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Abstract. In the field of image processing, due to the need of expertise and skills in
deep-sea biology and the disadvantages of high labor cost and long time consuming,
it has always been a difficult task to mark the images of deep-sea benthic organ-
isms. To solve this problem, this paper proposes a new image intelligent labeling
algorithm LACP AL (Localization-Aware-Choice and Pseudo Label Active Learn-
ing) which is based on Localization-Aware Active Learning. LACP AL is an active
learning framework based on Faster R-CNN, it finds the “valuable” samples from
unlabeled samples by clustering algorithm for every training; it selects hard-to-
identify samples for manual annotation and further optimizes the model; and it
proposes an improved pseudo-labeling mechanism to expand the training set and
improve the model accuracy. According to the publicly available dataset provided
by 2020 China Underwater Robot Professional Contest, a series of experiments has
been done to verify that our algorithm can achieve higher recognition accuracy with
fewer training samples compared with the existing algorithms for Marine benthic
image recognition.
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1 INTRODUCTION

Macrobenthic organisms are an important ecological group in the marine environ-
ment and are closely related to human life. Some of them are objects of fisheries or
aquaculture, with food value, medicinal value and economic value, such as shrimps,
crabs and shellfish; some of them are harmful to humans, such as fouling and drilling
organisms; elucidating the patterns of changes in the abundance of benthic organ-
isms and their relationship with the productivity and resources of marine organisms
is of great significance to the development of aquatic production and the study of
the ecosystem of water bodies.

With the rapid development of computer information technology, deep learning
has made important breakthroughs in the field of deep-sea macrobenthos research,
and traditional machine learning methods are gradually replaced by deep learning-
based methods. The success of deep learning in machine vision relies on large-scale
labeled data, and the labeling of image data of deep-sea macrobenthic organisms
has the following problems:

1. The annotation of deep-sea macrobenthos pictures requires high expertise of the
annotators, who need to have marine related knowledge, which increases the
annotation cost.

2. Manual annotation can be affected by physical condition, psycho-emotional and
other factors, leading to a decrease in annotation quality.

In addition, many benthic images can cause physical fatigue, leading to a decrease
in annotation speed.

To cope with the huge dataset annotation effort, Su et al. [1] propose a novel
incremental learning framework that combines incremental learning methods with
deep convolutional neural networks to achieve fast and efficient learning. This paper
investigates the existing annotation algorithms and proposes a deep active learning
algorithm LACP AL (Localization-Aware-Choice and Pseudo Label Active Learn-
ing) to achieve intelligent annotation of deep-sea macrobenthic images. Classical
detection methods are very time-consuming, such as OpenCV Adaboost [2] using
sliding window and image pyramid to generate detection frames, or R-CNN [3] us-
ing SS (Selective Search) method to generate detection frames. Faster RCNN, on
the other hand, discards the traditional sliding window and SS methods and di-
rectly uses RPN to generate detection frames, which greatly improves the speed of
detection frame generation. The pseudo-labeling [4] mechanism allows us to use
pseudo-labeled data while training the model, which can increase the model per-
formance without increasing the model complexity. Our algorithm fully combines
the advantages of Faster R-CNN and pseudo-labeling mechanism, and automatically
selects images that are difficult to be discriminated by the model for manual label-
ing to ensure the labeling accuracy, which can effectively handle data annotation of
deep-sea benthic images.



Intelligent Annotation Algorithm Based on Deep-Sea Macrobenthic Images 741

Our contributions are as follows:

1. For the selection of the initial training set of the model, the clustering method
is used to obtain representative samples from the initial sample set to improve
the robustness of the model.

2. In the sample labeling stage, a novel selection algorithm is introduced, which
combines the boundary stability selection criteria and classification uncertainty
selection criteria, making the model automatically select pseudo-labeled sam-
ples with stable boundaries and manually labeled samples that are difficult to
discriminate, improving the training speed of the model.

3. A pseudo-labeling mechanism is introduced, and the threshold of pseudo-label
selection is made to decrease with model iteration, which mean that the number
of pseudo-labeled samples is gradually increased with the robustness of the model
to enhance the fitting ability of the ascending model.

2 RELATED WORK

Active learning [5] is based on the principle of manually labeling a small number of
samples to quickly obtain a high-quality model, and eventually using the high-quality
model to predict the entire sample, with human-assisted modifications to obtain the
final labeling; using this feature of active learning, it is possible to quickly obtain
a large amount of high-quality labeled data. Therefore, active learning has gradually
received due attention, it also have been applied to a variety of computer vision
problems, including target classification [6, 7], image segmentation [8, 9], intelligent
robot [10, 11], and activity recognition [12, 13] and has been applied to various data
labeling tasks, such as the study of deep-sea macrobenthos, satellite images [14] and
vehicle images [15], and the active learning process is shown in Figure 1.

After the great progress of deep learning in the field of target detection, re-
searchers started to apply active learning in the field of target detection to cope
with the problem of high-cost image annotation due to the demand of big data.
The key of active learning lies in how to select the appropriate set of annotation
candidates for manual annotation, and the method of selection is called query strat-
egy. The most common query strategy currently used is Uncertainty Sampling,
which usually has three ideas in describing the uncertainty of samples or data: En-
tropy [5], Least Confidence [16], and Margin [17]. Brust [18] proposed three active
learning target detection methods based on uncertainty sampling: an incremental
learning scheme for deep object detectors without catastrophic forgetting, active
learning metrics for detection derived from uncertainty estimates, leverage selection
imbalances for active learning, active learning metrics for detection derived from
uncertainty estimates, leverage selection imbalances for active learning, where the
underlying uncertainty measure module has low dependency and can be replaced
using other active learning metrics, and the subsequent aggregation methods can be
used not only in the field of target detection but also applied to image segmentation.
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Figure 1. Active learning process

In addition, Roy et al. [19] proposed the ’query-by-committee’ model, which
selects the most uncertain samples for target detection, dividing active learning into
two methods: black-box methods, and white-box methods. Black-box methods do
not focus on the underlying network architecture and use confidence levels to se-
lect samples; White-box methods combine the method of selecting samples with
the network architecture, which is quite different among different networks. The
active learning strategy used exploits the detection differences between convolu-
tional layers and requires only a small fraction of the training images to produce
better target detection results, but it supports a single batch processing method.
Haussmann et al. [20] proposed several active learning scoring functions, including
entropy-based functions, core-based functions, etc., using function evaluation to the
amount of information in each unlabeled image, and then the selected images are
labeled and added to the training set. And experiments show that this sample se-
lection method is more beneficial for model improvement enhancement compared to
expert hand-picking. Kao et al. [21] added localization of the detections to active
learning to consider both classification and localization results of unlabeled images
when selecting unlabeled images for labeling, with better results than the traditional
classification output algorithm alone. Desai et al. [22] proposed to combine active
learning with multilayer supervised combined with multilayer supervision what will
substantially save the annotation effort required to train the model. Iyer et al. [23]
used information metrics for active learning sample selection and investigated some
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optimization problems related to information measures in data aggregation. Kaushal
et al. [24] proposed a set of parameterized information metrics for active learning
sample selection based on Iyer et al. [23] and experimentally showed that the method
can improve the overall accuracy by 2% to 10%.

All the above methods of sample selection methods, compared to random selec-
tion, are effective in reducing the cost of labeling with improved accuracy. However,
these sampling methods do not further filter the selected samples, resulting in the
possible existence of similar samples among the selected samples, which can lead
to underfitting at the beginning of the iteration when the samples are small, and
their wasted manual labeling time far exceeds their effect on model enhancement.
To solve the above problems and filter the duplicate samples to ensure that the se-
lected samples have high uncertainty and diversity, this paper proposes a deep active
learning algorithm, which introduces clustering algorithm and pseudo-label strategy
in active learning and adds a noisy sample selection strategy to the localization sta-
bility method to more effectively measure the amount of information contained in
the samples.

3 METHODS

In this section, we present our proposed algorithm LACP AL (Localization-Aware-
Choice and Pseudo Label Active Learning) for the task of intelligent annotation
of deep-sea microbenthic images. The method proposed in this paper consists of
an improved active learning framework and an object detection model Faster R-
CNN. After inputting the images, our model outputs the corresponding detection
boxes, each with its position and size, as well as the confidence level of the category.
Algorithm 1 shows the pseudo-code of this algorithm.

Algorithm 1 Localization-Aware-Choice and Pseudo Label Active Learning

Data: unlabeled sample set U , labeled sample set L, recognition model M ,
iteration count threshold N

Begin For: i = 1, 2, . . . , N
Train(M,L); // Training recognition model M using labeled sample set L
T = Test(M,U);
S = Select(M,U); // Sample selection using the improved selection algorithm
Label(S); // Labeling of samples in the set S
L = L+ Label(S)
U = U − S

Until the number of iterations reaches the threshold

3.1 Uncertainty Criteria

The algorithm is based on two uncertainty measures as criteria, Localization Tight-
ness and Localization Stability.
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1. Localization Tightness (LT): LT is used to measure the closeness between the
detected bounding box and the target, and the smaller the distance between
them, the more accurate the positioning. Since the true position of the target
object is unknown, the localization tightness of the unlabeled image cannot be
calculated by detecting the box and the true position, so we use the change from
the Region Proposal to the finalized bounding box to evaluate the compactness
of the bounding box. The proximity T of the jth prediction frame is defined as
follows:
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After calculating the proximity T of all predicted frames, the confidence of the
optimal class of predicted frames is introduced, and the calculation of proximity
and confidence is done to describe LT and defined as J. The formula is shown
below:

There are two extreme cases of LT:

(a) Given a prediction frame, it is if the optimal class confidence is 1 (Pmax = 1),
but it cannot wrap tightly a real object (T = 0).

(b) On the contrary, the prediction frame can closely wrap a real object (T = 1),
the confidence of the classification result is very low (uncertain).

a) The identification box cannot closely contain
the object

b) The confidence level of the object identified
is very low

Figure 2.

2. Localization Stability (LS): LS is used to describe the stability of the detection
frame localization, which is essentially an expression of whether the detected
bounding box is sensitive to the noise of the input image. To evaluate the
stability of the localization, we added different levels of Gaussian noise to the
image pixel values and calculated how the detected bounding boxes varied with
the noise.
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Figure 3. The process of calculating the stability of the prediction frame, where green is
the prediction frame and red is the reference frame

First, the current model is used to detect the bounding box in the original image
and uses it as a reference frame, the jth reference frame is noted as Bj

0. The
corresponding noise samples are generated using Gaussian noise of N energy
levels for each sample separately, and then the model is used to obtain predic-
tion frames on the noisy images. Observing the bounding boxes obtained from
different noise levels, if the bounding box does not change noticeably throughout
the noise level, it can be inferred that the model is stable against noise of this
reference frame. Thus, the localization stability of each reference frame can be
defined as the average of the IoU of the reference frame and the corresponding
frame at all noise levels. Given N levels of noise, the stability of this sample
reference frame is expressed by the formula shown in Equation (3):
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where, Bj
0 is the jth reference box, Cn() indicates the highest IoU value among

all the detected boxes with overlap.

Based on the former, this localization stability of unlabeled images is defined
based on the stability and confidence weighting of each reference frame. The
weight of each reference frame is the probability of its highest confidence class
to select the frame with high probability but high uncertainty about its position
as the foreground object, defined to measure the stability of a single sample, as
shown in Equation (4):
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where, Bj
0 is the jth reference box, M is the number of reference frames.
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3.2 Active Learning Initial Sample Selection Method Based on Clustering

In this section, clustering methods will be introduced to active learning for reducing
the manual annotation cost. When the sample selection strategy selects a batch
of samples from the unlabeled sample set, which may contain a class of similar
images, submitting this batch of similar images to manual annotation will increase
the manual annotation cost and have limited improvement on the target detection
model. Therefore, after sample selection, a clustering algorithm is added to filter the
samples with high similarity and provides more representative samples to manual
annotation to effectively improve the active learning efficiency.

For a set of unlabeled images, the problem of image clustering lies in dividing
the images into different subsets according to their content: clustering two images
representing similar objects together and dividing images representing objects with
different properties into different subsets. Solutions for image clustering focus on
feature selection and processing of complex features. For example, in [25], images
are represented using a Gaussian mixture model with fitted pixels and clustering is
performed using the information bottleneck (IB) method [26].

In the LACP AL algorithm proposed in this paper, Faster R-CNN [27] is selected
as the target detection model. Faster R-CNN is a typical algorithm for two-stage
detection, which is an improvement of its predecessor Fast R-CNN and uses Re-
gion Proposal Network (RPN) to generate Region of Interest (ROI) [28] based on
Fast R-CNN, which replaces the sliding window and selective search strategy with
slower computation speed. Before active learning starts, we use a pre-trained fea-
ture extraction network of Faster R-CNN to extract features from the data, and
the network structure is shown in Figure 4. The CR module is composed of Conv
connected ReLU. CRMX module is composed of several CR connection MaxPooling.

Figure 4. Feature extraction network structure

After feature extraction, the feature map is clustered using the k-means algo-
rithm. K-means algorithm divides the samples into K clusters according to the
distance between samples for a given set of samples. The data within the clusters
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are connected as closely as possible, while making the distance between clusters as
large as possible, in the following steps:

1. Randomly initialize k cluster center coordinates;

2. Calculate the distances of all objects in the data set to the k cluster centers,
and divide the data points into the nearest clusters;

3. For each cluster, recalculate the center of mass of the cluster as the average of
the coordinates of the nodes in the current cluster;

4. Repeat steps 2 and 3 until convergence.

Set the hyperparameters n, and then randomly select n samples from each class
for manual labeling. The training set constructed using this method has balanced
samples and contains rich information, which helps to improve the recognition ac-
curacy in the initial training of the model.

3.3 Improving Active Learning Noise Sample Label Selection Mechanism

In the metric uncertainty method localization stability, we add different levels of
noise to the sample, and subsequently detect the noisy samples, and measure the
uncertainty of the sample according to the stability of the noisy sample detection
results. In the case of low stability, it contains a situation where the accuracy of
some of the noise samples of the sample is high and the accuracy of only a small
number of noise samples is very poor, which eventually leads to a low stability of
the sample. Such samples with low stability can in fact already be identified by the
model and do not need to be selected for manual labeling. To address this situation,
we propose a new noise sample selection mechanism.

For each sample, first calculate its average optimal class label confidence gener-
ated by adding noise for m samples, as shown in Equation (5):

ai =
1

m

m∑
j=1

pji (5)

where m is the number of noise samples corresponding to each sample, pji is the
confidence level of the optimal class label in the jth noise sample corresponding
to sample i. If ai > 0.5, set parameter b to select top b% of the noisy samples;
otherwise, select the latter b% of the noisy samples. For the case where most
noisy samples have high confidence, a few extreme noisy samples are removed to
improve the stability of the samples; for the case where most noisy samples have
low confidence, a few better-performing samples are removed to reduce the stability
of the samples, making the sample selection method more inclined to select that type
of samples. The time complexity O(m2) for calculating the stability of the samples
of the whole dataset is high, and the time complexity O(b2m2) when calculating the
selected samples, which greatly saves the computation time.
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3.4 New Pseudo-Label Selection Mechanism

The active learning incremental training method has limited effect on model en-
hancement due to the small number of available samples in the early iterative train-
ing phase. To solve this problem, this paper introduces the pseudo-label mechanism
into active learning to improve the model performance during supervised learning
by means of label-free samples.

We use the model to recognize the unlabeled data and get the recognition results
and use the recognition results as pseudo-label for training the model in the next
training round. However, in the first iteration of active learning, the recognition
accuracy of the model is poor, and most of the pseudo-labels have errors with the
real labels, and the use of the pseudo-label mechanism has no positive effect on the
training of the model. To solve this problem, this paper proposes a novel pseudo-
label selection mechanism: Let the product of the optimal class confidence and
stability of the samples be K, set a threshold δ for the pseudo-label mechanism,
and set a high threshold δ in the early stage of active learning iteration to select
only samples with K greater than δ for assigning pseudo-labels; as the number of
model training increases, gradually reduce δ to ensure the pseudo-label accuracy
while selecting more samples for training the model.

The specific method is to first select high confidence samples and high stability
samples from the sample set, if the product of their optimal class confidence and
stability is greater than the threshold δ. Then these samples are assigned pseudo-
labels with explicit prediction. Then set the hyperparameter z as the lower limit of
the threshold δ, the threshold δ decreases continuously with the number of iterations,
and keep the threshold value not changing when the threshold δ decreases to z to
ensure that the selected pseudo-labels have high accuracy.

Set the update threshold δ at the end of the tth iteration:

δ =

{
δ0, t = 0,
δ − dr ∗ t, t > 0

(6)

where δ0 is the initial threshold value and dr is the threshold decay rate. This
method enables the pseudolabel selection threshold to decrease with the number of
iterations to avoid using too many wrong pseudolabels to affect the model training
process.

4 EXPERIMENTS AND RESULTS

The parameters of Faster R-CNN model are shown in Table 1, and the following
parameters are set: learning rate is 0.001, momentum is 0.9, learning rate decay coef-
ficient gamma is 0.1, and the number of learning rate decay steps is 100. The dataset
uses the public dataset provided by the 2020 China Underwater Robot Professional
Contest (CURPC), and the CURPC target categories include “holothurian”, “echi-
nus”, and “echinoid”. The CURPC target categories include “Sea cucumber”, “Sea
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urchin”, “Sea star” and “Scallop”.

Layer Type Kernel Size/Stride Output Size

convolution 7× 7/2 112× 112× 96
relu and norm
max pool 3× 3/2 56× 56× 96
convolution 5× 5/2 28× 28× 256
relu and norm
max pool 3× 3/2 14× 14× 256
14× 14× 384
relu
convolution 3× 3/1 14× 14× 384
relu
convolution 3× 3/1 14× 14× 256
relu

Table 1. Faster R-CNN network structure

4.1 Experimental Environment and Data Set

In this paper, mean Average Precision (mAP), Precision (PR) and Omission Ra-
tio (OR) are used to evaluate the model performance. In addition, to complete
the sample density and quantitative counting statistics, both Mean Average Error
(MAE) and Root Mean Squared Error (RMSE), which are commonly used in den-
sity counting work, are used as evaluation indexes. The formulas of PR, OR, MAE
and RMSE are shown in Equation (7).

PR =
1

n

(
n∑
i

ti
ti + fi

)
,

OR =
1

n

(
n∑
i

mi

ti + fi +mi

)
,

MAE =
1

n

n∑
i

|k′
i − ti|, (7)

RMSE =

√√√√ 1

n

n∑
i

(k′
i − ti)

2

where ti denotes the number of correctly detected targets, fi denotes the number
of incorrectly detected target classes, mi denotes the number of undetected tar-
gets, {k′

i}
n
i=1 denotes the number of model-predicted targets in each test image, and

i∈[1,n],{ti}ni=1 denote the number of target truth values in each image.
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4.2 Comparison Experiments

In this paper, experiments were conducted on the CURPC dataset using four meth-
ods using LAAL, Discriminative Active Learning, Learning Loss for Active Learning,
and LACP AL, respectively, and the experimental termination condition was cho-
sen to be 70% of the overall data labeled. Table 1 measures the final effect of the
experiments by the four metrics.

Method PR OR MAE RMSE

LAAL 0.799 0.142 13.13 19.67
Discriminative Active Learning 0.7637 0.156 15.57 23.95
Learning Loss for Active Learning 0.786 0.142 13.60 21.83
Ours 0.810 0.126 11.21 14.17

Table 2. Comparison of experimental results of different models

As shown in Table 2, the LACP AL model achieved 81.07% accuracy, which is
4.76% better than the Discriminative Active Learning method, 3.05% lower leakage
rate, 1.92% lower mean absolute error, and 9.78% lower root mean square error,
which means that the LACP AL model can achieve more accurate detection in the
more complex. This means that the LACP AL model can achieve more accurate
detection of benthic organisms in the more complex seafloor environment. Figure 5
shows the comparison of LAAL and LACP AL identification results.

Figure 5. Comparison of the recognition results of LAAL and LACP AL
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4.3 Ablation Experiments

To verify the improvement of the model by the three innovations, the following
control groups were set up for experiments.

1. Localization-Aware Active Learning (LAAL) pseudo;

2. Sample selection algorithm+ noisy sample selection (No Pseudo-label, abbrevi-
ated: NP);

3. sample selection algorithm + improved pseudo-label selection mechanism (No
Noise Choice, abbreviated: NNC);

4. Noisy sample selection+ improved pseudo-label selection mechanism (No Initial
Choice, abbreviated: NIC).

The above experiments are used to verify the role of each of the three innovations
in the model. First, the maximum number of iterations is set to 200, and the
number of iterations is increased by 10 for each model iteration as the number of
active learning cycles increases. The variation of model accuracy with the number
of labeled data is observed using the CURPC public dataset, as shown in Figure 6.

a) b)

Figure 6. Results of ablation experiments

As can be seen from the left side of Figure 6, the LACP AL model improves the
accuracy by 1.73%, 1.04% and 1.17% compared with the NIC group, NNC group
and NP group when the labeled data reaches 40%, respectively, and the innovations
proposed in this paper can effectively improve the training speed of the model and
make the model have higher accuracy when training the same number of samples.
Among them, improving the active learning noise label selection mechanism plays
an important role in improving the model accuracy.

The right side of Figure 6 shows the average accuracy difference between LAAL
and LACP AL, when labeling 40% of the data, on all types. From the figure, LACP
AL achieves a 1.84% improvement in identifying the more difficult sea cucumber
class and a 2.29% improvement in identifying the simpler sea star.
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To verify the improvement of the proposed method on recognizing more difficult
classes, experiments were designed to observe the improvement of AP for each class
and further analyze the performance of each method. Table 3 shows the accuracy
of each method on the Zhanjiang competition dataset after three rounds of active
learning.

Method Sea Cucumber Sea Urchin Scallop Sea Star mAP

LAAL 33.836 36.781 37.293 38.445 36.588
NP 35.165 37.845 38.837 39.546 37.848
NNC 34.043 36.915 37.724 38.851 36.887
NIC 35.360 37.939 39.147 39.812 38.065
LACP AL 35.393 38.415 39.389 39.865 38.266

Table 3. Accuracy in all categories after three rounds of active learning

The experiments showed that the LACP AL model achieved a 1.557% improve-
ment in identifying the more difficult sea cucumbers, with an average improvement
of 1.678% over the four categories. The method that did not include the improved
active learning noise label selection mechanism achieved only 0.21% improvement
on the sea cucumber category, and this difference suggests that the improved ac-
tive learning noise label selection mechanism can greatly help the model learn the
difficult category.

The proposed algorithm improves the accuracy by 2.2% compared with the
LAAL algorithm when labeling 30% of the data, and the recognition accuracy is
equivalent to that achieved by the LAAL algorithm when labeling 45% of the data,
which can effectively save 15%. The accuracy of the LACP AL algorithm with 50%
data is only 2.29% lower than that with all data, which shows that this method can
be effectively used for data labeling.

5 CONCLUSION

In this paper, an improved active learning algorithm LACP AL for target detection
is proposed. Before the start of active learning, LACP AL select representative sam-
ples using a clustering algorithm; when selecting unlabeled images for labeling to
train a new model, the algorithm combines the classification results and localization
results of unlabeled images and adds noise processing for sample selection. Pseudo-
labels are added during iteration. Considering that the model cannot accurately
detect images at the beginning of the iteration, samples with higher confidence
are selected as pseudo-labels in the early stage, and the confidence criterion for
selecting pseudo-labels is gradually reduced as the number of iterations increases.
Experiments show that by using clustering to select initial samples, screening noisy
samples and adding pseudo-labels for intelligent annotation of deep-sea macroben-
thos, the active learning algorithm LACP AL proposed in this paper can effectively
use fewer resources to achieve higher accuracy.
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