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Abstract. Reliability, longevity, and maintenance costs of electric power industry
installations and equipment depend strongly on the extent to which their design
reflects relevant environmental factors, such as expected levels of local environ-
mental pollution. These factors guide the choice of specific types of components –
insulators, towers, conductors, etc. – and are often estimated through complex and
tedious long-term field measurements of pollution deposits. In Slovakia, such field
measurements were mandated by the national standard STN 33 0405. This stan-
dard was retired in 2015 without replacement, which opened the way for developing
alternative and less cumbersome methods. One such alternative is to apply artifi-
cial intelligence techniques to atmospheric pollution and other relevant data, which
is already routinely monitored and collected in many countries. In this paper,
we explore the strength of the relationships between the field measurements per-
formed in various regions of Slovakia according to STN 33 0405 and atmospheric
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pollution data monitored and collected by the Slovak Hydrometeorological Insti-
tute (SHMÚ). The paper is focused on input attributes significance, in relation to
output attributes. It represents the first phase of our long-term research aiming at
the creation of reliable regression models of local pollution in order to replace the
cumbersome field measurements mandated by STN 33 0405.

Keywords: Regression analysis, Weibull distribution, machine learning, neural
networks
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1 INTRODUCTION

The smooth operation of electric power industry installations and equipment among
other things also depends on the thorough knowledge of parameters and conditions
of the ambient environment. Environmental factors are therefore important in their
design and operation and significantly affect their construction and maintenance
costs. The surrounding environment not only affects the choice of specific compo-
nents (such as insulators, towers, conductors, etc.) but also plays a role in their
design and maintenance to achieve high reliability and longevity of overhead power
lines. Between the years 2010 and 2019, approximately 160 faults caused by un-
expected flashovers were identified on the overhead power lines in the transmission
system of the Slovak Republic (TS SR). The cause of the faults could be attributed,
among other things, to excessive contamination of suspension and strain insulators,
together with unfavourable weather conditions, such as fog, snow, rain, etc. These
technological challenges still resonate in international research, as we demonstrate
in our outline of the state of the art in the next section.

In Slovakia, the contamination assessment of overhead power line insulators was
addressed by the technical standard STN 33 0405. It specified characteristics of
evaluated areas according to the degree of pollution, the design requirements for the
insulation of outer conduits, and the procedure to determine the degree of pollution
for the considered areas. Consequently, depending on the degree of pollution, the
standard STN 33 0405 mandated progressively more and more stringent rules for
the design and operation of electrical power installations and equipment in terms of
the required number of insulators, minimum lengths of their specific surface paths,
and their recommended cleaning intervals. The most significant disadvantages of
this procedure are:

1. Long interval required for the collection and analysis of pollution fallout, for at
least two or more years.

2. Limited possibilities of processing the large number of samples. Samples need
to be dried out.
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3. Limited opportunity to assess new corridors for overhead power lines. Support
structures for dust collectors need to be installed on the new corridors. The
possible use of existing structures require the landowner permits. The number
of suitable structures is limited, as the overhead power lines mostly pass over
the inhabited areas.

4. High probability of discrepancies in the results, due to a low protection against
unauthorized manipulation or accidental contamination of samples.

These factors have contributed to the need to replace this procedure with an ad-
vanced and efficient one, which would minimize the complexity of implementation
while maintaining or even improving the accuracy of calculated attributes. The
initiative to research a new innovative process originated at VUJE, a.s., a research
institute with the extensive experience in the field measurements according to STN
33 0405. Its main idea is to replace the field measurements with relevant data that
are already being continually monitored and archived by the Slovak Hydrometeoro-
logical Institute (SHMÚ). This institute has potentially useful data, such as hourly
concentrations of pollutants PM10, PM2.5, O3, SO2, CO, NO2 (shmu.sk) or the
database of main polluters NEIS (National Emission Information System, air.sk).

The pollution level modeling task can be solved by the following machine learn-
ing approaches. The first approach is classification of output into the single or
multiple discrete pollution levels. The second approach is based on regression. In
this case pollution level is represented as a real number, which can be compared
with the threshold values of individual classes. The presented paper is focused on
the regression analysis of environmental pollution assessment in the field of power
industry.

The rest of this paper is structured as follows. Section 2 describes related work
on insulator pollution. The baselines for regression analysis are described in Sec-
tion 3. Section 4 summarizes possible solution approaches focusing on prediction
of 99.5% quantile of Weibull distribution for output attributes. Section 5 evaluates
the achieved results. And finally, Section 6 concludes the paper.

2 RELATED WORK

Insulator pollution is a current topic of international research. An ever-increasing
number of publications on the topic of “insulator pollution” in the Scopus database
over the past 10 years proves this fact. Studies such as [1, 2, 3, 4, 5] have investigated
the occurrences of flashovers related to the shape of the insulator, its level of pol-
lution and the chemical composition of the deposits. Pollution of insulators during
their operation under high voltage is the subject of a research by Ferreira et al. [6],
in which they proposed and validated a method for determining the degree of pol-
lution by spectral analysis of acoustic emissions in the close proximity of polluted
insulators. Maraaba et al. [7] analyzed pollution images by a digital camera in the
HSV (hue, saturation, value) space. Wang et al. [8] proposed a non-contact method
based on spectral analysis of plasma generated from settled contamination after the
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application of a short laser pulse (LIBS – Laser Induced Breakdown Spectroscopy).
Jin et al. [9] used an information fusion of infrared, visible and ultraviolet spectrum.
International research is progressing intensively with the modeling of the amount
and chemical composition of pollution that settles on a given type of insulator in a
given time under the specific weather conditions. Ferma et al. [10] showed a strong
correlation between the amount of deposit and the concentration of dust particles in
the air for different European locations, as long as they were far from large pollution
sources. The same research suggested that seasonal fluctuations in the concentration
of air pollutants are much higher in urban areas than in rural ones. He et al. [11]
have established that high voltage insulators are polluted both by natural sources
and by human activity. Their findings indicate that metal cations originate mainly
from human activity and accumulate on the bottom side of the insulators. Chen
and Zhang [12] proposed a dynamic model estimating the Non-Soluble Deposit Den-
sity (NSDD) based on selected meteorological parameters. Authors Qiao et al. [13]
proposed a similar model estimating the Equivalent Salt Deposit Density (ESDD)
based on the so-called grey system theory.

Vast majority of deposit and pollution models are only partially theoretically mo-
tivated and rely mainly on empirical studies. These are complex scientific problems,
involving many variable and nonlinear factors, which lack a complete theoretical
explanation. In a situation where the theoretical background of the problem seems
unclear, but we have a sufficient dataset, methods of machine learning appear to be
the modern and effective solution. The publications in the field of air pollution with
dust particles PM2.5 and PM10 support this claim. The paper by Deters et al. [14]
proposes a machine learning approach based on six years of meteorological and pol-
lution data analyses to predict the concentrations of PM2.5 from wind (speed and di-
rection) and precipitation levels. The results of their classification model show a high
reliability in the classification of low (< 10µg/m3) versus high (> 25µg/m3) and low
(< 10µg/m3) versus moderate (10–25µg/m3) concentrations of PM2.5. Wu et al. [15]
presents a field-portable cost-effective platform for high-throughput quantification of
particulate matter using computational lens-free microscopy and machine learning.
The study demonstrates that PM2.5 concentrations based on meteorological data can
be predicted using machine learning statistical models. Implemented device rapidly
screens 6.5 L of air in 30 seconds and generates microscopic images of the aerosols
in the air. It provides the statistics of particle size and density distribution with
a sizing accuracy of 93%. Shahriar et al. [16] present the machine learning mod-
els such as Linear-Support Vector Machine (L-SVM), Medium Gaussian-Support
Vector Machine (M-SVM), Gaussian Process Regression (GPR), Artificial Neural
Network (ANN), Random Forest Regression (RFR) and use them for the prediction
of the concentration of PM2.5 and PM10 in Bangladesh. Meteorological variables
from Dhaka, Chattogram, Rajshahi, and Sylhet for the period of 2013 to 2019, were
utilized as exploratory variables. Lary et al. [17] combines machine learning, remote
monitoring and meteorological data together with ground-based monitoring of PM2.5

from 8 329 measuring sites in 55 countries between 1997 and 2014. The obtained re-
sults are related to the influence of particle concentration on some aspects of human
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mental health. Karimian et al. [18] compare different machine learning approaches,
namely Multiple Additive Regression Trees (MART), the Deep Feedforward Neural
Network (DFNN) and the Long Short-Term Memory (LSTM) hybrid model. The
models were used to capture temporal dependencies in the time series data. From
among the classic broad-spectrum publications with an emphasis on industrial ap-
plications, we could single out the handbook of Ablameyko et al. [19] and conference
proceedings of Fuzzy Logic and Intelligent Technologies in Nuclear Science [20]. The
work of Figedy [21] describes two possible approaches to the validation of machine
learning models.

3 BASELINES FOR REGRESSION ANALYSIS

The procedure of pollution level prediction starts with the capture of pollution fall-
out into dust collectors and their subsequent analysis in specialized laboratories. In
each considered location, STN 33 0405 mandated 6 to 12 consecutive dust collection
measurements, with each measurement lasting for up to two months. Each collected
sample was then analyzed in order to determine the total amount of trapped de-
posit S, the amount of soluble substances Sr and the electrical conductivity of their
0.2% water solution γ0.2. In this way, a collection of 6 to 12 values for each of the
three attributes (S, Sr, and γ0.2) was obtained for each evaluated location. Assum-
ing that these values come from a Weibull distribution, the standard then required
finding the upper bounds Sm, Srm, and γ0.2m for these three attributes as 99.5%
quantiles of their respective Weibull distributions, which meant that the probability
of their being exceeded in a given location was only 0.5%. In the final step, the
product of all the three upper bounds was calculated and, based on its value, each
location was assigned into one of four ordinal levels or classes of environmental pol-
lution labeled I–IV, with class “I” representing the least polluted areas and class
“IV” the most polluted ones.

Analysed data consists of four groups of attributes:

1. Attributes which identify the specific measurement: measurement number (mea-
surement location), GPS coordinates of the measurement location (latitude, lon-
gitude) and year of measurement.

2. Attributes which were monitored by SHMÚ: two measures of the annual aver-
age concentration of dust particles and three indicators of the annual average
concentration of gaseous pollutants in the air for the monitored measurement
locations:

(a) PM2.5 – dust particles with diameter less than 2.5 micrometers;

(b) PM10 – dust particles with diameter less than 10 micrometers;

(c) SO2 – sulfur dioxide;

(d) NO2 – nitrogen dioxide;

(e) O3 – ground-level ozone.
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3. Upper bounds of trapped deposit amount are determined according to the retired
standard STN 33 0405 as the 99.5% quantile of Weibull distribution. This
distribution represents the best description of the measured six-week deposit
values, according to Section 2. It contains the following attributes:

(a) S – total amount of trapped deposit;

(b) Sr – soluble substance of trapped deposit;

(c) γ0.2 – electrical conductivity of 0.2% water solution of trapped deposit.

4. The data records that were collected over the years 2008-2013. The dataset
represented four measurement campaigns:

(a) 2008-9 (8 six-week measurements);

(b) 2010 (5 six-week measurements);

(c) 2011 (8 six-week measurements);

(d) 2012-13 (11 six-week measurements).

The first measurement campaign 2008-9 and the last measurement campaign
2012-13 exceeded a calendar year period. Therefore, two partial groups were merged
into one two-year group. For input SHMÚ attributes PM2.5, PM10, SO2, NO2 and
O3, one weighted average value was calculated for the entire two-year period, using
two corresponding annual values. The weight of each annual value reflected the
number of six-week measurements that ended in a given calendar year.

4 POSSIBLE SOLUTION APPROACHES

The goal of this paper is to determine the significance of input attributes monitored
by SHMÚ (PM2.5, PM10, NO2, SO2, O3 and their transformations). It is expressed by
correlation coefficients with regard to the target attributes. In general, the following
approaches come into consideration for a given prediction task on currently available
data:

1. The first approach predicts the parameters of the Weibull distribution for the
individual attributes S, Sr and γ0.2. Prediction is followed by calculation of
99.5% quantile and the quantiles’ product. In final stage, pollution level for the
measurement location is identified.

2. The second approach directly predicts the 99.5% quantile of the Weibull distri-
bution for the attributes S, Sr and γ0.2, calculates their product and uses it for
pollution level identification.

3. The third approach directly predicts the product of 99.5% of quantiles for all
three attributes S, Sr, γ0.2 and uses it for pollution level identification.

4. The last approach directly predicts the pollution level of the measurement loca-
tion using the scale of I to IV.
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The first three approaches exhibit the regression task characteristics. The fourth
approach represents a classification task. Preliminary data analysis and prediction
experiments identified the second approach as the most promising option. Thus,
we focused our research efforts on prediction of the 99.5% quantile of the Weibull
distribution for individual measured attributes S, Sr and γ0.2.

4.1 Upper Bounds Predictions of S, Sr, γ0.2

The following input attributes were used to model the target attributes:

1. Original SHMÚ input attributes (PM10, PM2.5, NO2, SO2, O3);

2. Nonlinear transformations of SHMÚ input attributes, calculated by applying
mathematical functions log(x), exp(x), sqrt(x), sqr(x);

3. Products of the SHMÚ attribute pair combinations;

4. Additional attributes (year and gps information (gps lon, gps lat) of the mea-
surement location).

All the input attributes were normalized before the modeling process. The
following models were used: Multivariate Linear Regression [22], Isotonic Regres-
sion [23, 24], Gaussian Processes [25], Multilayer Perceptron Regressor [22], Radial
Basis Function Regressor [22], Regression Tree M5P [22, 26] and Random For-
est [22, 27]. The minimum Root Mean Squared Error was used as the learning
criterion. The 40-fold cross-validation [22] was used in order to obtain a suffi-
ciently objective estimate of the error rate considering the small number of available
records. In addition to the Root Mean Squared Error, the accuracy of the model
was quantified in the cross-validation process also by the Correlation Coefficient,
Mean Absolute Error and Relative Absolute Error. The accuracies of the validated
models for the individual target attributes (S, Sr, and γ0.2) are presented in Ta-
bles 1, 2 and 3. Numerical evaluation criteria (e.g. Mean Absolute Error, Pearson
Correlation Coefficient) in these tables are calculated from the actual values of the
target variable and predicted values of the target variable. SMO Reg is a Sequen-
tial Minimal Optimization algorithm for Support Vector Machine (SVM) regression,
HN is number of hidden neurons, HL is number of hidden layers, sigmoid is sigmoid
activation function, CGD (Conjugate Gradient Descent) and Epochs – maximum
allowed epochs during the learning. The experiments were performed in the WEKA
environment [28, 29], therefore the names of the used machine learning methods in
the tables correspond to WEKA names (e.g. MLP Regressor vs. MultiLayerPercep-
tron).

Tables 1, 2 and 3 show that trained models do not achieve high modeling quality
for any target attribute. This is especially clear for the Relative Absolute Error,
where the errors reached 100%. This is also evident for the correlation coefficient,
which is in the limited range between −1 and 1. The models, in this form, are
therefore not suitable for real-world applications.
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Model Pearson
Correlation
Coefficient

Mean Abso-
lute Error

Root Mean
Squared Er-
ror

Relative
Absolute
Error

Multivariate Linear Re-
gression

0.0588 0.0232 0.0296 100.54%

Gaussian Processes −0.0418 0.0244 0.0348 105.85%

SMO Reg −0.0557 0.0281 0.0806 121.94%

Isotonic Regression 0.2808 0.0211 0.0276 91.41%

MLP Regressor (HL = 1,
HN = 2, sigmoid)

0.1126 0.0265 0.0373 114.70%

MLP Regressor (HL = 1,
HN = 4, sigmoid, CGD)

0.0763 0.0284 0.0380 122.85%

MLP Regressor (HL = 1,
HN=8, sigmoid, CGD)

0.1485 0.0445 0.0595 192.98%

MLP Regressor (HL = 1,
HN = 16, sigmoid, CGD)

0.1130 0.0482 0.0627 208.79%

MultiLayerPerceptron
(Epochs = 500, HL = 1)

0.1489 0.0299 0.0433 129.60%

MultiLayerPerceptron
(Epochs = 4 000, HL = 1)

0.1893 0.0384 0.0474 166.47%

MultiLayerPerceptron
(Epochs = 4 000, HL = 2)

0.0399 0.0408 0.0520 176.63%

RBF Regressor (HN = 2,
no CGD)

0.1838 0.0225 0.0297 97.47%

RBF Regressor (HN = 4,
CGD)

0.2844 0.0223 0.0288 96.55%

RBF Regressor (HN = 8,
CGD)

0.2053 0.0238 0.0318 102.99%

RBF Regressor (HN = 16,
CGD)

0.2288 0.0246 0.0329 106.77%

Regression Tree M5P 0.0651 0.0237 0.0294 102.52%

Random Forest 0.2847 0.0218 0.0281 94.25%

Table 1. Validation results of trained regression models for the target variable S

Low accuracy of models trained so far, raises the following questions. How the
individual input attributes (original and transformed) contribute to the accuracy of
regression models and how significant are they?

For this purpose, a correlation analysis between individual input attributes and
the target attributes was performed, using both Pearson’s and Spearman’s corre-
lation coefficients. The Pearson’s correlation coefficient indicates the strength of
the linear association between input and target attributes. In contrast, Spearman’s
correlation coefficient captures the association more comprehensively. It can also
recognize and take into account the nonlinear effect of input, as it tracks the degree
of monotonicity and not only the degree of linearity between attributes.
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Model Pearson
Correlation
Coefficient

Mean Abso-
lute Error

Root Mean
Squared Er-
ror

Relative
Absolute
Error

Multivariate Linear Re-
gression

0.1470 0.0049 0.0070 104.66%

Gaussian Processes −0.0346 0.0068 0.0294 144.47%

SMO Reg 0.1916 0.0043 0.0068 91.45%

Isotonic Regression 0.0813 0.0048 0.0068 101.75%

MLP Regressor (HN = 2,
sigmoid, no CGD)

0.0871 0.0068 0.0128 146.07%

MLP Regressor (HN = 4,
sigmoid, CGD)

0.1002 0.0074 0.0122 159.11%

MLP Regressor (HN = 8,
sigmoid, CGD)

0.1102 0.0109 0.0174 232.44%

MultiLayerPerceptron
(Epochs = 500, HL = 1)

0.2372 0.0059 0.0083 126.79%

MultiLayerPerceptron
(Epochs = 4 000, HL = 1)

0.1509 0.0110 0.0177 235.69%

MultiLayerPerceptron
(Epochs = 4 000, HL = 2)

0.1126 0.0103 0.0146 220.24%

RBF Regressor (HN = 2,
no CGD)

0.1375 0.0046 0.0073 99.21%

RBF Regressor (HN = 4,
CGD)

0.1666 0.0049 0.0077 104.40%

RBF Regressor (HN = 8,
CGD)

0.2482 0.0046 0.0071 97.95%

Regression Tree M5P 0.2170 0.0045 0.0067 97.18%

Random Forest 0.3026 0.0045 0.0066 96.93%

Table 2. Results of validation of trained regression models for the target variable Sr

4.2 The Results of Correlation Analysis

In the process of significance determination, we are primarily interested in statistical
measures of the input attribute impact on target attribute. At this point, it is not
decisive whether an increase in the value of the input attribute causes an increase or
decrease in the value of the target attribute. The strength of association represents
an essential property. For this reason, we applied the absolute value function to
the individual values of the correlation coefficients. Resulting non-negative value
captures the degree of significance/impact of the given input attribute on the target
attribute. The maximum value of 1 would thus represent the maximum significance –
an ideal case where the target attribute can be precisely modeled on the basis of
a single input attribute.

The respective p-value was also calculated for the individual values of the Spear-
man’s correlation coefficient. It describes the probability that there is no functional
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Model Pearson
Correlation
Coefficient

Mean Abso-
lute Error

Root Mean
Squared Er-
ror

Relative
Absolute
Error

Multivariate Linear Re-
gression

0.1095 0.1164 0.1540 101.75%

Gaussian Processes −0.0512 0.1681 0.6658 146.98%

SMO Reg −0.0240 0.1357 0.3291 118.69%

Isotonic Regression 0.0601 0.1175 0.1532 102.75%

MLP Regressor (HN = 2,
sigmoid, no CGD)

−0.1587 0.1503 0.2055 131.45%

MLP Regressor (HN = 4,
sigmoid, CGD)

−0.0970 0.2251 0.3232 196.87%

MLP Regressor (HN = 8,
sigmoid, CGD)

0.0520 0.2837 0.3761 248.12%

MultiLayerPerceptron
(Epochs = 500, HL = 1)

0.0281 0.1677 0.2242 146.65%

MultiLayerPerceptron
(Epochs = 4 000, HL = 1)

0.0331 0.2462 0.3645 215.33%

MultiLayerPerceptron
(Epochs = 4 000, HL = 2)

−0.0291 0.2539 0.3228 222.07%

RBF Regressor (HN = 2,
no CGD)

0.1227 0.1197 0.1557 104.71%

RBF Regressor (HN = 4,
CGD)

−0.0644 0.1294 0.1703 113.15%

RBF Regressor (HN = 8,
CGD)

−0.0407 0.1437 0.1895 125.66%

Regression Tree M5P 0.0057 0.1204 0.1579 105.33%

Random Forest −0.0263 0.1253 0.1625 109.56%

Table 3. Results of validation of trained regression models for the target variable γ0.2

dependency between the target and the input attributes. Desirable p-value value
should be as close as possible to 0. The established convention considers p-values
less than 0.05 to be a sufficient indicator of the statistical (and therefore unspecified
functional) dependence of two attributes.

For the target values (annual upper bounds), the absolute values of the corre-
lation coefficients listed in Tables 4 and 5 were determined. The p-value for each
Spearman’s correlation coefficient takes up corresponding space in Table 6.

S column, in the individual tables, represents the target attribute of the total
amount of trapped deposit. Sr column represents the total amount of soluble sub-
stance and γ0.2 column represents electrical conductivity. In all three cases, upper
bounds are determined as the 99.5% quantile of the corresponding Weibull distribu-
tion. The product column represents the product of these three upper bounds. The
individual rows marked “PM10”, “PM2.5”, “NO2”, “SO2”, “O3” represent the values
of input attributes with the same name. The rows containing only a pair of original
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attributes represent the output attribute with the product of those two attribute
values. E.g. “PM10 NO2” is an attribute defined by the product of PM10 *NO2.
The rows starting with one of the following expressions EXP, LOG, SQR, or SQRT
and followed by the attribute are defined by the appropriate mathematical function
(ex, log 10(x), x

2, x1/2) applied to the given attribute. The year attribute specifies
the year in which the six-week campaign was measured. If a campaign of six-week
measurements lasted for two consecutive years, the average value is used. E.g., if
the campaign started in 2012 and ended in 2013, then 2012.5 is used as the value
of the year. The attributes gps lat and gp lon represent the GPS coordinates of the
measurement locations.

S Sr γ0.2 product

year 0.008036 0.015860 0.13030 0.031650

gps lat 0.128200 0.168200 0.03688 0.170700

gps lon 0.003652 0.005281 0.06603 0.075570

PM10 0.036560 0.057840 0.10210 0.059730

PM2.5 0.034380 0.008181 0.08608 0.004444

NO2 0.091880 0.056850 0.02200 0.114100

SO2 0.085310 0.109500 0.08177 0.085260

O3 0.074330 0.055800 0.16210 0.061400

PM10 PM2.5 0.009664 0.009213 0.10400 0.006945

PM10 SO2 0.053630 0.080790 0.10760 0.062570

PM2.5 SO2 0.076900 0.098100 0.10540 0.080630

SO2 O3 0.094700 0.116600 0.04769 0.087750

LOG PM10 0.047790 0.082800 0.09647 0.084770

EXP PM10 0.020400 0.009963 0.11040 0.009413

SQRT PM10 0.042220 0.071060 0.09945 0.073000

LOG PM2.5 0.012310 0.039180 0.07674 0.036410

EXP PM2.5 0.044260 0.019300 0.12470 0.026200

SQR PM2.5 0.051100 0.020450 0.09287 0.025340

SQRT PM2.5 0.023850 0.236300 0.08171 0.020420

LOG NO2 0.073000 0.067350 0.02329 0.113900

EXP NO2 0.155200 0.011100 0.02871 0.077290

SQR NO2 0.108300 0.043480 0.02079 0.110700

SQRT NO2 0.082690 0.062570 0.02271 0.114500

SQR SO2 0.091100 0.099130 0.07653 0.893400

LOG O3 0.069440 0.051760 0.16760 0.053940

EXP O3 0.068500 0.046750 0.10910 0.073140

SQR O3 0.077580 0.058120 0.15520 0.067390

SQRT O3 0.072080 0.053990 0.16510 0.057850

Table 4. Significance of individual input attributes (expressed by the absolute value of
the Pearson’s coefficient) for individual target attributes. The best achieved values are
highlighted.
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Correlation Coefficient

S Sr γ0.2 product

year 0.047310 0.05969 0.14780 0.018600

gps lat 0.117800 0.12090 0.01257 0.131100

gps lon 0.040560 0.04278 0.02531 0.002185

PM10 0.064870 0.06982 0.06097 0.059960

PM2.5 0.003819 0.04242 0.03529 0.017820

NO2 0.064890 0.02708 0.02359 0.036510

SO2 0.096080 0.14690 0.03915 0.121600

O3 0.062720 0.02946 0.15090 0.024250

PM2.5 SO2 0.082970 0.10910 0.04483 0.098790

Table 5. Significance of individual input attributes (expressed by the absolute value of
the Spearman’s coefficient) for individual target attributes. The best achieved value is
highlighted.

p-value

S Sr γ0.2 product

year 0.54260 0.44210 0.05589 0.81080

gps lat 0.12830 0.11860 0.87150 0.09024

gps lon 0.60170 0.58190 0.74470 0.97760

PM10 0.40340 0.36190 0.43240 0.44010

PM2.5 0.96080 0.58510 0.64980 0.81860

NO2 0.40330 0.72750 0.76150 0.63840

SO2 0.21540 0.05745 0.61440 0.11650

O3 0.41930 0.70460 0.05095 0.75500

PM2.5 SO2 0.28500 0.15920 0.56390 0.20270

Table 6. Matrix of p-values of Spearman’s correlation coefficient for individual target at-
tributes. Conventionally, those values of the Spearman’s correlation coefficient for which
the p-value is less than 0.05 are considered statistically significant. They reliably confirm
the existence of an unspecified functional dependence between the respective input and
target attribute. In our case, unfortunately, only two attributes came close to this signifi-
cance level (the ones highlighted in the table), but did not actually cross it.

Correlation analysis showed that the input variables (PM2.5, PM10, NO2, SO2,
O3 and their transformations) have unexpectedly low impact on target attributes.
Low correlation between input and target attributes is very surprising, because of
presumed existence of physical dependence. Very low impact of PM10 and PM2.5

on the target attribute S is a good example. Low value of the Pearson’s correlation
coefficient could be explained by dependence nonlinearity between S and PM10,
PM2.5. However, the Spearman’s correlation coefficient, which takes into account
the nonlinear dependence of the attributes, has also a low value. It confirms the
overall low dependence of the mentioned attributes. The achieved values of this
coefficient (PM10, PM2.5) are 0.06487 and 0.003819 in the case of attribute S. For
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comparison, correlation coefficient values above 0.7 have strong significance in the
terms of attributes’ dependence.

In contrast, the impact of the attribute year turned out to be higher than we
expected. In particular, the Spearman’s correlation coefficient with regard to the
target attribute γ0.2 indicates the higher impact of the year attribute. The correla-
tion coefficient for attributes γ0.2 and year reached 0.1478, but it is still one of the
highest values. Particularly surprising is the fact that the significance of year at-
tribute outperformed most of other attributes (PM2.5, PM10, NO2, SO2, O3) whose
physical dependence appears to be obvious. Thus, there is an indication that the
dependence of the target attributes on the input attributes, associated with the
measurement of pollutants and dust particles (original and transformed), may not
be completely stable. It may also depend on time or geographical location (region),
because in different years the measurements also differ in the same location.

In comparison with SHMÚ attributes (PM2.5, PM10, NO2, SO2, O3), the at-
tribute location has also comparable significance. Specifically, the attribute gps lat,
expressed by the Spearman’s correlation coefficient, is one of the attributes with
higher significance. For target attributes S and Sr, in comparison with input at-
tributes PM10 and PM2.5, the attribute gps lat always reached a higher value of
the Spearman’s correlation coefficient. The correlation analysis suggests that the
attributes year and gps location may have a certain impact on the modeling of tar-
get attributes. We therefore do not recommend neglecting or omitting them from
datasets in the future. On the contrary, with availability of the larger dataset, the
spatio-temporal analysis itself (distribution of pollution in space and time) can be
very interesting and beneficial. It is also possible that the distribution of pollution
depends on the attribute gps lat (latitude) only on a small area of Slovakia. The
specific position of measurement locations and polluters may contribute to this.

5 EVALUATION OF ACHIEVED RESULTS

The modeling of functional dependencies in data has to take into account several
aspects. These aspects directly affect the choice of model type, structure, parameters
etc. The following is a list of main aspects:

1. Dependence complexity between inputs and outputs in a real system;

2. The amount of noise present in the data;

3. Number of available data records;

4. Number of available input attributes;

5. Purposes and use of the model.

In our case, the data dependence complexity is not exactly known. However, we
estimate that data will exhibit a medium or higher dependence complexity. Sim-
ilarly, a medium or higher noise level is expected in the data, because the SHMÚ
input attributes are interpolated and recalculated in various ways based on location
and time.
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5.1 The Problem of Appropriate Validation

Currently, only 168 data records are available, which contain 8 input attributes (5 –
SHMÚ, 2 – GPS, 1 – year) and 3 target attributes. Due to such a low number of
records, it is not possible to sufficiently divide the data into the training set and
validation set and use the Hold-Out validation. The result of such validation would
be inaccurate and extremely dependent on records assignment into the training set
and validation set. The second option is the Bootstrap validation, which involves
iterative resampling of the dataset. However, this validation significantly disadvan-
tages some types of models, such as tree models and rules-based models, making it
impossible to objectively compare the accuracy of models. For this reason, it is not
one of the standard validation methods in the field of machine learning. It is rather
a time consuming experimental method. Therefore, the best option is to use N-fold
cross-validation, which is also suitable for smaller datasets. With a suitably deter-
mined parameter “N”, it gives sufficiently stable accuracy estimates of the trained
model. The disadvantage of this validation is the time aspect, especially for models
where the training itself is a time consuming process. In our case, due to the small
number of data records, we used up to 40-fold cross-validation.

5.2 The Problem of Class Imbalances

The available data records (samples) are very unevenly distributed among the dif-
ferent pollution levels (I-IV). Compared to the classification, the target attribute
(pollution rate) as a continuous quantity looks like a more natural way of represen-
tation. Target attribute is calculated as a real number (as the product of the upper
bounds for the three target attributes S, Sr and γ0.2) and then it is transformed into
a discrete class. Therefore, it is more appropriate to use these real numbers (upper
bounds of the individual target attributes S, Sr, γ0.2, as well as their product) as
the target attribute of machine learning. This approach does not lead to the loss
of information using discrete boundaries of individual classes, as the classification
does.

5.3 The Problem of Overfitting

The most significant problem among the above mentioned problems is the effect
of overfitting. The overfitting modifies the model to accurately capture the unique
characteristics of specific records in the training set instead of following the general
trends and characteristics of the dataset. This in turn results in a significant decrease
in validation accuracy of unknown data. Overfitted model does not primarily follow
the general trend of the data, but rather the specific records in the training set.

Overfitting effect arises in the following situations:

1. When the training set does not contain a sufficient number of records;
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2. When the training set is not sufficiently representative (lack of diversity in
records or insufficient space coverage of the input attributes);

3. When the trained model has too many parameters (degrees of freedom) in rela-
tion to the available records in the training set;

4. When the number of training attributes and the number of records are approx-
imately equal.

For several trained models listed in Section 4.1, it is clear that an overfitting
effect is present. This is due to two indicators: simpler models in some cases achieve
higher accuracy, or alternatively, some models achieve worse accuracy with increased
number of parameters (degrees of freedom).

Larger dataset or a simpler model type with fewer parameters are common
ways to avoid the overfitting effect. N-fold cross-validation is also a valuable tool,
which we therefore use in this study as well. Due to the fact that the number of
data records available to us is currently limited (direct in-field measurements of
fallout are logistically demanding and time consuming), the increase of data records
is currently not possible. Therefore, the primary way to suppress the overfitting
effect is the use of simpler models with fewer parameters. For this reason, it is
impossible to use a deep learning approach, resp. more complex neural networks.
Therefore, simpler neural networks like Multi Layer Perceptron (MLP) and Radial
Basic Functions (RBF) based neural network were used.

It was observed that with an increasing number of hidden layers (resp. number
of neurons) in MLP the accuracy of the model decreases. In some cases validated
neural network achieved lower accuracy with the high number of training epochs.
For one neural network this may be a fluke. But for 40-fold cross-validation, which
consists of independent testing of 40 different sub-neural networks, this is extremely
unlikely. Both cases of declining accuracy are typical for the overfitting effect.

In the case of the RBF model, the overfitting effect was not so significant, maybe
because this model only contained one hidden layer. Nevertheless, there were cases
where neuron increase resulted in the accuracy decreased. However, neural networks
are the more complex types of models. In the majority of cases they fall behind the
simpler models with fewer parameters.

In several cases, simpler models, such as multivariate linear regression or isotonic
regression with fewer parameters performed better.

In some cases, interesting results were obtained using the Random Forest model
(listed in Section 4.1). It is a complex model consisting of several tree models,
combined using the principle of ensemble learning. This model largely withstands
the effect of overfitting in terms of increasing the number of trees in the whole model.
In other words, the overfitting effect is not enlarged by the addition of new trees
to Random Forest. In this particular case, the risk of overfitting can be reduced
by providing each tree with only a relatively small subset of input attributes and
training them independently.

Overall, it should be noted that the achieved accuracy of the trained models
was relatively low. Several factors may contribute to low accuracy: Insufficient
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representativeness of the dataset, the need for additional relevant input attributes,
or a significant amount of noise in the attributes are discussed in more detail in
Section 5.4.

5.4 The Problem of Achieving Higher Accuracy of Prediction Models

The analysis of the achieved results reveals the problems related to input data. The
following problems appear to be the main factor preventing higher accuracy and
quality of prediction models:

1. Small amount of data, few rows (records or measurement locations) in the
dataset.

2. Low temporal resolution of data. For input attributes PM10, PM2.5, NO2, SO2

and O3 only annual average values were provided. To determine the upper
bounds of output attributes S, Sr and γ0.2 it is necessary to know the variability
of relevant input attributes over time, not just their long term average.

3. We do not know the total amount of dust particles in the air (TSP). Input
attributes PM10 and PM2.5 describe the amount of dust particles in the air only
for particles with an aerodynamic diameter below 10 micrometers. Attribute S
probably represents mainly larger particles with an aerodynamic diameter above
10 micrometers. These are relatively rarely measured as part of the total amount
of particulate matter in the air (TSP).

4. Chemical composition of dust particles in the air is unknown. Reaction condi-
tions to which they were exposed on the way to the measurement location are
also unknown.

The upper bounds prediction of target attributes S, Sr and γ0.2 based only on the
long-term average values is problematic. This statement can be easily demonstrated
by a simple example. Two different datasets can have the same average value, but
different maximum, which in a sense determines the upper bounds.

Conceptual depiction of the complex atmospheric aerosol in [30] implies that
input attributes PM10 and PM2,5 are not a good indicator of the total amount
of pollution in the air (TSP). PM10 includes all the particles with aerodynamic
diameter below 10 micrometers, and thus also PM2,5. PM2,5 aerodynamic diameter
is below 2.5 micrometers. These particles do not fall into dust collectors but remain
suspended in the air as a mist for a long time. However, particles with aerodynamic
diameter above 10 micrometers also float in the atmosphere for some time. Their
relative proportion in the atmospheric aerosol is variable and does not correlate
with PM10 or PM2,5. This fact is also documented in [31]. There is a reasonable
assumption that these larger and heavier particles (referred to as the TSP-PM10

fraction) represent the main component of the total amount of trapped deposit S
collected in the VUJE dust collectors.

The hypothesis that the total amount of trapped deposit S consists mainly of
large particles (TSP-PM10 fraction) is based on the fact that PM10 particles are
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Figure 1. The missing correlation between the concentration of PM10 (X-axis) and the
total amount of trapped deposit S (Y-axis) is visibly manifested. On the one hand, there
are the samples with high S but a low PM10 concentration (Sector A). On the other hand,
there are samples for which a small S was recorded in the air despite the high concentration
of PM10 (Sector B).

carried by the wind over long distances. Gravity affects them minimally. Since
VUJE dust collectors are constructed as gravity traps, the minimum of PM10 will
fall in. Part of PM10 will undoubtedly get into the VUJE dust collectors, but
rather due to wet deposition during rain and night dew. SHMÚ dust collectors use
a different principle. They suck in the ambient air and pass it through the filter.

Hints of missing correlation between PM10 and S are displayed in Figure 1. For
some VUJE samples a large amount of S was recorded at places with low concentra-
tion of PM10 (Sector A). While other samples recorded a small amount of S despite
a large concentration of PM10 (Sector B). One of the possible reasons is the already
mentioned hypothesis that total amount of trapped deposit S consists mainly of
heavier particles with an aerodynamic diameter above 10 micrometers (TSP-PM10

fraction). Samples may appear in sector A or B, depending on different location of
pollution sources and VUJE dust collectors.

These considerations lead to a qualitative conclusion that the attributes PM10

and the total amount of trapped deposit S are probably independent of each other,
further research will be needed. In order to effectively predict the total amount of
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trapped deposit S, it will be necessary to identify other input attributes in addition
to the PM10 and PM2.5. This conclusion was also supported by Section 4.2, where
low values of correlation coefficients between PM10 and S, both Pearson’s (0.03656)
and Spearman’s (0.06487, p-value = 0.4034), were found.

6 CONCLUSIONS

We originally expected a significant impact of the five primary SHMÚ input at-
tributes and their transformations on the target attributes. The values of all these
attributes already take into account the location and a year of measurement, as well
as other physical effects on the measured or calculated pollution, which should be
more significant than the attributes of the location or year. For a given dataset,
they appear to be less significant. From a statistical point of view, we can state
that we still lack physical based input variables that would show signs of a more
significant statistical impact on the target attributes.

Attempts to model target attributes only from currently available input at-
tributes with relatively low significance are problematic. This has also been con-
firmed by the achieved accuracy of trained models. There are several possible sta-
tistical reasons for the low accuracy results:

1. The input attributes lack high relevance that would significantly influence the
target attributes;

2. The chosen methodology is burdened with a degree of uncertainty and it will be
necessary to examine the impact of this uncertainty on the overall results;

3. There may be a very complex relationships between the input and target at-
tributes that cannot be reliably approximated from such a limited set of mea-
sured data (larger dataset is required);

4. Significant noise in available data (larger dataset is also required).

The main conclusion of this feasibility study is that the investigated machine
learning models do not yet have the necessary input information. Thus, their ac-
curacy and quality could not reach the required level. Addition of highly relevant
input information, or alternatively, data sample increase could significantly improve
the representativeness of the dataset and consequently increase the accuracy of the
prediction models. This creates opportunities for the intervention of domain experts
in the field of pollution measurement, meteorology (or related areas) on issues such
as:

1. Identification of additional input attributes that could have a significant im-
pact on the target attributes and without which more accurate modeling is not
possible;

2. Reassessment of the target attributes dependence from the domain point of view
(physical/chemical/meteorological);
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3. Qualitative expert estimation of the degree of influence of individual input at-
tributes on the target attributes from the domain point of view (physical/chemi-
cal/meteorological). Also comparison with the calculated values of correlation
coefficients.
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