
Computing and Informatics, Vol. 41, 2022, 813–833, doi: 10.31577/cai 2022 3 813

UML4NOSQL: A NOVEL APPROACH FOR MODELING
NOSQL DOCUMENT-ORIENTED DATABASES BASED
ON UML

Mohammed ElHabib Maicha, Youcef Ouinten, Benameur Ziani

LIM laboratory
Amar Telidji University
Laghouat, Algeria
e-mail: {mh.maicha, ouinteny, bziani}@lagh-univ.dz

Abstract. The adoption of Big Data systems by the companies is relatively new,
although the data modeling and system design are ages old. Despite the fact that
traditional databases are built on solid foundations, they cannot handle the swift
and massive flow of data coming from multiple different sources. Herein, NoSQL
databases are an inevitable alternative. However, these systems are schemaless com-
pared to traditional databases. It is important to emphasize that schemaless does
not mean no-schema which would mean that NoSQL databases do not need mod-
eling. Hence, there is a need for conceptual models to define the data structure in
these databases. This paper sheds a light on the importance of the UML in showing
how to store Big Data described through meta-models within NoSQL databases.
We propose a novel Big Data modeling methodology for NoSQL databases called
UML4NoSQL, which is independent of the target system, and taking into account
the four Big Data characteristics: Variety, Volume, Velocity, and Veracity (4V’s).
The approach relies on the UML blocks with a data-up technique; it starts with
a use-case and the class diagram resulting from the understanding of the data at
hand and the definition of the developer’s strategies while focusing on the user’s
needs. To illustrate our approach, we take a case study from health care domain.
We show that our approach produces designs that can be implemented on NoSQL
document-oriented system with respect to Big Data 4 V’s.

Keywords: Big Data, UML, database modelling, NoSQL, document-store,
UML4NoSQL

https://doi.org/10.31577/cai_2022_3_813

814 M.E. Maicha, Y. Ouinten, B. Ziani

1 INTRODUCTION

The design phase plays a vital role in the life cycle of any computer system. In
order to reach a valid model, a variety of methods are available. Among these,
UML is the one that is extensively used. It has already proven its worth as a highly
effective language of modeling traditional systems such as web applications and
even complex systems arising from the increasingly complex needs of contemporary
companies. However, nowadays companies often deal with a huge amount of data
that traditional databases cannot support. Thus, NoSQL databases have become
a popular alternative due to their capability of handling Big Data. Consequently,
the future of UML in the era of Big Data has become a relevant and debatable
issue.

To deal with this issue, we will start by stating what the professionals say about
Big Data modeling. Adamson, the president of information management consul-
tancy of Oakton Software argues that “There’s a lot of confusion right now in the
market . . . that leads people to believe you don’t need a model with NoSQL tech-
nologies”1. The issue of compatibility of Big Data and conceptual models was also
raised in the ER 2016, the 35th International Conference on Conceptual Modeling.

On the other hand, the definition of Big Data in the literature fits the definition
of a computer system with major differences at four levels:

1. The variety of data sources which leads to different forms of data.

2. The volume with massive growth in the scale of data quantities that reach almost
incomprehensible proportions.

3. The velocity which refers to data generated at high speed by sensors or multiple
events and need to be processed in near/real time.

4. The veracity which includes two aspects: data consistency and data trustwor-
thiness.

For several years remarkable efforts such as in [1, 2, 3, 4, 5, 6] and [7] have been
devoted to the study of Big Data and a consensus is emerging that Big Data is
a computer system. Therefore, as any other systems it requires modeling so that its
boundaries and uses can be identified. Works about NoSQL database design using
UML, including the one presented by Shin et al. [8], are very scarce. Overall as
reported by Mior et al. [9], most of the existing works dealing with NoSQL databases
do not give much importance to the design methods. This is because so far, the
use of NoSQL databases is directed only to solving specific application problems
of non-functional requirements like performance, availability, and scalability, while
relational databases which have been studied for a long time, have design methods to
implement databases from data requirements. One way out of this is to investigate
the adaptation of UML so as to provide NoSQL technology with appropriate design
methods.

1 TechnoPedia Website, October 2020

UML4NoSQL 815

If we do accept the fact that UML can be used to design NoSQL databases then
several practical issues arise:

1. It is crucial to identify the possibility of transforming UML diagrams in such
a way that they can be used in the NoSQL design process.

2. The process must provide comprehensive techniques and guidelines for effective
data modeling methodology for NoSQL databases.

3. The process should finally lead to a complete and valid physical data model to
be implemented in NoSQL systems.

To deal with all these issues, we present in this paper “UML4NoSQL”, an original
UML-based approach which adapts the most descriptive UML blocks so as they yield
a metamodel describing Big Data which can then lead to several NoSQL physical
models.

A high-level overview of our methodology is illustrated in Figure 1. The UML’s
basic building blocks and application workflow are used to start the conceptual
model. We then introduce a logical level that describes data according to the com-
mon features of the document-oriented database. Additional physical optimization
concerning data types, and ordering are then applied to generate a physical data
model that can be instantiated in the desired NoSQL technology such as MongoDB.

Figure 1. Overview of the proposed methodology

The remainder of this paper is organized as follows: Section 2 is devoted to
a background and previous works on Conceptual Modeling in Big Data context.
An illustrative example to state the problem is presented in Section 3, while Section 4
introduces our approach UML4NoSQL which goes through four steps:

1. Understanding DATA,

2. defining the users’ needs,

3. the developers’ overview,

4. generation of NoSQL Meta-Model.

816 M.E. Maicha, Y. Ouinten, B. Ziani

Our approach aims to transform UML conceptual models into document-oriented
NoSQL physical models. Section 5 draws conclusions as well as some perspectives
for future work.

2 BACKGROUND AND RELATED WORK

2.1 Background

In this section we will cover the background necessary to the comprehension of the
remainder of this paper. There are four main categories of NoSQL databases, each
with different levels of scalability, flexibility, complexity, and functionality:

Key-Value Store: Key-Value Store databases store data in a schemaless way,
where data is saved into an associative array and represented as a collection
of key values pairs, assembled by a unique key and the rest of the data (values).
(e.g., Oracle NoSQL and Redis).

Column Store: A Column Store database (also known as columnar databases),
was motivated by Google’s BigTable [10]. Instead of storing data in rows, data
tables are stored as sections of columns of data. It is an extension of Key-Value
Store database where columns can have a complex structure, rather than a blob
value. Examples of this kind are Apache HBase or Apache Cassandra [11].

Document Store: This kind of databases are very similar to key value, where the
value is a document, such as JSON, BSON, etc. Each document has a unique
key which is assigned to retrieve the document. Document stores are good
for semi structured data, they support aggregates and denormalized structures.
Document stores are found in MongoDB, CouchDB, and others [12, 13].

Graph Database: Graph databases are based upon graph theory (set of nodes,
edges, and properties). They are useful for inter connected relationship data
such as social networks, and biographical interactions. The data is stored in
nodes and relationships are represented as arrows connecting nodes between
each other. It may, more accurately, be described as non-relational rather than
NoSQL. Examples are Neo4j, Titan, and OrientDB [14].

The production of a conceptual model for any given NoSQL system based on
UML requires three major elements: the UML’s basic building blocks, the rules
that dictate how those building blocks may be put together, and some common
mechanisms that apply throughout the UML. Let us define in this section the UML’s
basic building blocks:

Things: Things are the basic object-oriented building blocks of the UML. They fall
into four kinds: structural, behavioral, grouping, and annotational things [15].

Relationships: There are four kinds of basic relational building blocks of the UML:
dependency, association, generalization and realization. There are also varia-
tions on these four – such as refinement, trace, include, and extend [15].

UML4NoSQL 817

Diagrams: A diagram is the graphical presentation of a set of elements, most often
rendered as a connected graph of vertices (things) and paths (relationships). The
UML includes thirteen kinds of diagrams all described in detail in [15]. Things
are the abstractions that are first-class citizens in a model, relationships tie these
things together and diagrams group interesting collections of things [16].

2.2 Related Work

The literature on modeling Big Data shows a variety of approaches devoted to the
development of methodologies and tools supporting NoSQL database design [17, 18,
9]. The publications available in the literature that investigated this issue from the
point of view of meta-modeling are very scarce. Indeed, most of the works propose
a solution to transform from traditional databases to a specific NoSQL models in
a limited case of studies.

Papers
Inputs
(e.g. UML Blocks)

Outputs
(NoSQL Systems)

Big Data
Characteristics

[9]
Conceptual schema
and statistics

Column-store –

[17]
Aggregate-oriented
view of data

System-independent
data model

Scalability and
consistency

[19]
Star schemas and
lattice (OLAP)

Column-oriented and
document-oriented

–

[20]
OLAP cube
(Data Warehouse)

Columnar NoSQL cubes Volume and Variety

[21]
Multidimensional
conceptual model

Column-oriented and
document-oriented

–

[22] UML Class diagram Document-oriented Variability

[23]
UML Class Diagram
OCL constraints

Graph database –

[24] UML Class Diagram
Column, document and
graph databases

Volume, Variety and
Velocity

[25]
Meta-Model of UML
Class Diagram

Column-store –

[8]
UML Conceptual data
model - Peter Chen

Document-oriented –

Table 1. A comparative study of NoSQL modeling approaches

Table 1 provides a comparison of all presented works according to how they
convert the input model into a NoSQL output model. We also take the four features
of Big Data as an additional metric.

As illustrated in Table 1, the authors in [19, 20, 21] have proposed a trans-
formation process with a set of mapping rules from multidimensional models to
column-oriented and document-oriented models. While the authors in [22, 23, 24]

818 M.E. Maicha, Y. Ouinten, B. Ziani

took the UML class diagram as input to offer a columnar and document oriented
models that respect, at most, two Big Data characteristics.

For graph-oriented databases, authors in [14] presented a comparative analysis
issues and concepts on a list of graph database tools.

The most interesting approach to deal with this database family has been pro-
posed by [25]. In this research work, the authors propose a framework that translates
conceptual schema expressed using the UML into a graph representation.

Atzeni et al. [17] presented the first proposal of a general system independent
approach to the design of NoSQL databases. The major drawback of this approach
like many of related works, is that it relies only on the class diagram from the UML
family. Authors in [8] have also found that current database design methods do not
address non-functional requirements, they tend to refer to a preselected database;
and they do not offer an evaluation process. To the best of our knowledge, studies
on Big Data modeling, from a general perspective as we offer through this paper, do
not offer a complete meta-models that can handle NoSQL databases independently
of their technology. The present work is an attempt to deal with this issue.

3 RESEARCH MOTIVATION

To illustrate and motivate our work, we have chosen a case study from the health
care field, where a NoSQL database have a legitimate role to play. The case study
is about a 51-hospital system with 100 000-plus caregivers who deliver high-quality,
cost-effective health care to millions of patients annually. Patient data resides in
many systems, including electronic medical records (EMRs). The main objective on

this health system is 1 to collect data about the decease development over time
from patient charts, to improve patient care, treatment affordability and the health
care experience, 2 to offer dashboards displaying detailed quality data and cost
data. The dashboards allow practitioners and clinicians to see analytics that are
related to every hospital, clinician and individual nursing unit, 3 to analyze and
share data in a more organized way, making it easier for doctors to understand what
behaviors positively or negatively impact patient care, which leads to substantial
improvements in quality measures and large reductions in the cost of care.

Furthermore, the health system can integrate sensor data from patient-monitor-
ing systems to improve alert predictability, it can also use weather and seasonal data
to predict staffing and bed needs. This example can be considered as a Big Data
problem, in the light of the “4V” definition which are Volume, Variety, Velocity,
and Veracity.

Volume. The vast amount of data collected over several years from all 51 hospitals
can easily reach multiple terabytes.

Variety. Every patient has his own medical records come from diverse sources
and, thus, in various shapes (e.g. structured, unstructured, semi-structured) and

UML4NoSQL 819

formats (e.g. laboratory test results, blobs of text, medical reports, pictures, video,
medical images, lists of medicines, etc.).

Velocity. The wide spreading of IoT and smart medical devices lead to the gen-
eration of real-time health data.

There are many tools in place to analyze patient data and advise health care
professionals to take appropriate actions. For example, new wearable sensors can
help tracking patient health trends that can be monitored by doctors. The collected
data can be very helpful in monitoring the health of patients, ranging from blood
pressure monitoring to other conditions right at home, although trying to respond
to every health data stream can lead to inefficient and uneconomic use of resources.
It is therefore important to decide which data requires immediate action and which
can be deferred.

Veracity. Data quality includes integrated, reliable, complete, bias-free, and
noise-free data. Hospitals aim at reducing the number of ER visits or Emergency
visits of patients which increases health care costs and does not, necessarily lead to
better outcomes for patients.

4 CONTRIBUTION

The objective of this study is to propose a new approach that improves the concep-
tual modeling process in Big Data environments. In the state-of-the-art solutions,
most of authors rely solely on the class diagram to perform a transformation to
the NoSQL model. However, the class diagram is not a unique affecting factor in
the NoSQL model transformation process. In our approach we followed a data-up
technique, which starts with a Use-Case and the Class diagram issued from the un-
derstanding of the data at hand and the definition of the developer’s strategies while
focusing on the user’s needs. The main outcome of our proposal is a set of designs
that can be implemented on a NoSQL Document-oriented system with respect to
the Big Data 4V’s.

4.1 UML4NoSQL: A Bird’s Eye View

In this paper we show how a UML use case diagram can be adapted to the Big Data.
In a Big Data environment, the availability of data is not an issue; it is available
at will. The most important issue is to know what to do with the data or what
can be done with it. In our approach, we aim to deliver a good representation of
the application data in a target NoSQL database (Document-oriented), and it is
intended to support the foremost qualities of Big Data systems, well known as the
4V’s. As it can be seen from Figure 1, our methodology articulates around four
major axes:

820 M.E. Maicha, Y. Ouinten, B. Ziani

4.1.1 Understanding the Data

The first principle in a successful database design is to have a good knowledge of the
data for which the design is intended by considering the most important criteria:

1. The type of data being analyzed,

2. The volume of data at hand and

3. How quickly do we need that data.

The authors in [26] and in [27] have widely investigated the challenges faced when
dealing with Big Data management. These challenges include issues related to data
quality, data streams, the dynamic evolvement of data, data heterogeneity and data
modeling, multi-model databases, client and query interfaces, data compression,
data encryption, access control and authorization.

From this perspective, we note that end users of Big Data are becoming increas-
ingly non-technical. This leads us to the introduction of a new profile that we call
Citizen developer.

4.1.2 Developer’s Strategies and User’s Needs

While the traditional UML diagrams maintain their focus on the system’s needs
in terms of functions, with the arrival of Big Data the diagrams will focus on the
user’s needs (usually they are decision-makers) in terms of treatments based on the
data they have to deal with (Prescriptive, Predictive, Diagnostic and Descriptive
analytics).

It is important to know what can be done with the data at hand in the short,
medium and long term. Answers to this question can be modeled by a Use Case
diagram, we apply the use case diagrams to visualize the behavior of a system,
a subsystem, or a class. The use case diagram is a fundamental tool for identifying
requirements [28]. This will allow users to comprehend how to use these elements,
and the developers to implement them. Herein, we define two new blocks as follows:

Definition 1 (Super Container). Hosts all the Big Data qualities required for a use
case diagram which reduces the complexity of the diagram by avoiding the creation
of multiple instances of a data service, as shown in Figure 2.

Definition 2 (Actors’ Container). Contains the group of actors who have the same
behavior when querying the system. This will control the variability and the velocity
of the actor’s queries inside the container, as shown in Figure 3.

From this diagram we can decide what data to keep in our Big Data environment.
Either we keep all the data or we keep only the corresponding data and eliminate
the data that in the long term will become useless, by considering it as dirty data.
This data will be modeled by an extended class diagram. In a parallel work, we
aim at providing sequence diagrams to describe the scenarios of using Big Data,
and activity diagrams for more detail on the used algorithms (e.g. data mining
algorithms).

UML4NoSQL 821

Figure 2. Super container

Figure 3. Actors’ container

4.1.3 NoSQL Meta-Model

Several studies have indicated that Big Data is schemaless. At most we can say it is
less-schema than other data. The main purpose of this paper is to draw attention to
the importance of meta models for Big Data, because when accessing the data, we
need a schema that helps to interpret it, so if there is no explicit model to use, we
have to infer one. In fact, models are not static, fixed and complete artifact, rather
a partial, dynamic and temporal view of the data to facilitate manipulating it at
a specific instant. In traditional software development, the developers follow a top
down approach [29], in which the model defines the data to use. We aim to propose

822 M.E. Maicha, Y. Ouinten, B. Ziani

an approach that relies on a data-up technique, i.e., the used model is based on the
data available.

4.1.4 Create Design That Scales Easily

An important key to successful database design is knowing the actual queries, queries
have a large effect on schema design. In addition to ensure the correct support of the
queries, we should take into account the access path of each query to organize data
efficiently (denormalizing or using a relational schema). Normalized and denormal-
ized databases are discussed in [22] and [18]. We concur with the authors [30, 11, 7],
that NoSQL databases perform better when the data is denormalized. Rather than
preserving a relational schema, it is better to denormalize the data so that we can
take advantage of nested and repeated documents. Indeed, nested and repeated
documents can maintain relationships without the performance impact of preserv-
ing a relational (normalized) schema.

4.2 UML4NoSQL: Proposal Details

In this section, we present guidelines for a successful switching from a class diagram
(CDM) to an NoSQL document-oriented model (LDOM).

In Table 2, we summarize the correspondence between elements of UML class
diagram and NoSQL data models. Later in the experimental phase, we apply the
conversion process over the document-oriented schema.

 NoSQL Systems

UML Class
Diagram

Key_Value Column Store Document Store Graph Database

Class Associative array Column Collections Graph

Attribute in Class Key-value name/value in column Documents Nodes

Association Key-value pairs Directory hierarchies References / Embedded Edges

Table 2. Correspondence between components of UML class diagram and NoSQL data
models

To formalize our approach we introduce some definitions of some terms used in
the building of the document-oriented model like Document, Collection and key-
value (attribute, value).

Definition 3. Let D be a set of documents Dj, j = 1, . . . ,m. Each document is
defined by a set of atomic or sub-documented couples (attribute, value):

Dj = {(Att ,Val)i; i = 1, . . . , n}, j = 1, . . . ,m

where n is the number of attributes and m the number of documents. The couples

UML4NoSQL 823

(attribute, value) of nested documents are sorted into a collection:

Coll = {(Att ,Val)ji ; j = 1, . . . ,m; i = 1, . . . , n}.

If CA is a subset of Coll, representing a class A, we assume that:

1. ∃Di, Dj ∈ D such that Di ⊂ CA and Dj ⊂ CB,

2. CAB = {CA{CB}} represent the fact that CB is embedded in CA.

Class A

IdA : int

AttA1 : Str

Class B

IdB : int

AttB1 : Str
* *

Association C

attC1: str

Class Aa

AttAa2: Str

Class Ab

AttAb2: Str

Figure 4. Passage from CDM to LDOM

The process of passage from CDM to LDOM, for the case illustrated in Figure 4,
goes through the following steps:

• Each class is transformed into a collection consisting of a set of documents,
where class attributes are transformed into attributes in each document:

CclassA ⊂ Coll,

CclassA = {(Att ,Val)Aid, (Att ,Val)AAttA1
}.

• A basic association (1..*) between the two collections, CclassA and CclassB, where
the primary key of CclassB migrates to the collection CclassA as a foreign key,
generates a nested collection N classB which is CclassB:

CAB = {CClassA{CClassB}} =

{
(Att ,Val)Aid, (Att ,Val)

A
AttA1

, (Att ,Val)Bid,

N classB : {(Att ,Val)Bid, (Att ,Val)BAttB1
}.

}

• An association many to many (*..*) between two collections, CclassA and CclassB,
creates a new collection CollAB containing the attributes of the association class,

824 M.E. Maicha, Y. Ouinten, B. Ziani

plus the primary keys of the two participating classes plus the two nested col-
lections N classA and N classB with their own attributes.

CollAB =

(Att ,Val)Aid, (Att ,Val)

B
id, (Att ,Val)AttC1,

N classA : {(Att ,Val)Aid, (Att ,Val)AAttA1
,

N classB : {(Att ,Val)Bid, (Att ,Val)BAttB1
.

• The DOM will be made up of the parent-child sets (Heritage association). In
each child nested collection N classAa and N classAb, we find the no-key attributes
of the class plus the primary key composed of the parent-child class keys. The
“Sort” value indicates which child class should be used to complete the infor-
mation in the generated collection CAaAb.

CAaAb =

(Att ,Val)Aid, (Att ,Val)

A
A1, (Sort,

N classAa : {(Att ,Val)Aa
id , (Att ,Val)

A
id, (Att ,Val)

Aa
AttAa2

},

N classAb : {(Att ,Val)Ab
id , (Att ,Val)

A
id, (Att ,Val)

Ab
AttAb2

}).

5 ILLUSTRATIVE EXAMPLE

The evaluation in this case is not an easy task, as stated by Roy-Hubara et al. in [31].
To demonstrate the applicability and the suitability of our approach we choose to
illustrate its use in this section through an illustrative example. Nevertheless, some
research efforts should be made to find answers to the issue of evaluation so as the
performance of NoSQL datatbase designs become measurable and comparable.

5.1 Description of the Experimental Case

Before proceeding to the modeling of the use case, we create an UML logical data
model independent from any database model. This model is then compared with
the model resulting from our approach.

The field of health care has already taken great advantages from Big Data. We
have therefore chosen a case study from this field to validate our approach. Figure 5
shows a fragment of LDM for the health care analytic system described in Section 3.

5.2 Applying the UML4NoSQL Approach

In this section we apply our approach on the above running example by describing
the two following steps:

1. Modeling developer’s strategies and users’ needs,

2. Generated NoSQL data model.

UML4NoSQL 825

Doctors_Assigned_to_patients

Patients
Doctors

Diagnoses

Drug_Categories (REF)

Drugs

Symptoms_indications

Drugs_indicationsPatient_Drugs_TreatmentsPatient_records

Pavilions Beds Patients_in_beds

Hospital_Container

Figure 5. Logical data model for health care system

Modeling developer’s strategies and users’ needs. In order to establish the
context of the system, we start by identifying the Actors that surround it and the
interaction between them. Applying the first and the second UML4NoSQL data
modeling aspects leads to the diagrams depicted in Figures 6, 7 and 8.

:Sensors

Patient

:Er-Patient

:In_bed :At_Home

Medical_staff

:Doctor

:Data analyst

:Decision
maker

:Hospital
administrator

Healthcare_System_Hospital*

Super container [Patient Journey]

All communications over a secure connection

Security

Functionalities related to diagnosis
(interpretation, and communication of test results)

Diagnosis

Patient register — functionalities

Medical_records

Functionalities related to patient_in_bed

Hospitalization

diagnose patients

View patient
records

Analyse data

prescribe medica-
tions

<<extend>>

:Nurse

Figure 6. Enhanced use case diagrams for health care system

The proposed enhanced use case diagram introduces a super container, as can
be seen in Figure 6. The super container hosts all the Big Data qualities required
for a use case diagram and reduces the complexity of the diagram by avoiding the

826 M.E. Maicha, Y. Ouinten, B. Ziani

creation of multiple instances of a data service. For example, the Patient journey
super container will allow to monitor the process of a patient diagnosis accomplished
by a doctor. In order to control the variability and the velocity of the actor’s queries,
we also propose the use of a container for a group of actors who have the same
behavior when querying the system.

We now describe how the communication lines between the patient journey super
container and the different actors’ containers are represented to connect them with
other sub use cases. The scenario we describe here is that the Data analyst (actor)
performs analytics on a sample of the targeted Big Data in order to understand
the patient’s health behavior changes. All controls within the super container are
applied, because the patient journey super container is on the communication line
between the Data analyst and the sub use case. As there is more than one actor, the
communication lines must be labeled. By referring to the same scenario mentioned
above, the connection between the Data analyst and the container is labeled with
“Da”.

Now, when we have developed the overall framework of the system through
a Use Case diagram, we come to identify two major steps to understand: the to-be-
managed data, and how a data-driven application needs to access such data. The
first being captured via a conceptual data model presented in Figure 7.

Hospital_Container

Patients_in_beds Beds Pavilions

Patient_Drugs_Treatments Drugs_indications

Symptoms_indications

Diagnoses

Patients

Doctors_Assigned_to_patients

Doctors
Drug_Categories (REF)

Drugs

Patient_records

Patient journey Vol

Ver

Vel

Var

Var

Vol: volume , Var: variety , Vel: velocity , Ver: veracity

Figure 7. An enhanced conceptual data model for the health care use case

UML4NoSQL 827

This data model is enriched with information regarding to the 4 V’s. For in-

stance, the developer has to anticipate the data volume Vol by assuming informa-

tion on the number of occurrences produced by entity-relationships, as well as its

growth velocity Vel . Depending on the detail of representation of data types, the

variety Var is linked to attributes. The veracity Ver is represented depending on

the confidence of the developer in the data sources, at two levels:

1. the attribute; when characterizing trustworthiness in value quality, and

2. the aggregate; when characterizing the relationship between entities.

Every access pattern specifies what attribute(s) to search for/on, to order by, or to
aggregate on.

Hospital

Hospital_id

Hospital_Name

Other_details

Medical_Staff

Staff_id

Hospital_id

gender

job_title

Full_Name

Birth_date

Qualifications

Other_details

R

R

R

Patient

Patirnt_id

NSS_number

gender

date_of_birth

Full_name

Height

Weight

phone_number

other_patient_details

Doctor_Assigned_to_Patient

Patient_id

Staff_id
From_date

To_date

E

Patient_records

Patirnt_record_id

patient_id

component_code

staff_id_Updated

update_date

approval_datetime

medical_condition

record_detail

Patient_Treatments

diagnosis_id

patient_id
drug_id

date_administered
dosage
comments

Diagnosis

diagnosis_id

patient_id

Doctor_id

diagnosis_date

details

Drug_categories

drug_categorie_code

description

R

Symptoms_indications

diagnosis_id

description

Drugs

drug_id

drug_categorie_code

drug_name

drug_description

drug_cost

other_details

R

Drugs_indications

drug_id

diagnosis_id

R

Patient_in_bed

bed_id

patient_id

date_from

date_to

E

Beds

bed_id

ward_number

bed_number

bed_position

Wards

ward_number

ward_name

location

description

R

R

Doctor

Doctor_id

Staff_other_details

E

E

E

E

E

E

 E: Embeeded
 R: Referrenced

Figure 8. Optimized logical document-oriented model

828 M.E. Maicha, Y. Ouinten, B. Ziani

Generated NoSQL data model. We perform data modeling principles seen in
Section 4.2, to represent a query-driven transition from an enhanced conceptual data
model to a logical data model (Figure 8).

Example 1. Let CPwR be a collection (as defined in Definition 3),

CPwR = {CPatient{CPatient records}}

where

CPatient = {(Att ,Val)Patient
Patient Id, (Att ,Val)

Patient
NSS number, (Att ,Val)

Patient
gender , . . . },

CPatient records = {(Att ,Val)Patient records
Patient Id , (Att ,Val)Patient records

Patient record Id, . . . }.

The detail of the document DPatient record is illustrated in Figure 9. For exam-
ple DPatient record provides the number of a patient’s record, of the patient named
“Younes GUELL” for the date 15/01/2021, having a medical condition equal to
COVID-19, updated by a staff member identified by his id.

The collection CPwR will be defined as follows:

CPwR =

(Att ,Val)Patient

Patient Id, (Att ,Val)
Patient
NSS number, (Att ,Val)

Patient
gender ,

(Att ,Val)Patient
Full name, . . . , (Att ,Val)

Patient records
Patient Id ,

NPatient records : {(Att ,Val)Patient records
Patient record Id, (Att ,Val)

Patient records
record detail , . . . }

where AttPatient

Patient Id, Att
Patient
Full name, Att

Patient
gender and AttPatient

NSS number are simple attributes,
and the other attributes are compound attributes. Thus, the values in the nested
documents for this example are all atomic values.

ValPatient
Patient Id = P012021L001,

ValPatient records
Patient record Id = 2021103,

ValPatient records
staff id Updated = DH001K02,

ValPatient records
approval datetime = 15/01/2021,

ValPatient records
medical condition = COVID-19,

ValPatient
Full name = Younes Guel.

6 CONCLUSION AND FUTURE WORK

This paper presents a modelling approach based on UML use case and class diagrams
dedicated to promote better strategies for data manipulation in NoSQL document
databases, including the four Big Data V’s.

UML4NoSQL 829

date_of_birth : 22/10/1984

Full_name : Younes Guel

{
 Patirnt_record_id : 2021103

staff_id_Updated : DH001K02

approval_datetime : 15/01/2021

{
{ Patient_id: P012021L001

}
{ Patient_id: __

}

 medical_condition : COVID-19
}

{ } = Collection

{ } = Document

Att: { } = Nessted Document
 (Patient_records)

Att: = attributes

{
{

Val = Values of the attributes

Figure 9. Graphic representation of the collection CPwR

The proposed approach is based on four pillars. We perform a data-up technique
resulting in a use case diagram to visualize the behaviour of the system. We also
present a conceptual model as an extended class diagram accompanied by guidelines
for a successful switching from class diagram to NoSQL document-oriented model.
To achieve such result, we introduce some definitions of several terms used to build
the document-oriented logical model. To demonstrate the utility of our methodology,
we provide an illustrative example.

Unlike related work, the proposed models can readily cover all conceptual de-
tails for NoSQL document databases. With future developments, our method will
incorporate other types of NoSQL databases. In this paper we have concentrated
our attention only on the understanding of the data at hand and the user’s needs
phases. On the basis of the promising findings, further work on the remaining UML
diagrams is underway and will be presented in future works. Also we plan to work
on a standard benchmark for the evaluation of our proposal, as well as any future
proposals, so that the performance of NoSQL database design becomes measurable
and comparable.

REFERENCES

[1] Chen, M.—Mao, S.—Liu, Y.: Big Data: A Survey. Mobile Networks and Appli-
cations, Vol. 19, 2014, No. 2, pp. 171–209, doi: 10.1007/s11036-013-0489-0.

https://doi.org/10.1007/s11036-013-0489-0

830 M.E. Maicha, Y. Ouinten, B. Ziani

[2] Gandomi, A.—Haider, M.: Beyond the Hype: Big Data Concepts, Methods, and
Analytics. International Journal of Information Management, Vol. 35, 2015, No. 2,
pp. 137–144, doi: 10.1016/j.ijinfomgt.2014.10.007.

[3] George, G.—Osinga, E.C.—Lavie, D.—Scott, B.A.: Big Data and Data
Science Methods for Management Research. Academy of Management Journal,
Vol. 59, 2016, No. 5, pp. 1493–1507, doi: 10.5465/amj.2016.4005.

[4] Li, S.—Dragicevic, S.—Castro, F.A.—Sester, M.—Winter, S.—
Coltekin, A. et al.: Geospatial Big Data Handling Theory and Methods:
A Review and Research Challenges. ISPRS Journal of Photogrammetry and Remote
Sensing, Vol. 115, 2016, pp. 119–133, doi: 10.1016/j.isprsjprs.2015.10.012.

[5] Storey, V.C.—Song, I. Y.: Big Data Technologies and Management: What
Conceptual Modeling Can Do. Data and Knowledge Engineering, Vol. 108, 2017,
pp. 50–67, doi: 10.1016/j.datak.2017.01.001.

[6] Rats, J.: Developing and Evaluating ECM Data Persistence Architecture. Comput-
ing and Informatics, Vol. 38, 2019, No. 2, pp. 454–472, doi: 10.31577/cai 2019 2 454.

[7] Davoudian, A.—Chen, L.—Liu, M.: A Survey on NoSQL Stores. ACM Comput-
ing Surveys (CSUR), Vol. 51, 2019, No. 2, Art. No. 40, doi: 10.1145/3158661.

[8] Shin, K.—Hwang, C.—Jung, H.: NoSQL Database Design Using UML Concep-
tual Data Model Based on Peter Chen’s Framework. International Journal of Applied
Engineering Research, Vol. 12, 2017, No. 5, pp. 632–636.

[9] Mior, M. J.—Salem, K.—Aboulnaga, A.—Liu, R.: NoSE: Schema Design
for NoSQL Applications. IEEE Transactions on Knowledge and Data Engineering,
Vol. 29, 2017, No. 10, pp. 2275–2289, doi: 10.1109/TKDE.2017.2722412.

[10] Chang, F.—Dean, J.—Ghemawat, S.—Hsieh, W.C.—Wallach, D.A.—
Burrows, M.—Chandra, T.—Fikes, A.—Gruber, R. E.: Bigtable: A Dis-
tributed Storage System for Structured Data. ACM Transactions on Computer Sys-
tems (TOCS), Vol. 26, 2008, No. 2, Art. No. 1000121, doi: 10.1145/1365815.1365816.

[11] Lakshman, A.—Malik, P.: Cassandra: A Decentralized Structured Storage Sys-
tem. ACM SIGOPS Operating Systems Review, Vol. 44, 2010, No. 2, pp. 35–40, doi:
10.1145/1773912.1773922.

[12] Gudivada, V.N.—Rao, D.—Raghavan, V.V.: NoSQL Systems for Big Data
Management. 2014 IEEE World Congress on Services, IEEE, 2014, pp. 190–197, doi:
10.1109/SERVICES.2014.42.

[13] Matallah, H.—Belalem, G.—Bouamrane, K.: Evaluation of NoSQL
Databases: MongoDB, Cassandra, HBase, Redis, Couchbase, OrientDB. Interna-
tional Journal of Software Science and Computational Intelligence (IJSSCI), Vol. 12,
2020, No. 4, pp. 71–91, doi: 10.4018/IJSSCI.2020100105.

[14] Das, A.—Mitra, A.—Bhagat, S.N.—Paul, S.: Issues and Concepts of Graph
Database and a Comparative Analysis on List of Graph Database Tools. 2020 Inter-
national Conference on Computer Communication and Informatics (ICCCI), IEEE,
2020, pp. 1–6, doi: 10.1109/ICCCI48352.2020.9104202.

[15] Roques, P.: UML 2.5 Par La Pratique: Etudes De Cas Et Exercices Corrigés.
Editions Eyrolles, 2018 (in French).

https://doi.org/10.1016/j.ijinfomgt.2014.10.007
https://doi.org/10.5465/amj.2016.4005
https://doi.org/10.1016/j.isprsjprs.2015.10.012
https://doi.org/10.1016/j.datak.2017.01.001
https://doi.org/10.31577/cai_2019_2_454
https://doi.org/10.1145/3158661
https://doi.org/10.1109/TKDE.2017.2722412
https://doi.org/10.1145/1365815.1365816
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1109/SERVICES.2014.42
https://doi.org/10.4018/IJSSCI.2020100105
https://doi.org/10.1109/ICCCI48352.2020.9104202

UML4NoSQL 831

[16] Marbán, Ó.—Segovia, J.: Extending UML for Modeling Data Mining Projects
(DM-UML). Journal of Information Technology and Software Engineering, Vol. 3,
2013, No. 2, Art. No. 1000121, doi: 10.4172/2165-7866.1000121.

[17] Atzeni, P.—Bugiotti, F.—Cabibbo, L.—Torlone, R.: Data Modeling
in the NoSQL World. Computer Standards and Interfaces, Vol. 67, 2020,
Art. No. 103149, doi: 10.1016/j.csi.2016.10.003.

[18] McConnell, C.C.—Liu, W.—Shayandeh, S.—Goodwin, R. L.: Efficient De-
normalization of Data Instances. Google Patents, 2020 (US Patent App. 16/740,081).

[19] Chevalier, M.—El Malki, M.—Kopliku, A.—Teste, O.—Tournier, R.:
Implementing Multidimensional Data Warehouses into NoSQL. Proceedings of
the 17th International Conference on Enterprise Information Systems – Volume 2
(ICEIS), 2015, pp. 172–183, doi: 10.5220/0005379801720183.

[20] Dehdouh, K.—Boussaid, O.—Bentayeb, F.: Big Data Warehouse: Build-
ing Columnar NoSQL OLAP Cubes. International Journal of Decision Sup-
port System Technology (IJDSST), Vol. 12, 2020, No. 1, pp. 1–24, doi:
10.4018/IJDSST.2020010101.

[21] Yangui, R.—Nabli, A.—Gargouri, F.: Automatic Transformation of Data
Warehouse Schema to NoSQL Data Base: Comparative Study. Procedia Computer
Science, Vol. 96, 2016, pp. 255–264, doi: 10.1016/j.procs.2016.08.138.

[22] Feng, W.—Gu, P.—Zhang, C.—Zhou, K.: Transforming UML Class Diagram
into Cassandra Data Model with Annotations. 2015 IEEE International Conference
on Smart City/SocialCom/SustainCom (SmartCity), IEEE, 2015, pp. 798–805, doi:
10.1109/SmartCity.2015.165.

[23] Gómez, P.—Casallas, R.—Roncancio, C.: Automatic Schema Generation for
Document-Oriented Systems. In: Hartmann, S., Küng, J., Kotsis, G., Tjoa, A.M.,
Khalil, I. (Eds.): Database and Expert Systems Applications (DEXA 2020). Springer,
Cham, Lecture Notes in Computer Science, Vol. 12391, 2020, pp. 152–163, doi:
10.1007/978-3-030-59003-1 10.

[24] Abdelhedi, F.—Brahim, A.A.—Atigui, F.—Zurfluh, G.: MDA-Based Ap-
proach for NoSQL Databases Modelling. In: Bellatreche, L., Chakravarthy, S. (Eds.):
Big Data Analytics and Knowledge Discovery (DaWaK 2017). Springer, Cham, Lec-
ture Notes in Computer Science, Vol. 10440, 2017, pp. 88–102, doi: 10.1007/978-3-
319-64283-3 7.

[25] Daniel, G.—Sunyé, G.—Cabot, J.: UMLtoGraphDB: Mapping Conceptual
Schemas to Graph Databases. In: Comyn-Wattiau, I., Tanaka, K., Song, I. Y., Ya-
mamoto, S., Saeki, M. (Eds.): Conceptual Modeling (ER 2016). Springer, Cham,
Lecture Notes in Computer Science, Vol. 9974, 2016, pp. 430–444, doi: 10.1007/978-
3-319-46397-1 33.

[26] Krommyda, M.K.—Kantere, V.: The Big Data Era: Data Management Nov-
elties for Visualizing, Exploring, and Processing Big Data. Analyzing Future Appli-
cations of AI, Sensors, and Robotics in Society, IGI Global, 2020, pp. 87–103, doi:
10.4018/978-1-7998-3499-1.ch006.

[27] Sharma, A.—Singh, G.—Rehman, S.: A Review of Big Data Challenges and
Preserving Privacy in Big Data. In: Kolhe, M., Tiwari, S., Trivedi, M., Mishra, K.

https://doi.org/10.4172/2165-7866.1000121
https://doi.org/10.1016/j.csi.2016.10.003
https://doi.org/10.5220/0005379801720183
https://doi.org/10.4018/IJDSST.2020010101
https://doi.org/10.1016/j.procs.2016.08.138
https://doi.org/10.1109/SmartCity.2015.165
https://doi.org/10.1007/978-3-030-59003-1_10
https://doi.org/10.1007/978-3-319-64283-3_7
https://doi.org/10.1007/978-3-319-64283-3_7
https://doi.org/10.1007/978-3-319-46397-1_33
https://doi.org/10.1007/978-3-319-46397-1_33
https://doi.org/10.4018/978-1-7998-3499-1.ch006

832 M.E. Maicha, Y. Ouinten, B. Ziani

(Eds.): Advances in Data and Information Sciences. Springer, Singapore, Lecture
Notes in Networks and Systems, Vol. 94, 2020, pp. 57–65, doi: 10.1007/978-981-15-
0694-9 7.

[28] Silva, C.V.—Saens, R.—Del Ŕıo, C.—Villarroel, R.: Aspect-Oriented Mod-
eling: Applying Aspect-Oriented UML Use Cases and Extending Aspect-Z. Comput-
ing and Informatics, Vol. 32, 2013, No. 3, pp. 573–593.

[29] Stokes, J.: Managing the Development of Large Software Systems – Apollo Real-
Time Control Center. 1970.

[30] Yoo, J.—Lee, K.H.—Jeon, Y.H.: Migration from RDBMS to NoSQL Us-
ing Column-Level Denormalization and Atomic Aggregates. Journal of Infor-
mation Science and Engineering, Vol. 34, 2018, No. 1, pp. 243–259, doi:
10.6688/JISE.2018.34.1.15.

[31] Roy-Hubara, N.—Sturm, A.: Design Methods for the New Database Era: A Sys-
tematic Literature Review. Software and Systems Modeling, Vol. 19, 2020, No. 2,
pp. 297–312, doi: 10.1007/s10270-019-00739-8.

https://doi.org/10.1007/978-981-15-0694-9_7
https://doi.org/10.1007/978-981-15-0694-9_7
https://doi.org/10.6688/JISE.2018.34.1.15
https://doi.org/10.1007/s10270-019-00739-8

UML4NoSQL 833

Mohammed ElHabib Maicha is Assistant Professor with the
Department of Computer Science and a member of the LIM lab-
oratory, Amar Telidji University Laghouat, Algeria. He received
his engineering degree from the University of Laghouat, in 2011.
He has been currently pursuing his Ph.D. degree at the Uni-
versity of Laghouat, Algeria, since 2017. His research interests
include databases, modeling, Big Data, and NoSQL.

Youcef Ouinten received his M.Sc. degree and Ph.D. degree in
operational research from the University of Southampton, UK, in
1984 and 1988, respectively. He received his graduation degree
(DES) in mathematics, option operational research, from the
University of Science and Technology – Houari Boumediene of
Algiers, Algeria, in 1981. He served as Head of the Computing
Center at the University Amar Telidji of Laghouat, from 1999
to 2012. He is currently Senior Lecturer at the Department
of Mathematics and Computer Science of the University Amar
Telidji of Laghouat, Algeria. His research interests include data

mining, text mining, information retrieval and optimization.

Benameur Ziani received his Engineer degree in computer
science from the Sidi Belabbes University, Algeria, and Ph.D.
degree in computer science from the University of Laghouat, Al-
geria. He is currently Associate Professor in computer science
at the Department of Computer Science of the University of
Laghouat. Prior to joining the Department of Computer Science
he served as Engineer in computer science at the computing cen-
ter of the University of Laghouat during 1992–2012. His current
research interests include knowledge discovery, data mining and
machine learning with applications in various areas: database

and data-warehouse design optimisation, Big Data and data networks analytics.

