depot hN
0 ) and the representation of the remaining

capacity. In order to keep the same (3×d)-dimensional embedding for the VRP, we
did not use the remaining vehicle capacity C using the strategy considered in [4] –
which results in a (2×d+1)-dimensional vector. Instead, we compute an embedding

of the remaining capacity Ĉ = Wc ·C, with C ∈ R,Wc ∈ Rd×1: hc =
[
h
N
, hyt−1 , Ĉ

]
,

∀t.
A glimpse mechanism [3] is then used to enhance the context vector into a d-di-

mensional query vector q(c) that will be used by an attention mechanism to compute
the probability of selecting the next node. This mechanism consists of a multi-head
attention that computes the context vector interaction with regard to the nodes that
have not yet been selected. Finally, a scaled dot product attention mechanism [21] is
used to compute the probability of choosing a node over another. This dot product
uses the query vector q(c) and the keys ki = WK · hN

i , ∀i ∈ J0, n − 1K that result
from a linear projection of the node embeddings.

5 [., ., .] denotes the concatenation operation.
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Amask is used to prevent selecting already selected nodes. The mask mechanism
differs for TSP and VRP. For the TSP, it is straightforward as we mask already
visited cities. For the VRP, the masking policy is more complex. Computing the
probability distribution defining the node to visit at t, we mask:

1. clients with demands greater than the remaining capacity;

2. already satisfied clients;

3. the depot if it has been selected at t− 1, to prevent selecting it at t.

3.4 Model Training

We trained the model using Reinforcement learning (RL) as it tends to express
interesting generalization properties [22] that may benefit Transfer Learning.6 The
parametric policy is more particularly trained using REINFORCE with a greedy
rollout baseline as used in Kool et al. [4]. Given nodes’ coordinates of a TSP or
VRP instance X, the loss function L used during training is the expectation of tour
lengths considering a tour generation strategy ϕ taking advantage of the parametric
policy Pθ: L(θ|X) = EY∼ϕ(Pθ(·|X))[L(Y |X)].

During training, the tour generation strategy ϕ is set to be the sampling strat-
egy, i.e. at each step the selected city is sampled according to the current estima-
tion provided by the stochastic policy Pθ. Minimization of L is performed using
a gradient-based approach, namely REINFORCE with baseline st.:

∇L(θ|X) = EY∼Pθ(·|X) [(L(Y |X)− b(X))∇log Pθ(Y |X)]

where b(X) is a parametric baseline used to predict tour lengths. These predictions
enable to reduce the variance of the gradient estimation. The baseline is also a deep
neural network with the same architecture used for defining pθ. Using b, tour lengths
are however computed using a greedy strategy: at each step the node maximizing
the probability is selected. During training, baseline parameters are obtained copy-
ing policy parameters (i.e. θ). Updates of baseline parameters are performed after
each epoch if the improvement of the current policy over the baseline is significant
(according to a paired t-test comparing current baseline and current training pol-
icy, both using a greedy strategy). Details of the training approach adopted in our
experiment are provided in the paper introducing the original approach adapted in
our work to fit our TL setting [4].

6 Supervised learning, e.g. with optimal labels obtained via the Concorde solver [23]
can also be used for TSP. RL however does not require labelled data that may be time-
consuming to obtain.
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4 EXPERIMENTAL PROTOCOL

This section presents the experimental protocol defined in our study.

4.1 Model Pre-Training on TSP

We first pre-trained our model to solve the TSP using the approach defined in
Section 3.4. We used the same data generation and training protocol commonly
used in the literature, e.g [4]; for each training epoch, 2 500 batches of 512 instances
have been generated (1.28M instances per epoch). The data generation process
consists of uniformly drawing 2D-coordinates from the [0, 1]2 unit square [3]. For the
validation, we used 10 k instances sampled from the same uniform distribution. Two
models named TSP20 and TSP50 have been trained considering different datasets
composed of instances of 20 and 50 nodes respectively. Both models have been
trained during 100 epochs using the Adam optimizer with a learning rate of 10−4.
These models reach state-of-the-art performance reported in Kool et al. [4]. We
also save the optimizer’s state so that we can later load it for adapting the model’s
parameters for the VRP performing TL.

4.2 Transfer Learning to VRP

Settings commonly considered evaluating TL have been adopted in our experiments.
Indeed, TL is preferred when the destination task has less training data than the
source task, but the tasks are similar enough so that our model captures a rep-
resentation that can be useful to help tackle the problem. We therefore used less
training data than the usual training protocol. Three different settings have been
tested: 16 k, 32 k and 64 k instances per epoch, and models have only been trained
for 50 epochs, thus resulting on models trained on 800 k, 1.6M and 3.2M instances
respectively. Considering this setting, our models are trained on respectively 160,
80 and 40 times fewer data than the original models.

Comparisons have been made considering different models trained with and
without TL using the same amount of data and number of epochs. When no TL is
applied, the models are trained from randomly initialized parameters using Adam
optimizer with a learning rate of 10−4 (see [4]). When TL is applied, the learning
rate is set to 10−5 in order to exploit the optimizer’s saved state from the TSP, and
to gradually adapt the model’s parameters to the VRP.

VRP instances have been generated using standard protocols [6, 4], sampling
2D−coordinates uniformly from the unit square [0, 1]2. The demands di of clients
(i ∈ J1, n − 1K) are uniformly drawn from [1, 9] ⊂ N. Vehicle capacities are 30 for
instances with 20 nodes and 40 for instances with 50 nodes.
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We conducted 3 series of experiments:

1. Same: Training a VRP model with a pre-trained TSP model trained on in-
stances with the same size and data generation distribution.

2. Diff size: Training a VRP model with a pre-trained TSP model trained on
instances with different size and the same data generation distribution.

3. Diff dist: Training a VRP model with a pre-trained TSP model trained on
instances with the same size and a different data generation distribution.

5 RESULTS AND DISCUSSION

This section presents and discusses the results obtained in our experiments.7

5.1 Pre-Training Results

Two models, respectively denoted TSP20 and TSP50, have been trained on instances
of 20 and 50 cities during pre-training on TSP. The learning curves that have been
obtained are similar to those obtained for the original implementation, and aver-
age tour length performances obtained by our model are on par with the original
model [4].8

5.2 Transfer Learning Results

We now present the results obtained in the different settings.

5.2.1 Same

Applying TL using pre-trained models trained on TSP with the same size and data
generation distribution as the VRP instances. Figure 2 shows the average tour
length of VRP models in validation with greedy decoding. Both models are pre-
sented:

1. trained from scratch with a random weight initialization (NO-TL in blue), and

2. trained starting from a pre-trained TSP model (TL in orange).

Plots a-b-c correspond to VRP20 with TL from TSP20 models, while plots d-e-f
correspond to VRP50 models with TL from TSP50 models. Each plot corresponds
to a number of instances per epoch used to train our model, respectively from left
to right, 16 k, 32 k and 64 k.

Three phases can globally be distinguished in the learning process:

7 See https://github.com/AYaddaden/TL_TSP_VRP for source code and additional
documentation.

8 Tested on 10k TSP instances with 20 and 50 cities and report the average tour lengths
obtained using greedy decoding. The original model achieves tour lengths of 3.85 and 5.80
for TSP 20 and TSP50 [4]. Our model respectively achieves 3.84 and 5.82.

https://github.com/AYaddaden/TL_TSP_VRP
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Figure 2. Comparison of the evolution average tour lengths per epoch in validation be-
tween VRP models trained without Transfer Learning (NO-TL/blue) and VRP models
trained using TL (TL/orange) with different number of instances per epoch (16 k, 32 k,
64 k) with 20 nodes (plots a, b and c) and 50 nodes (plots d, e and f)

• Epoch 0 to 5: Initial phase, the learning curve is rather in favor of models
without TL, with a rapid decrease of tour lengths for both types of models.

• Epoch 5 to 30: There is a shift in the training curves in favor of the TL models.
The average tour lengths per epoch decreases faster using TL. The shift happens
early in the learning process, so it seems that our models need few-shot samples
to adapt to the VRP domain. Results, however, differ for VRP50 with 64 k
instances per epoch.

• Epoch 30 to 50: the learning curves of the two models continue to decrease,
but more slowly than in the previous phase. TL models still outperform models
without TL.

Based on our findings, it appears that for the jump-start performance met-
ric, our models do not perform zero-shot adaptation since the initial performance
is poor compared to the NO-TL models. This can be partially explained by the
fact that the context embedding hc differs for the TSP and the CVRP. The early
shift seems to indicate that our models can adapt in a few-shot way, especially
when there are fewer instances per epoch. For 64 k instances/epoch models, our
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results suggest that they are still sample efficient, but with no significant improve-
ment.

The curves also show that the more data we have, the better and faster is the
convergence of the models. The asymptotic performance between the two mod-
els gets close to each other by augmenting the number of instances per epoch.
But the gap between the TL and NO-TL models is more significant when we
have less training data, which means that in this setting, we can achieve bet-
ter average tour lengths by considering a pre-trained model and Transfer Learn-
ing.

For our last metric, training on 50 epochs showed that for 16 k and 32 k instan-
ces/epoch, TL models outperform NO-TL models while for the 64 k instances/epoch
models, it is still difficult to decide between doing Transfer Learning and not. At
least, it slightly improves the learning process.

5.2.2 Diff Size

Using a pre-trained TSP model trained on instances of sizes that are different from
the VRP instances used to train our VRP model. We took as a comparison baseline
our models trained with 32 k instances per epoch as they are a good trade off between
training time and average tour lengths achieved after 50 epochs. We tested two
settings:

1. when the pre-trained TSP model was trained on instances with size smaller than
the VRP’s instances and

2. when the pre-trained TSP model was trained on instances with size bigger than
the VRP instances.

We report results on two experiments: a VRP20 model trained on VRP instances
with 20 nodes using a TSP50 pre-trained model and a VRP50 model trained on
VRP instances with 50 nodes using a TSP20 pre-trained model.

Figures 3 a), 3 b) show the evolution of average tour length in validation for
VRP20 and VRP50, respectively. Using a pre-trained TSP model trained on in-
stances with the same size as the VRP instances brings better average tour lengths.
In Figure 3 a), for the VRP20 model, we can see that using a pre-trained TSP50
model (TL-TSP50) gives a jump-start performance similar to the model with no
Transfer Learning (NO-TL) and better than the model that uses the TSP20 pre-
trained model (TL-TSP20). In phase 2 (from epoch 5 to 30), we can see that
Transfer Learning brings an improvement in average tour lengths in both settings
(curves orange and green are both under the blue curve). However, we can no-
tice that the average tour lengths are better when we use a TSP20 pre-trained
model. In phase 3 (epoch 30 to 50), the model with a TSP20 pre-trained model
is still better and leads to a faster learning and brings better asymptotic per-
formance. Surprisingly, at this phase, the TL-TSP50 model behaves exactly as
the NO-TL model with no significant difference in asymptotic performance be-
tween the two models. In the VRP50 case (Figure 3 b)), we observe that us-
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ing a TSP20 pre-trained model gives worse jump-start performance than using
a TSP50 model or not using Transfer Learning at all. The asymptotic perfor-
mance are on par with the NO-TL model while being slightly in favor of the lat-
ter.

Our findings suggest that using a pre-trained model trained on TSP instances
bigger than the VRP instances is more efficient than using a pre-trained model
trained on smaller instances than the VRP instances, since there is a region in
phase 2 where it behaves better than not using pre-training. Especially if we have
a limited time budget to train (number of epochs), it is still beneficial to use Transfer
Learning, and in any case, it does not harm the learning process as similar asymp-
totic performances are obtained in the worst case. Intuitively, we would expect that
using a TSP50 model to pre-train for VRP20 would bring a better improvement to
the learning process or that using a TSP20 for pre-training for VRP50 would be
better than starting learning from scratch, but it appears based on our results, that
it is not the case. We can suppose that while learning to solve the TSP on a specific
instance size, the size of these instances is somehow encoded in the learned policy
and that it influences its behavior.

a) VRP20 b) VRP50

Figure 3. Average tour lengths for VRP models, a) VRP20 and b) VRP50, trained with-
out Transfer Learning (NO-TL/blue), using a TL with pre-trained TSP20 model (TL-
TSP20/orange) and TL with pre-trained TSP50 model (TL-TSP50/green)

5.2.3 Diff Dist

Training a VRP model using instances generated from a different distribution than
the distribution used to generate the TSP instances for the pre-trained models.
Note that our TSP pre-trained models were trained on instances generated from
a uniform distribution. We generate clients’ coordinates of the VRP instances us-
ing a truncated normal distribution so that all city coordinates are inside the unit
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square. The demands are generated the same way as in the uniform case. Fig-
ures 4 a) and 4 b) show a comparison between average tour lengths of models trained
from scratch (NO-TL) and with a pre-trained model (TL) with respectively 20 and
50 nodes.

Surprisingly, as we can see in Figure 4 a), using a pre-trained TSP20 model to
train a VRP20 model brings an improvement in terms of speed of learning even
if they are trained on instances coming from different distributions. The asymp-
totic performance of the TL model is better than the one of the NO-TL model.
The model is able to achieve the performance of NO-TL in approximately half the
epochs.

From the jump-start performance perspective, we can see that neither the
VRP20 nor the VRP50 can do zero-shot transfer. While the VRP20 is able to
adapt in a few-shot way, the VRP50 struggles to do so. Figure 4 b) shows that the
pre-training does not bring significant improvement for learning a representation
that would help tackle the VRP50, at least for a 50 epochs training. Indeed, while
the asymptotic performance are on par with the NO-TL model, we can suppose that
a shift can happen after the 50th epoch in favor of the TL model. We can hypothe-
size that the size of the problem to tackle makes the learning process more difficult.
There is probably an inductive bias induced in the learning process of TSP50 from
the instances’ distribution (how the cities are spread in the unit square) that is not
helpful for solving the VRP50. This bias may be less significant when the size of
the instances is small.

a) VRP20 b) VRP50

Figure 4. Average tour lengths per epoch in validation between VRP models trained
without Transfer Learning (NO-TL/blue) and VRP models trained using TL (TL/orange)
with 20 nodes
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6 CONCLUSION AND PERSPECTIVES

In this paper, we have presented an empirical evaluation of Transfer Learning (TL)
from TSP to CVRP in the context of Neural Combinatorial Optimization (NCO).
Three metrics – jump-start, asymptotic and fixed training epochs performance –
have been studied under three different training settings varying according to the
instances distribution and the instance sizes of the pre-trained models. We observe
that, applying NCO to CVRP, TL from TSP:

1. speeds up the learning process even with relatively few instances, and

2. improves the results (tour lengths) compared to a model trained from random
weights.

Our results also stress that in the worse settings, TL does not harm the learning
process as asymptotic performances similar to those obtained by models with no
pre-training are achieved. We also note that results vary depending on the size
of the instances used in the pre-training phase: better models are obtained using
pre-trained models trained on TSP instances with the same size.

Future work is required to investigate how to create models that are agnostic
to the size of instances. Also, training on VRP instances sampled from a different
distribution than the TSP instances proved to be more challenging when using
a pre-trained model; it does work for small instances but struggles to scale to bigger
instances. We encourage future contributions to investigate this specific aspect of TL
for NCO applied to VRP. Indeed, if we can pre-train and train models on TSP and
VRP instances sampled from different distributions, this would lead to significant
improvements since it would be possible to pre-train on synthetic instances to next
efficiently train the model on real-world VRP instances. Finally, it would also be
interesting to investigate the application of the TL from TSP and/or CVRP to other
VRP variants.
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