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Igor André Pegoraro Santana, Marcos Aurélio Domingues

Departament of Informatics
State University of Maringá
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Abstract. Day by day, music streaming services grow the volume of data on the
internet. To help the users to find songs that fit their interests, music recommender
systems can be used to filter a large number of songs according to the preference of
the user. However, the context in which the users listen to songs must be taken into
account, which justifies the usage of context-aware recommender systems. Although
there are some works about context-aware music recommender systems, there is
a lack of automatic techniques for extracting contextual information for these sys-
tems. Thus, the goal of this work is to propose two methods to acquire contextual
information (represented by embeddings) for each song, given the sequence of songs
that each user has listened to. The first method, called Metadata-Aware, uses
tags and genres to enrich the embeddings with additional information. The second
method, called Dual Recurrent Neural Network, uses such a network to improve
the embeddings generated from long sequences of songs. The embeddings gener-
ated by both methods were evaluated with four context-aware music recommender
systems in two datasets. The results showed that the embeddings, obtained by our
proposals, present better results than the state-of-the-art method proposed in the
literature (in some cases with gains of more than 100%). Finally, the experiments
also showed that our second method provides better results than the first one.

Keywords: Metadata, recurrent neural networks, context-aware recommender sys-
tems, music recommendation, embeddings, context acquisition

Mathematics Subject Classification 2010: 68T99

https://doi.org/10.31577/cai_2022_3_834


Music Recommendation with Metadata and Recurrent Neural Networks 835

1 INTRODUCTION

With the growing of music streaming services nowadays, the abundance of available
songs for the users grows as well. Spotify, as an example, has 50 million songs
available in its directory. Users cannot handle so much data, making it necessary
for the system to implement a tool that assists users in finding songs that are fit for
their preferences.

The usage of smartphones with music streaming services changed how people
listen to music. A user can be texting a friend, browsing through its social networks
or answering e-mails, while listening to music in the background. Thus, a user is
inserted in a broader context while listening to a song. Also, as seen in [1], people
look for songs based on occasions, events and emotions, which suggest that listening
to songs is not an isolated event.

A useful tool to deal with this information overload is a recommender system,
which can recommend songs to users based on their preferences. Several works pro-
pose and review music recommender systems. For example, the work of [2] uses
pitch, duration and loudness of a music as descriptors for a content-based recom-
mender. In [3], the authors propose a hybrid music recommendation algorithm
that uses different kinds of social media information (e.g. tags, albums, artists,
tracks, groups, etc.) and music acoustic-based content (i.e. Mel-Frequency Cep-
stral Coefficients (MFCCs)). In [4], the author describes how music recommenders
work, explores some of the limitations seen in current recommenders, offers tech-
niques for evaluating the effectiveness of music recommendations and demonstrates
how to build effective recommenders by offering two real-world recommender ex-
amples. However, knowing that users usually listen to songs given a context, the
traditional recommender systems can be replaced by context-aware recommender
systems, which can include this kind of information in their model. The work of [5]
reviews some context-aware music recommender systems.

As can be seen, although there are some works about context-aware music rec-
ommender systems, there is a lack of automatic techniques for extracting contextual
information. To obtain such information, [6] proposed a method to obtain embed-
dings from songs with different goals: one goal was to obtain the general preference
from the user (Music2Vec) and another one was to obtain the contextual preference
from the user (Session-Music2Vec). The user’s general preference can be inferred by
its complete listening history and refers to the user’s specific preferences for music.
The contextual preference for songs indicates the recent preferences of the user in the
current session/context. The method was based on the Skip-Gram architecture [7],
a state-of-the-art embedding model.

Although the results obtained by [6] are promising, they can be improved. This
work proposes two methods to obtain general and contextual preferences (i.e. embed-
dings) for context-aware music recommender systems. The first method combines
the embeddings provided by [6] with Metadata-Aware embeddings. The second
method consists of a Dual Recurrent Neural Network to provide general and con-
textual embeddings.
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The methods were evaluated by using four context-aware recommender systems,
and two music datasets that include the listening history of thousands of users. The
own method proposed by [6] was used as baseline to compare with our proposals.
The results showed that, in both datasets, our proposed methods outperformed the
baseline, indicating that it can capture better general and contextual information
through the embeddings.

Thus, the main contributions of this paper can be summarized as follows:

• Proposal of a Metadata-Aware method that uses tags and genre as metadata to
improve the embeddings provided by [6];

• Proposal of a Dual Recurrent Neural Network method that uses Long Short-
Term Memory networks to analyze the sequence of songs that the users listened
to, and to produce better general and contextual embeddings;

• Extensive experiments to evaluate the two methods on two real world datasets,
and the results show that our proposals outperform the method proposed by [6].

The remaining of this paper is organized as follows: The related work is described
in Section 2. The motivation for this work is presented in Section 3. In Section 4, the
two proposed methods are described in details. Section 5 describes the empirical
evaluation, i.e. the datasets, the recommender systems and the results. Finally,
conclusions and future directions are presented in Section 6.

2 RELATED WORK

This section describes some related work in the context-aware music recommenda-
tion, as well as embedding and recurrent neural network models that also motivated
our work.

2.1 Context-Aware Music Recommendation

As the number of people using mobile devices to listen to songs grows due to the
number of applications and the quality of connection to stream those songs, the
amount of research conducted to study how to recommend songs to people in mobile
devices grows as well.

There are lots of works in the context-aware music recommendation area that
focus on mobile devices, since there is a lot of contextual information that can be
used by the recommenders. For example, the work of [8] proposes a probabilistic
model to integrate contextual information with music content analysis to offer music
recommendation for daily activities. In [9], the authors propose a novel approach for
recommending music pieces by reflecting the user’s current context captured from
the mobile device.

Different types of information can be used as contextual information for context-
aware music recommender systems. Location, for example, can be used as contextual
information, as shown by [10]. The emotion of the user when they are listening to
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the song is also a valuable information for a context-aware recommender system and
can be used to improve recommendations, as seen in [11].

2.2 Embedding

Some types of data, such as images and songs, can be modeled through analogic
signals to be used by neural networks. However, there are types of data, i.e. texts,
that cannot be processed in its original shape, requiring an adequate representation
to be processed.

Representing data as a vector of real numbers has its origins in the area of dis-
tributed representations [12]. In distributed representations, an item is represented
by a pattern of activities in a set of computational elements, e.g. neurons in neural
networks, and each element can represent multiple items.

However, there are many methods to obtain those vectors, known as embedding
vectors. One of the most prominent methods to obtain those vectors was proposed
by [7], and is called Word2Vec. It is composed of two models that are shallow neural
networks that are trained on a corpus of words and sentences.

There are two works proposed in the literature that are related to our work
and that used an adaptation of the Word2Vec method, as it can be extended to
a lot of domains. In the work of [13], and in its extended version [6], the authors
used Skip-Gram, one of the models in Word2Vec, for the song domain, intending to
obtain embeddings considering the songs that are around to a target song.

Another work proposed by [14] adapted an AutoEncoder model to the next song
recommendation task. Instead of using the AutoEncoder to transform the songs in
embeddings, the playlists, in which are the songs, were transformed in embeddings.
The next songs to be recommended are then computed based on the embeddings of
the playlists.

2.3 Recurrent Neural Network

To the best of our knowledge, the first work that used Recurrent Neural Networks
to obtain embeddings for songs in order to be used in context-aware recommender
systems was [15], which used a Gated Recurrent Unit. Similar to the [6], they
proposed a model to obtain the embeddings based on the sequence of songs that
a user has listened to. However, [15] not only used Gated Recurrent Unit to obtain
the embeddings but also to recommend the songs for the next song recommendation
task. A more recent work proposed a Recurrent Neural Network embedding model
that learns the sequential listening behaviour of users, and adapts it to the current
context [16].

3 MOTIVATION

The main task of a music recommender system is to propose interesting music to the
users based on their musical preference, as defined by [4]. However, the preference
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of a user for music changes over time, as the user listens to music while is texting
a friend, browsing through its social networks, or answering e-mails. Thus, it is
possible to say that the user is inserted in a broader context while listening to
a song.

There are some techniques to collect the context in which the user is inserted, and
to use it in a context-aware recommender system to improve the recommendations.
In [17], the authors described that contextual information can be obtained explicitly,
i.e., when the user explicitly provides the information about its listening record, or
implicitly, i.e., from a sequence of songs that a user has listened to.

This work exploits both ideas described by [17] to collect contextual information,
explicitly and implicitly, in the music domain. Thus, this work is based on the
following two motivations.

Motivation 1. The explicitly contextual information in the format of metadata
attributes is used to improve the embedding vectors.

As described in [4], there are different types of music recommender systems that
use contextual information to recommend songs to a user. One of those methods
uses the tags of the song to produce better results than simply using traditional
recommender systems [18]. One of our proposals aims at using not only tags but
also metadata attributes of songs with embeddings to improve context-aware music
recommender systems.

Motivation 2. The implicitly contextual information is obtained by using Recur-
rent Neural Networks to analyze the sequence of songs that a user has listened to.

Recurrent Neural Networks are a family of neural networks specialized in pro-
cessing sequences of data, and can scale to much longer sequences than other net-
works without sequence-based specialization, as defined by [19].

Knowing that Recurrent Neural Networks are specialized in processing sequen-
ces, our second proposal aims at processing the sequence of songs on each user’s
listening history to obtain implicit contextual information to be used in context-
aware music recommender systems.

4 PROPOSED WORK

This section describes the two methods proposed in this work. The notation used in
this work is formalized in Subsection 4.1. Subsection 4.2 presents the model proposed
by [6], and shows how it has been extended in this work to obtain Metadata-Aware
song embeddings (i.e. our first method). Subsection 4.3 describes our second method,
a Dual Recurrent Neural Network proposed to obtain song embeddings.

4.1 Notation

Let U =
{
u1, u2, . . . , u|U |

}
be the set of users and M =

{
m1,m2, . . . ,m|M |

}
be the

set of songs, in which |U | and |M | are the total number of unique users and songs,
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respectively. For each user u, its listening history are the songs that were listened to

by the user with its respective date and time, defined as Hu =
{
mu

1 ,m
u
2 , . . . ,m

u
|Hu|

}
.

The user’s listening history can be divided into sessions Su =
{
Su
1 , S

u
2 , . . . , S

u
|Su|

}
according to how much time has passed between two songs. A session n from user u is

defined as Su
n =

{
mu

n,1,m
u
n,2, . . . ,m

u
n,|Su

n |

}
, in which mu

n,j ∈ M . In this work, sessions

are created after 30 minutes passed between two songs. Additionally, let us assume

that AHu =
{
amu

1
, amu

2
, . . . , amu

|Hu|

}
, where AHu consists of metadata attribute for

each song in the listening history of the user u. Similar to the songs, the metadata
attribute will also be split into sessions. Thus, for the metadata attribute, a session

n from user u is defined as ASu
n
=
{
amu

n,1
, amu

n,2
, . . . , amu

n,|Su
n|

}
.

4.2 Metadata-Aware Method

As seen in [20], embeddings are a kind of distributed representation that can be
learned by different feature learning techniques. An embedding of an item is a con-
tinuous vector in a low dimensional space that was mapped from a space with one
dimension per item by a feature learning technique. As an example, words in a text
are not easy to represent given the amount of words that exist in a vocabulary.
Word embeddings, that are embeddings that represent a word, were proposed first
by [21] and popularized by [7].

Inspired by the Word2Vec model proposed in [7], [6] introduced a method to
obtain the embedding vectors from songs. The method is based on the Skip-Gram
model and consists of two models: Music2Vec and Session-Music2Vec.

The main idea of the method is that the sequence of songs listened by a user
reflects its song preferences during that period, and that co-occurrence of songs in
a sequence indicates that those songs are similar. Embeddings of songs that are
close in a sequence must appear close in a low dimensional space.

The Music2Vec learns the embedding vectors of a song mu
i from its neighbor

songs
{
mu

i−c : m
u
i+c

}
\mu

i on the complete listening history Hu from a user u. In
a formal way, as described by [6], the objective function of the Music2Vec model is
defined as:

L =
∑
u∈U

∑
mu

i ∈Hu

∑
−c≤j≤c

log p
(
mu

i+j|mu
i

)
(1)

where c correlates to the size of the contextual window. As in the Skip-Gram
model, the contextual window slides through the whole listening history of the user.
In Equation (1), p

(
mu

i+j|mu
i

)
represents the conditional probability of a song mu

i+j

being in the contextual window of a song mu
i in Hu, which formally is defined by

using the softmax function:

p
(
mu

i+j|mu
i

)
= exp

(
vT
mu

i
· v′

mu
i+j

)
/
∑
m∈M

exp
(
vT
mu

i
· v′

m

)
(2)
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where vm and v′
m are input and output vectors of the song m, respectively. As

seen in Equations (1) and (2), the contextual window of the model Music2Vec slides
through the whole listening history of the user, obtaining the general embedding
vector from the user. However, the musical tastes of a user can vary a lot during
the listening history, indicating that an approach based on sessions is more viable
to capture those variations.

The Session-Music2Vec tries to solve the problem of the variation of the musical
taste on the listening history of the user. In the Session-Music2Vec model, instead
of learning the embedding vectors from the whole learning history, the listening
history is split into smaller sessions to learn the embeddings. Then, we have the
contextual window slides through the sessions instead of the whole listening history,
which allows us to obtain the contextual embedding vector from the user.

Formally, the Session-Music2Vec tries to learn the embedding vectors of a song
mu

n,i from its neighbor songs
{
mu

n,i−c : m
u
n,i+c

}
\mu

n,i, in the session n of the user u.
The objective function for the Session-Music2Vec is defined by:

L =
∑
u∈U

∑
Su
n∈Su

∑
mu

n,i∈Su
n

∑
−c≤j≤c

log p
(
mu

n,i+j|mu
n,i

)
, (3)

which is similar to the objective function defined in Equation (1), with the difference
that it iterates through the user sessions. In a similar way, p

(
mu

n,i+j|mu
n,i

)
represents

the conditional probability of a neighbor song mu
n,i+j given a song mu

n,i in a session
Su
n, which is defined using the softmax function:

p
(
mu

n,i+j|mu
n,i

)
= exp

(
vT
mu

n,i
· v′

mu
n,i+j

)
/
∑
m∈M

exp
(
vT
mu

n,i
· v′

m

)
. (4)

Our first proposal consists of using both models defined by [6] not only to obtain
embedding vectors for the songs, but also to obtain embedding vectors from another
metadata attribute of the sequence. Following the notation from Subsection 4.1, our
proposal uses the metadata attribute for each song in the listening history AHu as
input for the Music2Vec, and the metadata attribute for each song in the listening
session ASu

n
as input for the Session-Music2vec.

Figure 1 illustrates how our proposed method uses the Music2Vec model with
a song and a metadata attribute from the listening history. The embedding vec-
tors for the song and for the metadata attribute related to the song are obtained
by using the Music2Vec. Then, those embeddings are used to perform an embed-
ding operation that will result in a song embedding that is Metadata-Aware. The
final embedding will be used by the context-aware recommender systems. Our pro-
posed method also carry out a process similar to the one presented in Figure 1
using the Session-Music2Vec model to obtain the contextual information that is
also Metadata-Aware.

With respect to the embedding operation in Figure 1, three simple vector op-
erations are used to combine the song and metadata embeddings: vector addition
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Figure 1. Process for obtaining the metadata-aware song embeddings using the Music2Vec
model
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(ADD), vector product (MUL) and vector average (AVG). Assuming that v′
m is the

embedding for the song m, and v′
am is the embedding for the metadata attribute of

the song m, those operations can be defined as:

ADD = v′
m + v′

am , (5)

MUL = v′
m × v′

am , (6)

AVG =
v′
m + v′

am

2
. (7)

4.3 Dual Recurrent Neural Network Method

Recurrent Neural Networks are neural networks designed to process a sequence of
information, which can scale sequences of various lengths, as seen in [19]. This is
possible because they share the network parameters across different parts of a model,
which makes it possible to generalize what was learned across the model.

Our second method consists of a Dual Recurrent Neural Network that is able to
learn the general and contextual preferences in a same model, generating embeddings
for the songs that can be used in context-aware music recommenders. Similar to the
Context Bag-of-Words (CBOW) model proposed by [22], the goal of our method is
to predict the center song in the contextual window given its neighborhood songs.
However, in contrast to the CBOW model, the Recurrent Neural Network is used to
analyze the contextual windows, and the order in which the songs are in the window
does matter. Figure 2 presents an overview of the proposed method and its most
important layers.

Long Short-Term Memory (LSTM) was proposed by [23] and is a kind of Re-
current Neural Network that has the intent to solve problems with long term de-
pendencies. It uses gated cells that are capable to forget information that will no
longer be useful, and to keep information that can be used later on the sequence [19].
There are three gates in the LSTM cell: forget gate, input gate, and output gate.
Through those gates, the LSTM cell learns which information is useful in a se-
quence and passes that information to make predictions through the output gate,
and the cell state containing the relevant information is passed to the next times-
tamp.

The learning process of a LSTM is comparable to the learning process of a feed-
forward neural network, which consists of a forward phase and a backward phase.
The forward phase is similar to the one from feedforward neural networks with
a single hidden layer. However, there is a difference, the activation values from the
hidden layer comes from the input layer and the last time step of the hidden layer,
since LSTMs work with a sequence of data.

The BackPropagation Through Time algorithm, responsible for updating the
weights of the LSTM, is also similar to the BackPropagation algorithm of the feed-
forward neural networks. It uses the gradient descent method to update the weights
of the neurons, but because it goes back in the time steps, it receives the name
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BackPropagation Through Time [19].

Figure 2. Overview of the Dual Recurrent Neural Network method

As seen in Figure 2, our method receives streams of data: the left one, which
has as input the sliding window of a song mu

i , taking into the complete listening
history of a user Hu, for all users. The right stream has as input the sliding window
of the same song mu

n,i, taking into account the session in which the song is, instead
of the whole listening history.

Those sliding windows are passed to the LSTM layers, that are responsible to
analyze the hidden relationships between the sequences of songs in the windows of
both streams of data. Then, the cell state of the last timestamp of both LSTMs are
concatenated side by side into a single vector. Then, this vector is used as input
by a fully connected feedforward layer, that tries to predict the song that is in the
center of both sliding windows, using as input the concatenated vector.

Each part of the model has its own embedding matrix that is initialized with
all the songs in the dataset and, as the model learns through the forward and
back-propagation process, this matrix gets updated. Those embeddings will later
be used in the context-aware recommender systems. The result of this training
process is that each song will have two embedding vectors: the general embed-
ding vector and the contextual embedding vector. Thus, the flexibility of neu-
ral networks in a single model can be explored to learn the two embedding vec-
tors.

5 EMPIRICAL EVALUATION

This section describes the empirical evaluation conducted to evaluate our two pro-
posals. Subsection 5.1 presents the datasets and their main statistics. Subsection 5.2
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describes the context-aware recommender systems used to evaluate our methods.
The evaluation setup and the metrics used in our evaluation are described in Sub-
section 5.3. Then, the results are discussed in Subsection 5.4.

5.1 Datasets

The empirical evaluation used two different datasets which contain the listening
history for each user, as well as the timestamp for each listening event.

The first dataset, called Xiami1, was proposed by [6]. It was built using a web
crawler on the Xiami Music2 application. This dataset has 361 899 songs and 4 284
users with 1 000 listened to songs in their listening history.

The second dataset, called Music4All3, was proposed by [24]. It was created us-
ing the last.fm4 official API and has 15 602 users and 109 269 songs, with an average
of 361 songs per user. The dataset also has 853 unique genres and 19 541 unique
tags.

It is worth to say that the Xiami dataset does not have metadata atributes. So,
our metadata proposal was evaluated only in the Music4All dataset.

5.2 Context-Aware Recommender Systems

The evaluation of our embeddings (i.e. contextual information) was carried out by
using the four context-aware recommender systems proposed by [6]. The recom-
menders make use of a general preference and a contextual preference for each user,
which are built based on the learned embedding vectors. The general preference for

a user u can be learned from its entire listening history Hu =
{
mu

1 ,m
u
2 , . . . ,m

u
|Hu|

}
and is defined as:

pu
g =

1

|Hu|
∑

mu
i ∈Hu

vg2v
mu

i
(8)

where vg2v
mu

i
is defined as the general embedding vector. The contextual preference for

the user u, given their current session Su
n =

{
mu

n,1,m
u
n,2, . . . ,m

u
n,|Su

n |

}
can be defined

as:

pu
c =

1

|Su
n|

∑
mu

n,i∈Su
n

vc2v
mu

n,i
(9)

where vc2v
mu

n,i
corresponds to the contextual embedding vector for the song. As can

be seen in Equation (8), the general preference is defined as an average of all the
general embedding vectors of the songs in the user’s listening history. On the other
hand, the contextual preference, defined in Equation (9), is the average of all the

1 https://1drv.ms/f/s!ApojZBGe9UzXgaI6x8pBf8JgN4PfZg
2 https://www.xiami.com
3 https://sites.google.com/view/contact4music4all
4 https://www.last.fm

https://1drv.ms/f/s!ApojZBGe9UzXgaI6x8pBf8JgN4PfZg
https://www.xiami.com
https://sites.google.com/view/contact4music4all
https://www.last.fm
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contextual embedding vectors of the songs in the user’s current session. Given the
general and contextual embeddings as well as the preferences for each user, four
context-aware recommender systems were defined in [6]:

• Music2vec-TopN (M-TN);

• Session-Music2vec-TopN (SM-TN);

• Context-Session-Music2vec-TopN (CSM-TN); and

• Context-Session-Music2vec-UserKNN (CSM-UK).

Among all context-aware recommender systems, the M-TN is the only one that
uses only the general preference (i.e. the general embedding vector) to recommend
songs to the users. Given a user u and their general preference pu

g for songs, the
recommender system measures the cosine similarity between pu

g and the general
embedding vector of all the songs in the set of songs M . The top-N songs with
the highest value of cosine similarity are recommended to the user. Formally, the
predicted preference of the user u to the song m can be defined as:

ppM−TN(u,m) = cos
(
pu
g ,v

g2v
m

)
. (10)

The SM-TN recommender system is similar to M-TN, but it uses contextual
information instead of the general information. Given a user u and their contextual
preference pu

c , the SM-TN measures the cosine similarity between the contextual
embedding vector vc2v

mu
n,i

of the songs and the contextual preference of the user. The

top-N songs with the highest cosine similarity are then recommended to the user.
Formally, the preference can be defined as:

ppSM−TN(u,m) = cos
(
pu
c ,v

c2v
m

)
. (11)

The CSM-TN recommender system is a combination of the previous recom-
mender systems: M-TN and SM-TN. After the similarity of each recommender is
calculated for each song, they are summed to obtain the most similar songs ac-
cording to both the general and contextual preferences of the user. Formally, the
preference is defined as:

PPCSM−TN(u,m) = cos
(
pu
g ,v

g2v
m

)
+ cos

(
pu
c ,v

c2v
m

)
. (12)

The last recommender system, CSM-UK, proposes a combination of the tra-
ditional recommender system, UserKNN [25], with the learned embedding vectors.
The UserKNN recommender system needs a similarity function to build a neighbor-
hood of similar users. In [6], the similarity function between two users, u and v is
defined as follows:

sim(u, v) =
∑

m∈Mu∩Mv

1√
|Mu| × |M v|+ cos

(
pu
g ,p

v
g

) (13)
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where Mu and M v are the set of songs listened by the users u and v, respectively.
With the similarity function, the CSM-UK system recommends the top-N most
similar songs for each user, given the user contextual preference and their most
similar users. The predicted preference for the target user u to a song m can be
defined as:

ppCSM−UK(u,m) =

( ∑
v∈Uu,K∩Um

sim(u, v)

|Uu,k ∩ Um|

)
+ cos

(
pu
c ,v

c2v
m

)
(14)

where Uu,K is the set with the K users more similar to u, and Um is the set of users
who have listened to song m.

5.3 Evaluation Setup

As a baseline for our methods, it was used the approach proposed by [6] which
is considered state-of-the-art when it comes for acquiring embedding vectors from
songs, and that empirically outperformed several other recommender systems (i.e.
Temporal Recommendation Based on Injected Preference Fusion (IPF), Bayesian
Personalized Ranking (BPR), FISMauc (FISM), Factorizing Personalized Markov
Chains (FPMC), Hierarchical Representation Model (HRM), and User-based Col-
laborative Filtering (UserKNN)).

To verify if our methods are able to achieve better results than the one proposed
by [6], the context-aware recommender systems were executed using the k-fold cross-
validation protocol.

In this k-fold cross-validation, the users of the datasets are split into k mutually
exclusive partitions, in which 1 of these partitions is chosen as the testing partition
and the remaining are chosen as the training partition. The testing partition is
chosen k times, without repeating the same partition, as seen in [26]. Figure 3
shows the process of splitting the users into partitions, assuming k = 5 that is the
value used in our work.

Users that are in the training partition use all of their songs sessions to build
their preferences (general and contextual), as it can be seen in Figure 3. As for the
users that are in the testing partitions, they use only the first part of their sessions
to build their preferences, and the second part for each session is used as the testing
songs.

To evaluate the recommendations made by the recommender systems, it was
used five different metrics, which three (Precision, Recall, and F-measure) are com-
monly used to evaluate the accuracy of the recommendations, and two metrics are
used to evaluate if the ranking of the recommendations meets the user’s preference,
which are Mean Average Precision (MAP) and Normalized Discounted Cumulative
Gain (NDCG) [27].

Precision, as described by [28], is a metric that measures the proportion of satis-
fying recommendations made by the recommender system, indicating the quality of
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Figure 3. The k-fold cross-validation protocol with k = 5

recommendations made with an emphasis on the success of the recommendations.
As seen in [29], Precision can be defined as:

Precision =
|tp|

|tp|+ |fp|
(15)

where, according to Table 1, tp means true positive and fp means false positive.
Recall, on the other hand, measures the proportion of the recommendations

among the songs that the user is actually interested in. [29] defined Recall as:

Recall =
|tp|

|tp|+ |fn|
(16)

where, according to Table 1, tp means true positive and fn means false negative.
The F-measure metric is defined as the harmonic mean between the Precision

and Recall metrics and as those metrics, its value varies between 0 and 1. As seen
in [29], F-measure can be defined as:

F-measure = 2 ∗ Precision ∗ Recall
Precision + Recall

. (17)

The ranking metrics that were used in this work have different goals. MAP, for
instance, as described in [29], has as its main focus to ensure that the first few items
in the recommendation list are in the correct order. If they are not, the metric will
penalize the recommendation list.

The MAP metric can be calculated as a mean of the Average Precision (AP)
metric for each recommendation made for a single user. The metric AP can be
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calculated for a recommendation list with N items (in our case, songs) as:

AP@N =
1

N

N∑
k=1

P (k) · rel(k) (18)

where P (k) refers to the Precision metric calculated to the first k elements of the
recommendation list and rel(k) is the operation that verifies if the item that is in
the recommendation list in the position k is the same that is in the position k in
the testing list, returning 1 if it is true or 0 if it is false.

The NDCG metric, in contrast to the MAP metric, does not favor the items
that appear first in the recommendation list. Its goal, as defined by [29], is to offer
a metric that is appropriated to large recommendation lists in which the penalty is
applied to the items that are further from the beginning of the list. Assuming that
a user u has a gain gu,i for being recommended an item i to it, the mean of the
metric Discounted Cumulative Gain (DCG) for a list of J items can be defined as:

DCG =
1

N

N∑
u=1

J∑
j=1

gu,ij
logb(j + 1)

(19)

where ij represents the item i in the position j of the list. The base b of the logarithm
can be changed, but in general the value is 2 or 10. The normalized version of the
metric DCG (NDCG), can be calculated as:

NDCG =
DCG

DCG∗ (20)

where DCG∗ corresponds to the DCG computed using the set of songs that the users
have listened to.

Song Recommended Song not Recommended

Song Listened to true positive (tp) false negative (fn)

Song not Listened to false positive (fp) true negative (tn)

Table 1. Classification of the possible result of a recommended song to a user [29]

In this evaluation setup, the two sided paired t-test with a 95% confidence level
is applied to compare two context-aware recommender systems [30].

5.4 Results

This subsection presents the results for both methods proposed in Section 4. It is
important to say that the first method, which uses metadata attributes to improve
the embedding vectors, was evaluated only in the Music4All dataset, as it is the
only dataset in this work that has these attributes. Both methods followed the same
evaluation setup described in the previous subsection, and all values are statistically
significant.
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5.4.1 Results for the Metadata-Aware Method

Here, two different metadata attributes were used to evaluate the efficiency of our
first method: tags and genres. Tags, as seen in [24], are provided by the users to
a song based on their involvement with the song. Genre is an attribute that is
filtered from the tags based on the application Every Noise at Once5, meaning that
they are a subset of tags and also assigned by users.

As tags and genres are lists of attributes, they were evaluated by using two
different strategies. The first strategy consisted of using a random value from the
list of genres/tags as the metadata attribute. The second strategy used all the values
in the list of attributes, concatenating all the values in the list, separated by the
symbol “ ”. As an example, if a song has the following genres pop, rock ,metal ; in
the first strategy, one genre is randomly picked up as the metadata attribute. On
the other hand, for the second strategy, the value for the metadata attribute will be
“pop rock metal”.

After obtaining the embedding vectors from both the songs and the metadata
attributes, different operations are performed with those vectors, as seen in Figure 1.
The operations that were performed in this work are ADD, MUL and AVG, as
described in Subsection 4.2.

As can be seen in Figure 4, the use of genre as metadata attribute provides
the best results for both strategies. The only exception was the random genre
with the MUL operation on the SM-TN and CSM-UK recommender systems. In
Figure 5, the same behavior can be observed with ten recommendations. The only
attribute which the metrics did not surpass the baseline was the random genre
with the MUL operation in the SM-TN and CSM-UK recommender systems. That
indicates that both strategies, i.e. using a random genre or all the genres together,
are viable options as metadata attribute to improve the embedding vectors from
songs in context-aware recommender systems.

It is worth to say that for five recommendations, the M-TN algorithm presented
an improvement for each metric, and we can highlight an improvement of 76.32% in
Precision and 75.89% in F-measure using all genres with the MUL operation, which
was the best attribute and operation combination for this recommender system.

On the other hand, the SM-TN recommender system did not show an im-
provement for all combinations. The combination that stood out the most was
also using all genres with the MUL operation, which showed an improvement of
12% in Precision, 11.28% in F-measure and, 9.52% in NDCG. The results for the
CSM-UK recommender systems are pretty similar to the SM-TN recommender sys-
tem.

For the CSM-TN recommender system, which combines both general and con-
textual preferences, all combinations showed good improvements. As a metadata
attribute, the random genre was the best attribute for this recommender system, and
the operations that performed better were ADD and AVG. With the ADD opera-

5 http://everynoise.com

http://everynoise.com
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Figure 4. Results for the metadata-aware method with five recommendations using genres
as the metadata attributes

tion, we obtained an improvement of 60.32% in Precision and 56.92% in F-measure,
as well as in the AVG operation, that was an improvement of 45.57% in Recall and
47.41% in NDCG.

The second metadata attribute that was evaluated were the tags, and the results
are presented in Figures 6 and 7. For five recommendations (Figure 6), M-TN and
CSM-TN recommender systems obtained an improvement for all metadata attribute
strategies and operations. Similar to what happened with the genres attribute, only
the combination of the random tag with the MUL operation was not able to surpass
the baseline in every recommender system and metric. It is worth to say that
although we found a similar behavior between genres and tags, the absolute values
obtained by the tags attributes are lower compared to the ones obtained by the
genres attributes.
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Figure 5. Results for the metadata-aware method with ten recommendations using genres
as the metadata attributes

With respect to the ten recommendations (Figure 7), the random tag with the
MUL operation was able to surpass the baseline only in the M-TN recommender
systems, which was the only recommender system that got better results than the
baseline for all possible combination (i.e. strategies and operations).

In general, by using tags, the combinations that performed better were the ones
that used all the tags instead of a random tag. We can highlight the combination of
using all the tags with the MUL operation, which was able to obtain an improvement
of 77% in F-measure and 75% in NDCG for the M-TN recommender system, and an
improvement of over 13% in Precision and F-measure for the SM-TN recommender
system.

Although user given tags are useful contextual information to be considered
when recommending songs to users, as seen in [4], a subset of the tags, i.e. the gen-
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Figure 6. Results for the metadata-aware method with five recommendations using tags
as the metadata attributes

res, may produce better results. Based on the results obtained with both metadata
attributes, it can be observed that the genres in the Music4All dataset provided
better embeddings to be used in context-aware music recommenders. The reason
for this fact is that similar songs usually have similar genres, and songs of spe-
cific genres tend to be listened to by users that have similar general/contextual
preferences. In other words, similar songs tend to appear in the same playing se-
quences. For example, a rock song is likely to appear in the playing sequences of rock
users instead of classical song users. Furthermore, these co-occurrences that reflect
the features of songs can be captured by our approach to learn the embeddings of
songs.

Finally, the results showed that the M-TN recommender did not outperform
so well as the other recommender systems. The reason for this is that the M-TN
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Figure 7. Results for the metadata-aware method with ten recommendations using tags
as the metadata attributes

recommender uses only general preference embeddings obtained from long sequences
of songs, and the model Music2Vec, used to obtain the embeddings, does not handle
so well with such long sequences. The second method proposed in this work uses
a recurrent neural network that handles better with long sequences of songs.

5.4.2 Results for the Dual Recurrent Neural Network Method

For the second method proposed in this work, several parameters were tested in
order to obtain the best embedding vectors in both datasets, Xiami and Music4All.
The parameters and their values, used by the second method, and that provided the
best results can be seen in Table 2.

The best results were obtained with a contextual window of size 3, i.e. three
songs before and after the target song. This value indicates that the proposed
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method does not need too many songs around the target song to learn good general
and contextual vector representations.

It is worth mentioning that although the Music4All is significantly lower then the
Xiami dataset, when comparing the number of songs (30% fewer songs), it needed
more LSTM units and a larger embedding vector to obtain good results.

Dataset Parameter Value

Both Size of the contextual window 3

Xiami LSTM units 256

Music4All LSTM units 512

Xiami Embedding vectors size 256

Music4All Embedding vectors size 1 024

Table 2. Parameters used to obtain the best results

Similar to the metadata-aware method, it was generated five and ten recom-
mended songs for each user. The results with the Xiami dataset are presented in
Tables 3 and 4, and the results with the Music4All dataset in Tables 5 and 6. The
proposed method was able to outperform the baseline in both datasets. The metric
that shows the best improvement over the baseline was F-measure, with an improve-
ment of over 344% for the M-TN recommender system in the Music4All dataset with
ten recommendations.

Methods RS Precision Recall F-Measure MAP NDCG

Baseline M-TN 0.0385 0.0285 0.0257 0.1324 0.0292
Dual RNN M-TN 0.0854 0.0868 0.0659 0.3346 0.0956

Baseline SM-TN 0.1189 0.1320 0.0948 0.4305 0.1532
Dual RNN SM-TN 0.1728 0.1674 0.1295 0.5269 0.1824

Baseline CSM-TN 0.0707 0.0768 0.0552 0.2780 0.0869
Dual RNN CSM-TN 0.1675 0.1670 0.1278 0.5286 0.1836

Baseline CSM-UK 0.1175 0.1310 0.0939 0.4257 0.1522
Dual RNN CSM-UK 0.1722 0.1671 0.1291 0.5261 0.1821

Table 3. Results for the Xiami dataset with five recommendations. Best result is high-
lighted in bold (all differences are statistically significant at the 0.05 level using a two
sided paired t-test). In the table, RS is a short for Recommender Systems.

For five recommendations, the proposed method was able to obtain embedding
vectors that outperformed the baseline in both datasets. In the Music4All dataset,
the method obtained better general embeddings (i.e. M-TN recommender) compared
to the Xiami dataset, with improvements of 314% in the F-measure and Precision, as
an example. On the other hand, the method obtained better contextual embedding
vectors (i.e. SM-TN, CSM-TN and CSM-UK recommenders) for the Xiami dataset
in comparison to the Music4All dataset.

In Table 5, it can be seen that there is only a small improvement in the SM-
TN recommender system. For the NDCG metric, as an example, there was only
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Methods RS Precision Recall F-Measure MAP NDCG

Baseline M-TN 0.0297 0.0389 0.0274 0.0771 0.0395
Dual RNN M-TN 0.0622 0.1089 0.0630 0.1943 0.1176

Baseline SM-TN 0.0864 0.1586 0.0883 0.2512 0.1764
Dual RNN SM-TN 0.1269 0.2008 0.1224 0.3174 0.2145

Baseline CSM-TN 0.0514 0.0944 0.0520 0.1599 0.1027
Dual RNN CSM-TN 0.1269 0.2070 0.1249 0.3209 0.2224

Baseline CSM-UK 0.0860 0.1581 0.0879 0.2508 0.1759
Dual RNN CSM-UK 0.1266 0.2004 0.1220 0.3169 0.2141

Table 4. Results for the Xiami dataset with ten recommendations. Best result is high-
lighted in bold (all differences are statistically significant at the 0.05 level using a two
sided paired t-test). In the table, RS is a short for Recommender Systems.

Methods RS Precision Recall F-Measure MAP NDCG

Baseline M-TN 0.0250 0.0239 0.0208 0.0642 0.0264
Dual RNN M-TN 0.1036 0.0953 0.0863 0.1798 0.1091

Baseline SM-TN 0.1105 0.1092 0.0971 0.1962 0.1320
Dual RNN SM-TN 0.1200 0.1165 0.1032 0.2156 0.1329

Baseline CSM-TN 0.0620 0.0670 0.0551 0.1388 0.0790
Dual RNN CSM-TN 0.1261 0.1213 0.1080 0.2230 0.1379

Baseline CSM-UK 0.1100 0.1088 0.0967 0.1956 0.1315
Dual RNN CSM-UK 0.1190 0.1155 0.1022 0.2138 0.1319

Table 5. Results for the Music4All dataset with five recommendations. Best result is
highlighted in bold (all differences are statistically significant at the 0.05 level using a two
sided paired t-test). In the table, RS is a short for Recommender Systems.

an improvement of 0.74%. The same metric in the Xiami dataset, however, had
an improvement of 19%, as it can be seen in Table 3. Results for the CSM-UK
are similar to the SM-TN recommender system for both datasets, suggesting that
the information about users was not relevant to the recommenders. The CSM-
TN recommender system, which combines both general and contextual embedding
vectors, showed better improvements in the Xiami dataset than in the Music4All
dataset, with improvements of over 90%.

For ten recommendations, the Xiami dataset had a similar behavior than with
five recommendations, with improvements remaining similar for both cases. M-TN
for five recommendations had slightly better improvements than M-TN for ten rec-
ommendations, however, the remaining recommender systems had similar improve-
ments. The proposed method obtained the best improvement in the Music4All
dataset with ten recommendations in the M-TN recommender system, with im-
provements of over 300% in all metrics except for MAP, which had an improvement
of 212%.

In the SM-TN and CSM-UK, the baseline outperformed our method in some
metrics, such as Recall, F-measure, and NDCG. For MAP, however, our method
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Methods RS Precision Recall F-Measure MAP NDCG

Baseline M-TN 0.0197 0.0336 0.0219 0.0427 0.0362
Dual RNN M-TN 0.0870 0.1435 0.0975 0.1331 0.1576

Baseline SM-TN 0.0994 0.1747 0.1168 0.1527 0.1981
Dual RNN SM-TN 0.1020 0.1710 0.1156 0.1601 0.1913

Baseline CSM-TN 0.0490 0.0930 0.0573 0.0936 0.1042
Dual RNN CSM-TN 0.1145 0.1917 0.1303 0.1733 0.2109

Baseline CSM-UK 0.0992 0.1745 0.1166 0.1526 0.1979
Dual RNN CSM-UK 0.0978 0.1646 0.1107 0.1546 0.1835

Table 6. Results for the Music4All dataset with ten recommendations. Best result is
highlighted in bold (all differences are statistically significant at the 0.05 level using a two
sided paired t-test). In the table, RS is a short for Recommender Systems.

obtained an improvement of 5% over the baseline. Although the SM-TN did not
improve over the baseline, meaning that the contextual embedding vectors were
not good; the CSM-TN, which combines both general and contextual embedding
vectors, improved with respect to the baseline in all metrics of over 100%.

Finally, by comparing the results in Tables 5 and 6 against the ones in Figures 4
to 7, it can be seen that for the Music4All dataset the second method (i.e. the
Dual Recurrent Neural Network) provided better results than the first one (i.e. the
Metadata Awareness) in most cases, showing that a recurrent neural network can
obtain better embeddings. Additionally, the results also showed that the M-TN
recommender outperforms as well as the other recommender systems. The reason
for this fact is that the Recurrent Neural Network used by the second method handles
better with long sequences of songs, being able to generate better general preference
embeddings.

6 CONCLUSION AND FUTURE WORK

This work proposed two methods to obtain general and contextual preferences (i.e.
embeddings) for context-aware music recommender systems: one that tries to im-
prove general and contextual embeddings using metadata information, and one that
uses LSTM units in a Dual Recurrent Neural Network to learn general and contex-
tual embeddings for songs. Thus, both methods generate embeddings as contextual
information to be used in context-aware music recommender systems.

The results obtained by the methods in music datasets showed that they out-
perform the baseline (i.e. the method proposed by [6]) for four context-aware recom-
menders, using metrics that measured how good the recommendations are for the
user and if the recommendations are ranked accordingly.

The results also showed that the first method, which combines metadata and
song embeddings, can improve the recommendations generated by context-aware
recommender systems. Additionally, results from the second method showed that
a Recurrent Neural Network can be used effectively in capturing the intrinsic rela-
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tionship between the sequence of songs that the user has listened to and generating
better contextual information for context-aware recommender systems.

According to [5], listening to music is a kind of typical context-dependent be-
havior because users usually prefer different types of music under different contexts.
As the methods proposed in this work are able to handle general and contextual user
preferences, and outperformed other methods proposed in the literature, they can
be seen as promising methods to implement real context-aware music recommender
systems.

Besides, although both proposed methods can be used to implement real context-
aware music recommender systems, the empirical evaluation showed that the second
method, i.e. the Dual Recurrent Neural Network, can provide better results than
the first method. However, the second method is not able to handle the metadata
attributes, and a future work intends to address this issue. Finally, it is worth to
mention that the first method does not handle it so well with long sequences of
songs.

For future work, other embedding vector operations will be evaluated with the
first method. Regarding the second method, the plan is to use different Recurrent
Neural Networks such as Gated Recurrent Units, proposed by [31], which has fewer
parameters as LSTM and can be used to decrease the training time and memory
consumption; or even a Transformer [32], which is a simple network architecture that
adopts the mechanism of attention, differentially weighing the significance of each
part of the input data. Another possibility to improve the second method is also
to use the metadata in the Dual Recurrent Neural Network. Finally, both methods
will be evaluated also in other datasets.
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State University of Maringá, Brazil. His main research interests
are recommender systems and deep learning.

Marcos Aurélio Domingues is currently Professor at the Sta-
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