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Abstract. Collaborative filtering is a popular recommendation algorithm. It pre-
dicts user’s interests according to the ratings or behaviour of other users in the
system. However, the collaborative filtering recommender system suffers from sev-
eral major limitations including scalability, sparsity, and cold start. In this paper,
a collaborative filtering recommendation approach using radial basis function (RBF)
network and power method is proposed. The proposed system has offline and on-
line phases. In the offline phase, the sparse user-item rating matrix is completed
by using RBF network based on Cover’s theorem on the separability of patterns.
RBF network learning is done by unsupervised kernel-based fuzzy c-means cluster-
ing algorithm for selecting RBF centers, and supervised gradient descend method
for selecting RBF weights. In the offline phase, we predict non-rated items of a user.
Then the full rating matrix is used to rank all the users. The ranking is done by
solving an eigenvalue problem. This paper overcomes the scalability problem by
clustering the users, the sparsity problem by completing the sparse rating matrix,
and the new user cold start problem by recommending the top rated items of the
high-ranked user. The results of the experiments, on the benchmark data sets,
show that the proposed system produces high quality recommendation, in terms of
accuracy and quality.
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1 INTRODUCTION

Recommender systems provide personalized recommendations suiting users’ taste by
analyzing patterns of their interest in products [1, 2]. In collaborative filtering (CF)
recommender system, users who have rated the same items similarly, are considered
to have similar preferences [3, 4]. Most CF algorithms are based on either nearest
neighbors or matrix factorization [5, 6, 7, 8]. Despite its widespread adoption, CF
recommender system suffers from several major limitations including scalability,
data sparsity, and cold start [9, 10, 11].

Scalability. Since classical CF recommender systems need to calculate the pairwise
similarities among users or items, time complexity of computing similarities in-
creases exponentially with the number of users and the number of items. Given
the growing amount of users and items available in E-commerce systems, tra-
ditional collaborative filtering algorithms suffer seriously from scalability prob-
lems.

Data Sparsity. A modern E-commerce referral system can involve millions of users
and items. Even for a very active user, there may be a relatively low propor-
tion of items in electronic commerce systems. Even highly popular items are
rated by only a small portion of existing users. Because of the sparsity of avail-
able user activity records, it is difficult for CF recommender systems to discover
similar users or similar items according to their rating behaviors. Hence the
sparsity problem leads to low-correlated users, which results in poor recommen-
dations [12, 13].

Cold Start Problem. Since the CF process does not require extra data on the
users or the items, it is qualified of recommending an item without comprehend-
ing the item itself [11]. Nevertheless, this advantage leads to the so-called “cold
start” problem. The never users are those who have not rated many items, so
it is difficult to find other users with similar fondness. Also, newer items are
those which have not been rated by many users. Therefore it is challenging to
recommend them to anyone.

In the literature of the recommender system, we will see with the rise of the
internet, the number of products and contents available to consumers has greatly
increased compared to traditional consumer-facing distribution channels such as
brick-and-mortar stores, newspapers, etc. Internet services and websites such as
E-commerce stores can carry a much more extensive selection of results than the
aforementioned physical distribution channels due to restrictions set by physical
storage spaces, logistics, and inventory holding prices [14]. However, Schwartz rea-
sons that the raised freedom for what is available for personal consumers can be
overwhelming and direct to a mental burden due to the option cost and regret felt
after making a wrong choice among the alternatives consumers [15].

In the current years, recommender systems help users find relevant choices
among all items, thus alleviating the data overload experienced by users gener-
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ated by excessive alternatives. According to the definition by Ricci: Recommender
systems are software mechanisms and techniques which provide recommendations
to users about items that could be of curiosity to those particular users. Accord-
ing to Resnick and Varian, humans rely on recommendations supplied by fellow
humans that help make everyday decisions. Also, Resnick and Varian state that
recommender systems supply a way to grow this natural and social process without
explicit human interaction [16, 17].

Item is a general term for a thing that can be recommended such as a movie or
news article. The information needed to furnish recommendations depends on the
kind of recommendation algorithm used. The data can consist of mixed data points
about the users and the items and exchanges between these user-item pairs that can
be recorded to be used as input for a recommender system. In addition, results from
a recommendation system are commonly understood as viable recommendations,
rather than the result of an explicit search query made by a user, which is the result
of an information retrieval system [16, 18].

Video content platform Netflix stated in 2015 that their recommender system
is the core to their business. They calculated that supplying personalization and
recommendations to their users keeps them up to 12 to 1 billion USD every year
by reducing client churn and increasing individual customers’ lifetime value [19].
Recommender systems are also used extensively in big E-commerce zones such as
Amazon [20]. Although recommender systems have been very prosperous in con-
temporary years, they pose privacy risks as recommender systems often leverage
personal data not just on user demographics but also on preferences that could
be highly sensitive if made public. An example of such acute preference could be
political opinions that users likely want to keep secret [21].

The vision of collaborative filtering arises from the idea of leveraging the collab-
orative behaviors of all users for predicting the conduct of the target user (active
user). Early approaches perform this opinion by estimating the behavior similarity of
users or of items with memory-based models. Thereafter, matrix factorization-based
models become dominant which implement the CF idea by collectively discovering
the latent spaces that encode user-item relations matrix. These measures can predict
users’ preferences to some scope. Yet, they suffered from little prediction power due
to the conflict between users’ complex preferences and the merely linear modeling
ability.

Given the explicit complex modeling power of neural networks, collaborative
filtering based on neural networks with Radial basis function is used.

Data sparsity and cold start are critical problems in recommender systems for
collaborative filtering techniques, particularly for new users and items. There are
a variety of hybrid methods to alleviate data sparsity and cold start problems. In
the sequel, a brief overview of model-based factorization CF is given and then some
existing deep learning-based recommendation methods are discussed [22, 23, 24].

Matrix Factorization. Matrix factorization (MF) is one of the typically used CF
methods. Some earlier works explored the content information of items to boost
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the implementation [25]. Salakhutdinov et al. [26] used restricted Boltzmann
machines to carry out CF and Georgiev and Nakov [27] expanded it by combining
associations between user-user and item-item. Sainath et al. [28] decreased the
number of model parameters and speed up training by using low-rank MF. Yang
et al. [29] suggested a recommendation model concentrated on MF that would
map users into a low-dimensional latent feature space considering the connection
of trust. Silva et al. [30] have proposed Poisson MF-CS which uses factorization
of the Poisson matrix to model the importance of users and the contents of
items. Ren et al. [31] offered SCVR that item ranks would be predicted based
on user ideas and social connections.

Deep Learning. Newly, deep learning models have been operated to improve the
implementation of recommender algorithms due to their non-linear modeling
faculty. These include NeuMF (Neural Matrix Factorization) and CDAE (Col-
laborative Denoising Auto-Encoder) [32, 33]. Sainath et al. [28] lessened the
number of model parameters and speed up training by using low-rank matrix
factorization. Jiang et al. suggested DTR [34] by utilizing a stacked denoising
autoencoder (SDAE) to transform the trust information to latent feature space.
In [35], a neural network architecture by a denoising autoencoder is proposed
founded on the integration of the rating and explicit trust.

This paper overcomes the sparsity problem by completing the sparse user-item
rating matrix by using radial basis function neural network (RBFNN) [36], and the
scalability problem by clustering the users with kernel-based fuzzy c-means (KFCM)
clustering algorithm [37].

The RBF centers are also learned by applying the KFCM clustering method.
The original Euclidean norm metric in fuzzy c-means (FCM) method is replaced by
a kernel-induced metric in the data space, in KFCM.

The proposed system has two offline and online phases. In the offline phase, the
radial basis functions network is used to complete the sparse user-item rating matrix.
So the missing ratings for items not yet rated by a user are predicted. Then we rank
all the users by finding the Perron vector of the Cosine similarity matrix. In the
online phase, the users ranking vector is used to better weight average of deviations
from the neighbor’s mean and the active users get recommendation based on their
likes and dislikes. The new user cold-start problem is solved by recommending the
top-rated items of the high-ranked user.

To summarize, our work makes the following contributions:

• We propose a novel framework of RBFNN with a kernel-induced metric in the
data space.

• We solve the scalability, sparsity, and cold start problem challenges with the
proposed technique based on the RBF network and the strategy that Google
adopts for ranking web pages based on the link structure of the web.

• We demonstrate the effectiveness of the proposed method in real-world data and
confirm its importance.
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The rest of this paper is organized as follows. We present in Section 2 some
basic requirements including radial basis function neural network fundamentals and
KFCM clustering technique. The proposed recommender system framework is given
in Section 3. In Section 4, we provide a running example which aids understanding
the underlying ideas and algorithms. Experiments are evaluated in Section 5. The
paper ends with a brief conclusion.

2 PRELIMINARIES

2.1 Radial Basis Function Neural Network

The RBFNN is a three-layer (n–p–s) feedforward neural network [38]. The input
layer contains n number of neurons. This layer is fully connected to all the neurons
in the hidden layer. Each node in the hidden layer uses a radial basis function ϕ(r),
as its nonlinear activation function. The hidden layer is also fully connected to the
output layer. The output layer is a linear combiner mapping the nonlinearity into a
new space. The output layer contains s number of neurons. For input X ∈ Rn, the
output of the RBFNN is the approximate function F (X) = (f1(X), . . . , fs(X))T ∈
Rs, where

fk(X) =

p∑
j=1

wjkϕ(
∥X − Cj∥

σ
), k = 1, . . . , s (1)

where Cj is the prototype or center of the j
th node, σ is a positive real number which

we call the shape parameter or the width of the RBFs, wjk is the connection weight
from the jth hidden unit to the kth output unit, and ∥ · ∥ denotes the Euclidean
norm.

For a set of m pattern pairs {(Xl, Yl), l = 1, . . . ,m}, with Xl ∈ Rn, and Yl ∈
Rs, we are going to find a smooth function F such that

F (Xl) = Yl, l = 1, . . . ,m. (2)

Enforcing the interpolation condition (2) in (1) gives the following linear system of
equations

Y = ΦW, (3)

where [Y ]m×s = [Y1, Y2, . . . , Ym]
T , [Φ]m×p = [ϕ(∥Xi − Cj∥)]1≤i≤m, 1≤j≤p, [W ]p×s =

[wjk]1≤j≤p, 1≤k≤s. The most commonly used RBFs ϕ(r) are listed in Table 1, where
l, β and λ are RBF parameters. In this paper, we use Gaussian RBF, and such an
RBFNN is usually called the Gaussian RBFNN. Moreover, the input layer contains
n number of neurons, to which the user’s rating vector is input, and the output layer
also contains s = n number of neurons, to which the user’s complete rating vector
is output.

The diagram of the RBFNN is depicted in the Figure 1.
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Name ϕ(r) Condition

Gaussian exp
(
− r2

2σ2

)
Multiquadric

(
1 + r2

σ2

)β/2
β ∈ R ̸=0 \ 2N

Powers rλ 0 < λ ̸∈ 2N

Thin-plate splines r2l ln(r) l ∈ N

Table 1. Global RBFs

Figure 1. The architecture of the RBFNN

2.2 RBFNN Learning

A neural network adapts itself to a stimulus by making proper parameter adjust-
ments in order to result production of the desired response. This process is called
learning or training. RBFNN learning can be formulated as the minimization of the
mean squared error function

E =
1

m

m∑
i=1

∥Y T
i − Φ(i, :)W∥2 = 1

m
∥Y − ΦW∥2F (4)

where Φ(i, :) denotes ith row of the matrix Φ, according to MATLAB notation.
RBNN learning requires the determination of the RBF centers and the weights. For
some RBFs such as the Gaussian, it is also necessary to determine the smoothness
parameter σ [39].

2.2.1 Unsupervised Learning of RBF Centers and Weights

To determine RBF centers, the training set is grouped into appropriate clusters
whose prototypes are used as RBF centers. Efficiency of RBF network learning
depends largely on the performance of the clustering [40, 41].

After RBF centers and their widths are determined, learning of the weights W
is reduced to a linear optimization problem, which can be solved using the least
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square method leading to pseudo-inverse method or a gradient-descent method. In
the pseudo-inverse method, W is trained to minimize the mean squared error (4).
This leads to

W = Φ†Y = (ΦTΦ)−1ΦTY

where † is the pseudo-inverse of the matrix within [36]. Since the over- or under-
determined linear least square system is an ill-conditioned problem, singular value
decomposition (SVD) defined as follows is preferred [42].

Definition 1. Let A ∈ RN×M be a matrix with rank(A) = r. The Singular Value
Decomposition is defined as

UTAV =

[
D 0
0 0

]

where U ∈ RN×N , and V ∈ RM×M are orthogonal, with their columns being the
eigenvectors of AAT and ATA, respectively. Also D = diag(σ1, . . . , σr) with nonzero
singular values σ1, . . . , σr.

This property that SVD can supply the optimal approximation to the matrix A
using three smaller matrices multiplication, can be very helpful in developing rec-
ommender systems [43].

2.2.2 Supervised Learning of All Parameters

The simplest solution to the supervised learning of the RBFNN is the gradient
descent method. Rewriting the error function (4) gives

E =
1

m

m∑
i=1

s∑
k=1

(ei,k)
2

where

ei,k = Yi,k −
p∑

j=1

Wjkϕ (∥Xi − Cj∥) = Yi,k − ϕ(i, :)W (:, k)

is the approximation error at the kth output node for the ith sample. By taking the
first-order derivative of E with respect to Wjk and Cj, we have for j = 1, . . . , p,
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k = 1, . . . , s

∂E

∂Wjk

=
∂

∂Wjk

(
1

m

m∑
i=1

s∑
k=1

(Yi,k − ϕ(i, :)W (:, k))2
)

=
2

m

m∑
i=1

s∑
k=1

(Yi,k − ϕ(i, :)W (:, k)) (−ϕ (∥Xi − Cj∥))

= − 2

m

m∑
i=1

ei,kϕ (∥Xi − Cj∥) ,

∂E

∂Cj

=
∂

∂Cj

(
1

m

m∑
i=1

s∑
k=1

(Yi,k − ϕ(i, :)W (:, k))2
)

= − 2

m
Wjk

m∑
i=1

(Yi,k − ϕ(i, :)W (:, k))

(
∂

∂Cj

ϕ (∥Xi − Cj∥)
)

=
2

m
Wjk

m∑
i=1

ei,kϕ̇ (∥Xi − Cj∥)
Xi − Cj

∥Xi − Cj∥

where ϕ̇(·) is the first-order derivative of ϕ(·).
Now the update rules for center and weight learning is given by

Wjk(t+ 1) = Wjk(t)− η1
∂E

∂Wjk

, j = 1, . . . , p, k = 1, . . . , s, (5)

Cj(t+ 1) = Cj(t)− η2
∂E

∂Cj

, j = 1, . . . , p.

where η1 and η2 are learning rates. Initialization can be based on a random selec-
tion of the RBF centers from the samples and W as a matrix with small random
components.

2.3 Kernel-Based Fuzzy C-Means Clustering Algorithm

KFCM minimizes the following objective function [37]:

Jq(m, c) = 2
k∑

l=1

n∑
i=1

mq
li (1−K(xi, cl)) (6)

where K(x, c) = exp
(
−∥x−c∥2

2σ2

)
is the Gaussian kernel function with K(x, x) = 1,

k is the number of clusters and selected as a specified value in this paper, n is
the number of data points, mli is the degree of membership of xi in class l which
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ranges in [0, 1], and q is the quantity controlling clustering fuzziness. By minimizing
Equation (6) under the constraint

∑k
l=1mli = 1, we have

mli =
(1/ (1−K (xi, cl)))

1
q−1∑k

l=1 (1/ (1−K (xi, cl)))
1

q−1

, l = 1, . . . , k, i = 1, . . . , n, (7)

cl =

∑n
i=1

(
m

(t)
li

)q
K(xi, cl)xi∑n

i=1

(
m

(t)
li

)q
K(xi, cl)

, l = 1, . . . , k. (8)

In the FCM clustering algorithm, it is assumed that the data in a dataset are
complete, that is, all of the features of every vector in dataset are known or exist.
However, many real data sets such as recommendation engines lack completeness,
i.e., one or more of the components in the ratings database are missing, due to the
fact that users typically rate only a small proportion of the available items.

According to Equation (8), the similarity between xi and cl, is measured by
additional weight K(xi, cl). When xi is far from the other data points, i.e., xi is an
outlier, K(xi, cl) will be very small, so the weighted sum of data points shall be more
robust. Since in recommender systems, a data point with missing ratings is likely
to turn into an outlier, the algorithm based on KFCM to cluster in recommender
systems is of great importance. The KFCM algorithm for clustering incomplete
dataset is given as follows.

Algorithm 1. Clustering incomplete data using KFCM
Input: X = {x1, . . . , xn}, where xi ∈ Rd, K(x, c): kernel function, k: number of
clusters, q: fuzziness exponent, ε: termination tolerance, N : maximum number of
iterations.
Output: I = {I1, . . . , In}: set of cluster indices corresponding to points, C =
{c1, c2, . . . , ck}: set of cluster centers.
Initialize set of cluster centers {c1, c2, . . . , ck}, where ci ∈ Rd.

Set initial degree of membership m
(0)
li = 0, l = 1, . . . , k, i = 1, . . . , n.

for all t = 1, . . . , N do

Update all degree of memberships m
(t)
li with

m
(t)
li =

(1/ (1−K (xi, cl)))
1

q−1∑k
l=1 (1/ (1−K (xi, cl)))

1
q−1

, l = 1, . . . , k, i = 1, . . . , n.

Calculate the missing values (zero entries of X) using

xij =

∑k
l=1

(
m

(t)
li

)q
K(xi, cl)clj∑k

l=1

(
m

(t)
li

)q
K(xi, cl)

, i = 1, . . . , n, j = 1, . . . , d.
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Update all centers cl with

cl =

∑n
i=1

(
m

(t)
li

)q
K(xi, cl)xi∑n

i=1

(
m

(t)
li

)q
K(xi, cl)

, l = 1, . . . , k.

If maxl,i

∣∣∣m(t)
li −m

(t−1)
li

∣∣∣ ≤ ϵ, stop.

end for
for all i = 1, . . . , n do
Set l∗ = argmaxl mli.
Set Ii = l∗.

end for
return I and C;

3 THE PROPOSED RECOMMENDER SYSTEM FRAMEWORK

In this section, we describe the framework of the proposed collaborative filtering
recommender system. The proposed system has offline and online phases. It should
be noted that we use Matlab notation for the algorithms given in this paper.

3.1 Offline Phase

Let R = [rij, 1 ≤ i ≤ m, 1 ≤ j ≤ n] , be the user-item rating matrix, where rij
denotes the rating of user i to item j. The goal of the recommender system in offline
phase is to predict the nonrated items. Since the nonrated items are represented by
a value of zero, the matrix R = [rij]m×n is highly sparse. So, the sparse user-item
rating matrix is to be completed and becomes a full rating matrix. Moreover, the
correlated users can be found more easily from a full rating matrix. The completing
is done using RBFNN.

Remark 1. In this paper, we use Gaussian RBF. The kernel-based fuzzy c-means
clustering algorithm is used for selecting RBF centers.The width is fixed according
to the spread of centers by σ = d√

2p
, where d is the maximum distance between the

selected centers [36]. This choice makes the Gaussian RBF neither too steep nor
too flat. The RBF weights are also obtained by the gradient descend method.

The completing algorithm is given as follows.

Algorithm 2. Completing
Input: R = [rij, 1 ≤ i ≤ m, 1 ≤ j ≤ n]: sparse user-item rating matrix, ϵ: termi-
nation tolerance, η: weight learning rate.
Output: R̂ = [r̂ij, 1 ≤ i ≤ m, 1 ≤ j ≤ n]: complete user-item rating matrix.

1: Set R̂ = R.
2: Set range = (max rating −min rating) + 1.
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3: Set number of clusters k̃ = min k, subject to
⌊
range

k

⌋
≤ 3.

4: for all j = 1, . . . , n do
5: Set X = R(:, j), call Algorithm 1. and partition the users into k̃ clusters.
6: Set cluster indices I(:, j) = I.
7: Set cluster centers C(:, j) = C.
8: end for
9: for all j = 1, . . . , n do

10: for all i = 1, . . . , k̃ do
11: Set f = find(I(:, j) == i).
12: Set G(f, j) = ϕ (∥R(f, j)− C(i, j)∥2), where ϕ is one of the activation func-

tions in Table 1.
13: end for
14: end for
15: Set initial weight matrix [W0]m×n = (max(G)−G) ./(max(G)−min(G)).
16: Set W0 = W0./sum(W0).
17: for all j = 1, . . . , n do
18: for all i = 1, . . . , k̃ do
19: Set f = find(I(:, j) == i).
20: Set F (i, j) = ⟨G(f, j),W0(f, j)⟩ according to Equation (1).
21: end for
22: end for
23: Round entries of F to the nearest integers.
24: Set F (F < min rating) = min rating .
25: Set F (F > max rating) = max rating .
26: Set [S, T ] = find(R == 0).

27: Set R̂(S, T ) = F (I(S, T ), T ).
28: repeat

29: Set W = W0 + η
((

R̂−R
)
. ∗Q

)
.

30: Set E =
∥W−W0∥1

∥W∥1
.

31: Set W0 = W .
32: until E ≤ ϵ.
33: Repeat Steps 17–27 with W0 = W .
34: return R̂.

The ratings range from [min rating ,max rating ], where min rating represents
dislike and max rating represents a strong preference. In steps 4–8, users have
been clustered to k̃ clusters for each item using KFCM clustering Algorithm 1. In
steps 9–13, the Gaussian activation function is obtained for each item corresponding
to m number of users and results the matrix G.

The initial normalized weight matrix W0, (∥W0∥1 = 1), is calculated in
steps 15–16, which indicates that

(W0)i,j =
(max(G(:, j))−G(i, j)) / (max(G(:, j))−min(G(:, j)))∑m
i=1 (max(G(:, j))−G(i, j)) / (max(G(:, j))−min(G(:, j)))

.
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The approximate rating values of nonrated items are computed in steps 17–25
which we substitute the minimum value of the ratings range for the elements less
than it and the maximum value of the ratings range for the elements more than it.
Then the complete matrix R̂ is obtained in steps 26–27, firstly. But it is used in
order to update weight matrix W0 by using the iterative sequence (5) in gradient

descent method in steps 28–32. After the stopping condition E =
∥W−W0∥1

∥W∥1
≤ ϵ is

satisfied, the final weight matrix W is used to get predicted user-item rating matrix
in steps 17–27.

3.2 Online Phase

In this phase, we try to recommend favorite items to an active user entering the
system through the “login session” based on his likes and dislikes. Once the user
login the system, he can give his ratings for some randomly selected items. Based on
his ratings the recommendation is provided. At first, we rank all the users with the
aid of the strategy Google adopts for ranking web pages based on the link structure
of the web [44].

Let users are ordered from 1 to m, and l be a particular user. The rank of user l
is defined by

rl =
m∑
k=1

Clkrk (9)

where

Clk =

∑n
j=1 r̂lj r̂kj√∑n

j=1 (r̂lj)
2
√∑n

j=1 (r̂kj)
2

(10)

is the Cosine similarity between two users lth and kth corresponding to complete
matrix R̂. It should be noted that the ranking formula (9) is a weighted sum of
the ranks of the users that have similarity to lth user. Now, consider the Cosine
similarity matrix C = [Clk, 1 ≤ l ≤ m, 1 ≤ k ≤ m]. Since R̂ is a full rating matrix
with positive entries then 0 < Clk ≤ 1. Equation (9) can be represented by the
matrix form

λr = Cr, λ = 1,

that is r is an eigenvector of C with eigenvalue λ = 1. Users ranking will be well-
defined if there exists a unique eigenvalue equal to 1. For this sake, consider the
normalized matrix C̄ to be the matrix of dividing each entry of C in a given column
by the sum of the entries of that column.

The matrix C̄ has positive elements, and the sum of elements of each column
is 1. So it is a column-stochastic matrix satisfying eT C̄ = eT which means that 1 is
an eigenvalue of C̄. However, in order to have a unique eigenvalue with eigenvalue 1,
we refer to the Perron’s theorem given as follows [45]:

Theorem 1. (Perron’s Theorem) The following statements are true for any positive
matrix An×n with spectral radius ρ(A):
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• ρ(A) ∈ σ(A), where σ(A) is set of eigenvalues of A.

• ρ(A) has geometric and algebraic multiplicities 1.

• There is a unique corresponding eigenvector r satisfying r > 0, and ∥r∥1 = 1;
this is the only eigenvector that is nonnegative.

Therefore, users’ ranking can be formulated mathematically as an eigenvalue
equation for a certain matrix. So the power method [42] can be applied in order
to find the eigenvector r corresponding to dominant eigenvalue λ = 1, which ranks
users.

In the sequel, we give the algorithmic approach of recommendation in online
phase.

Algorithm 3. Recommendation
Input: R̂ = [r̂ij, 1 ≤ i ≤ m, 1 ≤ j ≤ n] : complete user-item rating matrix, u:
active user’s ratings to the items, T : number of items to be recommended.
Output: û: predicted ratings for the active user, Z: item recommendations for the
active user.

1: Set û = u.
2: Set [Clk, 1 ≤ l ≤ m, 1 ≤ k ≤ m] to be the Cosine similarity matrix between all

users corresponding to R̂ with entries given in Equation (10).
3: Set C̄ to be the matrix of dividing each element of C in a given column by the

sum of the elements of that column.
4: Set users ranking vector w to be the eigenvector corresponding to dominant

eigenvalue (λ = 1) in C̄.
5: Set I = argmax w : index of high-ranked user.
6: Set u∗ = R̂(I, :).
7: if the active user is a new user and the rating vector is NULL (cold start problem)

then
8: Set Z = argmax(u∗, T ) to be T top rated items of the high-ranked user.
9: else if the active user is a new user with some rating vector then

10: Set v to be the Pearson similarity vector between u and all users corresponding
to R̂:

vl =

∑
t∈rl

⋂
u

(
r̂lt − r̂l

)
(ut − u)√∑

t∈rl
⋂

u

(
r̂lt − r̂l

)2√∑
t∈rl

⋂
u (ut − u)2

, l = 1, . . . ,m.

11: Set P = find(v >=0) to be the positive neighbouring cluster.
12: Set N = find(v < 0) to be the negative neighbouring cluster.
13: Set J = find(u==0) to be the zero rated items for the active user.
14: Set s to be the Cosine similarity vector between u and all users corresponding
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to R:

sl =

∑
t∈rl

⋂
u rlt ut√∑

t∈rl
⋂

u (rlt)
2
√∑

t∈rl
⋂

u (ut)
2
, l = 1, . . . ,m.

15: Predict the rating of the set of items J for the active user as the weighted
average of deviations from the positively correlated neighbours’ mean

ûj = rj +

∑
i∈P

(
r̂ij − r̂i

)
siwi∑

i∈P si
, j ∈ J.

16: Set [sort val, sort ind] = sort(û, ‘descend’).
17: Set X = sort ind(sort val >= 3) to be the set of recommended items based

on liking.
18: Predict the rating of the set of items J for the active user based on negatively

correlated neighbours

v̂j = rj +

∑
i∈N

(
r̂ij − r̂i

)
siwi∑

i∈N si
, j ∈ J.

19: Set [sort val, sort ind] = sort(v̂, ’descend’).
20: Set Y = sort ind(sort val >= 3) to be the set of recommended items based

on disliking.
21: Set Z = X − Y .
22: if Z ==NULL then
23: Set Z = argmax(u∗, T ) to be T top rated items of the high-ranked user.
24: else if length(Z) ≥ T then
25: Z = Z(1 : T ).
26: else
27: Set Ẑ = argmax(u∗, T − length(Z)) to be T − length(Z) top rated items of

the high-ranked user.
28: Z = [Z, Ẑ].
29: end if
30: else if the active user is an existing user with row index i∗ and with no additional

ratings then
31: Set û = R̂(i∗, :).
32: Set [sort val, sort ind] = sort(û, ’descend’).
33: Set Z = sort ind(sort val >= 3) and do steps 22–29.
34: else if the active user is an existing user with additional ratings then
35: Do steps 10–29.
36: end if
37: return û and Z.
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Theorem 2. Let C̄ be the normalized Cosine similarity matrix between all users
corresponding to the complete user-item rating matrix R̂. Then the dominant eigen-
value λ1 is equal to 1. There is a unique corresponding eigenvector w satisfying
w > 0, and ∥w∥1 = 1; this is the only eigenvector that is nonnegative.

Proof. Since R̂ > 0 then C̄ > 0. The matrix C̄ is a column-stochastic matrix
which has nonnegative elements, and the elements of each column sum up to 1. So
it satisfies eTP = eT which means that 1 is an eigenvalue of C̄. The rest of the
statement can be proved using the Perron’s Theorem 1. □

Now, according to Google page ranking idea, the ratings vector of the high-
ranked user, who has most significant role based on his high similarity to all other
users, is calculated in step 6. In steps 7–35, the predicted ratings for the active user
as well as item recommendations for him are obtained based on the fact that he is
a new user or an existing user. It should be noted that rl

⋂
u indicates the set of

items that are rated by both lth user and the active user u, and rj is the average
rating of the jth user defined as

rj =
1

|Bj|
∑
l∈Bj

rjl

where Bj is the set of items rated by the jth user. r̂i is also defined as the average

rating of the ith user corresponding to the complete user-item rating matrix R̂,
similarly. We also used users ranking vector w in order to have a weighted prediction
in steps 15 and 18.

For a deeper understanding, the offline and online phase algorithms are shown
in the Figure 2.

3.3 Computational Complexity

In this section we analyse the computational complexity of the Algorithms 1, 2,
and 3. Let m, n, T , and k be the number of users, items, iteration, and clusters, re-
spectively. We can see that the number of addition-subtraction and multiplication-
division operations are equal to T (2m + 5k + 4), and T (5m2 + 6k + 3), respec-
tively, for the Algorithm 1. Furthermore, the number of addition-subtraction and
multiplication-division operations are equal to (n + 1)k + 2m2n, and 7kn + m2n,
respectively, for the Algorithm 2. Finally, Algorithm 3 requires 9mn + 6n and
4mn+8m2n operations for addition-subtraction and multiplication-division, respec-
tively.

Since the number of users is usually greater than the number of items, the
dominant term is Tknm2, and so the computational complexity of the proposed
recommender system is O(Tknm2).
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Figure 2. Framework of the proposed recommender system

4 RUNNING EXAMPLE

In this section, we provide a running example that helps to understand and follow
basic ideas and algorithms. We work with the sparse rating matrix shown in Ta-
ble 2 with 5 users and 10 items, which is taken from [46]. The ratings are in the
range 1 (poor) to 5 (good), and the nonrated items are represented by 0.

Offline phase.

Input: sparse user-item rating matrix R.

Output: complete user-item rating matrix R̂.

According to the offline phase, we first need to cluster users based on the rating of
each item by KFCM clustering Algorithm 1. As the rating range is 1–5, the number
of clusters is 2. The cluster centers for each item are shown in Table 3. The users
are grouped in the clusters based on the cluster centers. The cluster to which the
users belong is shown in Table 4. The matrix G which includes Gaussian activation
function values for the original rating matrix is given in Table 5. The initial weight
matrix W0 is reported in Table 6. Table 7 shows the final weight matrix W based on
the Gaussian activation functions for the original rating matrix. Using the Gaussian
activation function given in Table 5 and the weights in Table 7, the full rating matrix
is calculated by Algorithm 2. The full rating matrix is shown in Table 8. Training
error is 0.2880 and the rating matrix is completely filled.
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Online phase.

Input: complete user-item rating matrix R̂.

Output: recommendation for users.

Table 9 shows the user rating details and Top 2 recommendation for the Gaussian
based complete rating matrix.

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

U1 3 0 0 0 2 0 0 5 0 0
U2 0 1 0 0 4 0 0 0 0 0
U3 1 3 0 0 0 0 1 0 2 1
U4 0 0 4 2 0 0 1 0 0 0
U5 4 0 0 4 0 2 0 0 0 0

Table 2. Original sparse rating matrix with 68% sparsity

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

Cluster
center1

1.1955 1.0063 1.2293 1.4201 1.4201 0.7193 0.4645 1.4820 0.7193 0.4641

Cluster
center2

3.6705 3.0999 4.1000 4.0898 4.0898 2.0999 1.0997 5.1000 2.0999 1.0991

Table 3. Cluster centers

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

U1 2 1 1 1 1 1 1 2 1 1
U2 1 1 1 1 2 1 1 1 1 1
U3 1 2 1 1 1 1 2 1 2 2
U4 1 1 2 1 1 1 2 1 1 1
U5 2 1 1 2 1 2 1 1 1 1

Table 4. User cluster index for each item

5 EVALUATION

In this section, we will analyze the accuracy and quality of the predictions and
recommendations of our proposed algorithm. Several experiments were performed
to test the efficiency of the proposed system using Netflix1 [47] and MovieLens2 [48]
data sets including MovieLens 100K, MovieLens 1M, and MovieLens 10M. Summary
statistics for the datasets used in this paper are shown in Table 10. In the Netflix

1 http://www.netflixprize.com/download
2 http://grouplens.org/datasets/movielens

http://www.netflixprize.com/download
http://grouplens.org/datasets/movielens
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I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

U1 0.9590 0.9101 0.8688 0.8289 0.9692 0.9530 0.9801 0.9991 0.9530 0.9802
U2 0.8755 1.0000 0.8688 0.8289 0.9993 0.9530 0.9801 0.8152 0.9530 0.9802
U3 0.9965 0.9991 0.8688 0.8289 0.8289 0.9530 0.9991 0.8152 0.9991 0.9991
U4 0.8755 0.9101 0.9991 0.9692 0.8289 0.9530 0.9991 0.8152 0.9530 0.9802
U5 0.9900 0.9101 0.8688 0.9993 0.8289 0.9991 0.9801 0.8152 0.9530 0.9802

Table 5. Guassian activation function values

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

U1 0.1309 0.3322 0.2500 0.3148 0.0556 0.2500 0.3333 0 0.2500 0.2500
U2 0.4232 0 0.2500 0.3148 0 0.2500 0.3333 0.2500 0.2500 0.2500
U3 0 0.0034 0.2500 0.3148 0.3148 0.2500 0 0.2500 0 0
U4 0.4232 0.3322 0 0.0556 0.3148 0.2500 0 0.2500 0.2500 0.2500
U5 0.0227 0.3322 0.2500 0 0.3148 0 0.3333 0.2500 0.2500 0.2500

Table 6. Initial weight matrix

dataset, we choose users who have rated at least 2 000 movies. This results in a data
set with 2 626 320 ratings, 5 265 movies, and 1 212 users. The ratings are converted
into a user-item matrix. The rating range is from 1 to 5, where 1 represents dislike
and 5 represents a strong preference. All unrated items have a value of zero.

Proposed algorithms were implemented in MATLAB R2018a on a PC with an
Intel (R) Core (TM) i5-6300U, CPU2.50GHz, and 8GB RAM. The parameters
used in Algorithm 1 are fuzziness exponent q = 2, termination tolerance ε = 10−3,
maximum number of iterations N = 10. The initial cluster centers were also chosen
by the following procedure:

h = (max rating −min rating)/k̃,

C = (min rating + h/2 : h : max rating − h/2)′ + 0.1

where min rating = 1 and max rating = 5.

The parameters used in Algorithm 2 are termination tolerance ϵ = 10−1, and
weight learning rate η = 0.1.

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

U1 0.1309 1.0603 0.9451 0.9779 0.0556 1.0124 1.1174 0 1.0124 1.0341
U2 1.1235 0 0.9451 0.9779 0 1.0124 1.1174 0.9021 1.0124 1.0341
U3 0 0.0034 0.9451 0.9779 0.9779 1.0124 0 0.9021 0 0
U4 1.1235 1.0603 0 0.0556 0.9779 1.0124 0 0.9021 1.0124 1.0341
U5 0.0227 1.0603 0.9451 0 0.9779 0 1.1174 0.9021 1.0124 1.0341

Table 7. Final weight matrix
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I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

U1 3 3 3 2 2 4 3 5 4 4
U2 2 1 3 2 4 4 3 3 4 4
U3 1 3 3 2 2 4 1 3 2 1
U4 2 3 4 2 2 4 1 3 4 4
U5 4 3 3 4 2 2 3 3 4 4

Table 8. Complete rating matrix with 0% sparsity

User Rating Prediction Recommendation

New user No (cold start user) No Item 6, 8
New user [0, 1, 0, 0, 4, 0, 0, 0, 0, 0] [2, 1, 4, 3, 4, 2, 1, 5, 2, 1] Item 5, 8
Existing user (U2) No new rating [2, 1, 3, 2, 4, 4, 3, 3, 4, 4] Item 5, 6
Existing user (U2) [0, 1, 0, 0, 4, 0, 0, 5, 0, 2] [2, 1, 4, 2, 4, 2, 1, 5, 2, 2] Item 5, 8

Table 9. TOP 2 recommendations

5.1 Evaluation Metrics

We use four metrics for evaluating the performance of the proposed recommender
system. In this paper we consider the Mean Absolute Error (MAE),

MAE =
1

K

K∑
j=1

 1

|Vj|
∑
x∈Vj

|R(x)− R̂(x)|

 ,

and the Root Mean Square Error (RMSE),

RMSE =
1

K

K∑
j=1

√
1

|Vj|
∑
x∈Vj

(
R(x)− R̂(x)

)2
.

We analyze the performance of the proposed recommender system according to

Name Date Range Rating Scale Users Movies Ratings Density

MovieLens 100K 1997–1998 1–5 943 1 682 100 000 6.3%

MovieLens 1M 2000–2003 1–5 6 040 3 706 1 000 209 4.47%

MovieLens 10M 1995–2009 1–5 69 878 10 681 10 000 054 1.34%

Netflix 1998–2005 1–5 480 000 17 000 100 000 000 1.178%

Table 10. Quantitative summary of the ratings datasets used. The sole computed column,
Density, represents the percentage of cells in the user-item matrix that contain rating
values.



776 M. Mohammadi, S. Arabi Naree, M.A. Naseri

precision, recall, and F-measure as follows:

Precision =
#tp

#tp + #fp
,

Recall =
#tp

#tp + #fn
,

F-measure =
#tp

#tp + 1
2
(#fn + #fp)

.

The parameters needed for computing precision, recall, and F-measure are described
in Table 11.

Recommended Not Recommended

Used by a user True-Positive (tp) False-Negative (fn)

Not used by a user False-Positive (fp) True-Negative (tn)

Table 11. The parameters used for defining different metrics

5.2 Experimental Results and Discussion

In this section, we will analyze the accuracy of the predictions and recommen-
dations of our proposed method. We also compare our results with some recent
successful approaches. MAE of the proposed method for MovieLens 100K and Net-
flix datasets with different values of K-fold cross-validation, has been depicted in
Figure 3. Figure 4 depicts RMSE of the proposed method for MovieLens 100K and
Netflix datasets with different values of K. It can be noted from Figures 3 and 4
that the proposed method produces accurate recommendations. Table 12 reports
MAE and RMSE of our proposed method for MovieLens 100K and Netflix datasets
with different values of K-fold cross-validation. The results are more accurate for
MovieLens dataset due to its less sparsity level. Decision support measures includ-
ing classical information retrieval measures of precision, recall, and F-measure are
depicted in Figure 5 for determining how well our proposed recommender system can
make predictions of high-relevance items. Precision, recall, and F-measure measures
for MovieLens 100K dataset are 0.98, 0.85, and 0.91, respectively. Precision, recall,
and F-measure measures for Netflix dataset are 0.89, 0.8, and 0.84, respectively.
The MAE and RMSE values of the proposed method are compared with Matlab
SVD algorithm as well as three competing matrix factorization methods including
Bayesian nonnegative matrix factorization (BNMF) [49], Imputation-based multi-
plicative update rules (IMULT) [50], and Enhanced SVD (ESVD) [51] for MovieLens
10M dataset with 5-fold cross-validation in Table 13. It can be seen from Table 13
that the proposed method achieves higher accuracy than the others. Figure 6 a) de-
picts MAE comparison of the proposed method with content-boosted matrix factor-
ization generalized alignment based method (gAB) [52], Extended content-boosted
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matrix factorization method (ECB) [52], support vector machine (SVM) using poly-
nomial kernel function (SVM-POLY), SVM using radial basis function (SVM-RBF)
and multilayered perceptrons (MLP) trained with the back propagation algorithm
using sigmoid activation function, for MovieLens 100K dataset with 5-fold cross-
validation. The SVM results are computed using Gist Support vector machine and
kernel principal components analysis software toolkit (Version 2.0.9). The other
methods are modeled in MatLab software. It can be noted from Figure 6 a) that the
proposed method leads to more accurate results than the gAB, ECB, and SVM-poly,
but less accurate than SVM-RBF and MLP. The decision support measure compar-
ison is shown in Figure 6 b). The observation shows that the proposed method
outperforms other methods. Figure 7 depicts computational time comparison of
the proposed method with some existing methods for MovieLens 100K dataset with
5-fold cross-validation.

The observations of the comparison of MAE, decision support measure, and
computational time are as follows:

• SVD is the dimensionality reduction method. So, it must outperform other
techniques whereas its errors are comparatively high in Table 13.

• ESVD, IMULT, and BNMF have slightly higher ‘MAE’ and ‘RMSE’ than the
proposed method in Table 13.

• The reason for the low ‘MAE’ of the proposed method is using the Gaussian
RBF and the kernel-based fuzzy c-means clustering algorithm.

• Table 12 and Figures 3 and 4 confirm the fact that the value of errors decreases
when the number of folds increases.

• Figure 6 a) also shows that the error of gAb and ECB is greater than the other
techniques. In the same figure, the MAE of techniques SVM-RBF and MLP
is lower than the proposed method, while the decision support measure of the
proposed technique is higher than all the methods in Figure 6 b).

• In Figure 7, all the techniques are at the same level of the computational time
in the offline phase, except for SVD with less amount of time. But in the
online phase, the proposed method and SVD have the lowest computational
time compared to the other methods.

Movielens Netflix
K MAE RMSE MAE RMSE

3 0.3655 0.6881 0.5318 0.7101
4 0.2741 0.5959 0.4423 0.6312
5 0.2193 0.4330 0.3391 0.5332
6 0.1827 0.3765 0.2928 0.4866
7 0.1566 0.3505 0.2670 0.4505

Table 12. Error values of the proposed method for MovieLens 100K and Netflix datasets
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Figure 3. MAE graph of the proposed method for MovieLens 100K (left) and Netflix
(right) datasets with different values of K-fold cross-validation
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Figure 4. RMSE graph of the proposed method for MovieLens 100K (left) and Netflix
(right) datasets with different values of K-fold cross-validation
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Figure 5. Decision support measure of the proposed system
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Figure 6. MAE (a)) and Decision support measure (b)) comparison of the proposed
method for MovieLens 100K dataset with 5-fold cross-validation
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MAE
Proposed method SVD ESVD IMULT BNMF
0.3011 3.2904 0.9201 0.7094 0.6760

RMSE
Proposed method SVD ESVD IMULT BNMF
0.5102 3.7612 0.9615 0.9160 0.9229

Table 13. MAE and RMSE comparison of the proposed method for MovieLens 10M
dataset with 5-fold cross-validation
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Figure 7. Computational time comparison for MovieLens 100K dataset with 5-fold cross-
validation

6 CONCLUSION

In this paper, the radial basis functions network is used for developing a collab-
orative filtering recommendation approach. The proposed system has offline and
online phases. In the offline phase, the sparse user-item rating matrix is completed
by using radial basis functions network. Then the full rating matrix is used to rank
all the users by solving an eigenvalue problem according to the Google page rank-
ing strategy. In the online phase, users ranking vector is used to better weight the
average of deviations from the neighbor’s mean and the active users get recommen-
dation based on their likes and dislikes. We overcome the scalability problem by
clustering the users, the sparsity problem by completing the sparse rating matrix,
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and the new user cold-start problem by recommending the top-rated items of the
high-ranked user. The effectiveness of the proposed system is supported by some
empirical studies on the MovieLens and Netflix datasets.
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