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Abstract. Wave forecasting approaches based on deep learning techniques have
recently made a great progress. In this study, we developed a deep learning model
based on Gated Recurrent Unit (GRU) and sequence-to-sequence neural networks
(GRUS), to improve the forecasting accuracy of significant wave heights for the
Taiwan Strait, where ocean waves and winds own their unique characteristics. The
performances of our proposed GRUS model and the other deep learning models
based on WaveNet and Long Short-Term Memory (LSTM) were compared by means
of wind and wave observations at three buoys in the study area. Model parameters
were optimized by means of various model experiments. Performance comparison
illustrates that our proposed GRUS model outperforms the other models in 24-hour
Hs forecasting, while the GRUS has extraordinary ability for short-term prediction
(prediction horizon is less than 6 h). Moreover, for high wave states prediction (e.g.,
wave height over 4m), the GRUS has the strongest prediction ability among the
models, in which forecasted wave heights are mostly lower than the corresponding
observations.

Keywords: Wave forecasting, significant wave height, gated recurrent unit, long
short-term memory, sequence-to-sequence

1 INTRODUCTION

Wave forecasting is of great importance to various maritime activities and coastal
engineering. Since there are many factors affecting wave height forecasting, the
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accuracy of wave height prediction was, and still is, a big challenge for marine
scientific research. With the development of Artificial Intelligence (AI) technology,
data-driven, model-free approaches have become more and more popular in recent
years [1].

Neural networks are among most powerful tools in AI techniques, which are
able to approximate almost any complex nonlinear process to investigate possible
relationships and dependencies to predict uncertain future events such as wave fore-
casting [1, 2, 3]. Deo and Sridhar Naidu [4] and Londhe and Panchang [5] explored
the value of Artificial Neural Networks (ANN) in predicting significant wave heights
based on measured data, but the prediction time was relatively short. Zamani
et al. [6] used neural networks to establish a non-linear relationship between winds
and waves to realize the prediction of significant wave heights in the Caspian Sea.
Mahjoobi and Adeli Mosabbeb [7] proposed a method of Support Vector Machine
(SVM) for ocean wave prediction, showing that SVM can be used to forecast sig-
nificant wave heights. Nitsure et al. [8] added the wind information from measured
data in a hindcast study for significant wave heights along the North American and
Indian Ocean coasts. An ensemble numerical and ANN approach was introduced by
Dixit and Londhe in [9] to predict the next 24-hour wave heights at different buoys
along the Indian coast. Berbić et al. [10] studied the application of ANN and SVM
for significant wave height prediction. From these studies, one can see that these
approaches have made great efforts in improving the accuracy of wave forecasting
while increasing the prediction horizon in time for the future. However, with the
increase of the forecast time, the forecast accuracy inevitably decreases, and the
forecasting horizon in time for most approaches was still relatively short.

The previous studies indicate the fact that ocean wave forecasting approaches
require to consider the different geographical environment. The study area of the
present study is the Taiwan Strait (Figure 1). The region has its own characteristics
in terms of wind variation, wind function on waves and wave propagation patterns.
In recent years, efforts have been made to study the prediction of ocean waves in
this region. For example, Wang et al. [11] employed Gated Recurrent Unit (GRU)
network to forecast the significant wave height in the Taiwan Strait and its Adjacent
Waters. Ma et al. [12] developed a forecasting model based on the convolution
operation, LSTM, and full connect networks to study the prediction of significant
wave height in the Taiwan Strait.

Based on previous studies, this study develops a forecasting model based on
GRU and sequence-to-sequence neural networks. In this study, we selected three
typical buoys with high data quality, located in the northern, central and southern
waters near the midline of the Taiwan Strait from north to the south (Figure 1). By
means of the observational wave and wind data, we applied the forecasting model
proposed in this paper for the prediction of significant wave heights in the Taiwan
Strait, and compared the model results with those of the WaveNet, LSTM models
to show the performances of these models.

The remainder of this paper is organized as follows: Section 2 introduces the
related work of this study. Section 3 describes the forecasting model with GRU
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and sequence-to-sequence networks in detail. Section 4 presents the experimental
setup. In Section 5, we investigate the model performance and comparisons. Finally,
conclusions are presented in Section 6.

2 RELATED WORK

In recent years, the implementation of deep learning models for wave height predic-
tion has become more and more popular. For example, a comparison between ANN,
Bayesian Networks (BN), SVM, Adaptive Neuro-Fuzzy Interference System for pre-
dicting wave heights from wind speeds was presented by Malekmohamadi et al. [13],
leading to the conclusion that BN and SVM can provide useful information on the
reliability of input and output data. Sinha and Basu [14] used Genetic Algorithm
for wave height prediction in the Bay of Benga. Nikoo and Kerachian [15] proposed
to use the Artificial Immune Recognition System for the prediction of wave heights
in Lake Superior in the northern USA, and its prediction results were better than
those of ANN, BN and SVM. James et al. [16] introduced two highly efficient ma-
chine learning models of Multilayer Perceptron and SVM for regression analysis of
wave heights and classification analysis of ocean wave periods. Kumar et al. [3] pro-
posed an ensemble of Extreme Learning Machine (ELM) to predict the daily wave
height. Moreover, Ali and Prasad [17] used an improved ELM model to predict
wave heights with high model accuracy, by considering the influence of winds on
ocean waves and using the series of the historical wave heights as a predictor of the
model. In the study of Zhang and Dai [18], the restricted Boltzmann machine in the
classical deep belief network was substituted with the conditional restricted Boltz-
mann machine containing temporal information to predict significant wave heights.
Ni and Ma [19] used the Long Short-Term Memory (LSTM) algorithm [20] to study
the prediction of polar westerlies wave heights, indicating that the LSTM model is
feasible for the prediction of significant wave heights. Pirhooshyaran and Snyder [1]
introduced Recurrent Neural Network (RNN) frameworks, integrated with Bayesian
hyperparameter optimization and Elastic Net methods, to explore the concepts of
ocean wave forecasting, hindcasting and feature selection.

In addition, some studies have established wave height prediction models by com-
bining wave decomposition with soft computing approaches. For example, Deka and
Prahlada [21] studied the prediction of significant wave heights from the perspective
of combining wave decomposition and neural networks. Prahlada and Deka [22] uti-
lized a hybrid model combining neural networks with wavelets (WLNN) to predict
the wave heights of the 48-hour into the future. The work of Duan et al. [23] aims
at predicting significant wave heights, by means of the test value decomposition and
SVM. Ali and Prasad [17] investigated a prediction model for wave heights, based
on the test value decomposition method combined with the ELM. Ni and Ma [19]
used the principal component analysis to predict wave heights for the polar region.
These studies indicate that: the decomposition of ocean waves illustrates that dif-
ferent factors can affect the future trend of wave heights, however, as the parameters
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of the ocean wave decomposition methods are not unique, the pros and cons of the
decomposition methods might affect the prediction accuracy of wave heights.

Figure 1. Bathymetry contours (m) for the study area together with locations of the wind
and wave measurement buoys in black crosses (S1–S3) in the Taiwan Strait

3 METHODOLOGY

In this study, we developed a deep learning model based on GRU and sequence-to-
sequence neural networks, hereafter referred to GRUS model. Figure 2 displays the
framework of the proposed GRUS model. Sequence-to-sequence (Seq2Seq) networks
are the main architecture of the GRUS, using two separate GRU networks. The first
network maps (encodes) an input sequence to a fixed-sized vector representation,
and the other decodes the representation into the output sequence. The GRUS
model is described in detail in this section.

3.1 GRU

GRU is a gating mechanism in recurrent neural networks [24]. In this study, GRUs
are introduced in the proposed GRUS networks. In the encoder network, the histor-
ical observations of wind speed, wind direction and Hs are used as the input data
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into the GRU, and an update gate and a reset gate are used to obtain the charac-
teristics of the historical wind fields and Hs. The implementation of an update gate
can be expressed as follows:

µt = δ(Wµ · [Vt, Dt, St, φt−1]) (1)

where µt is the output of the update gate, Vt, Dt, St respectively represent wind
speed, wind direction and Hs as well as φt−1 is the previous feature state of wind
speeds and directions as well as Hs, Wµ is the weight matrices that are learned by
the update gate, δ is the logistic sigmoid function (see Section 3.3 for details) that
makes the µt values in the range of 0–1.

Similarly, the implementation of a reset gate can be expressed as follows:

γt = δ(Wγ · [Vt, Dt, St, φt−1]), (2)

in which γt is the output of the reset gate, and Wγ is the weight matrices that are
learned by the reset gate.

After getting γt, the GRU network will further filter the information of φt−1, to
obtain a candidate state vector, φ̃t, which can be calculated by:

φ̃t = tanh(Wφ̃t · [Vt, Dt, St, γt ∗ φt−1]) (3)

where tanh is the activation function, and Wφ̃t is the weight matrices which are
learned.

Finally, we can calculate the output of the GRU network at any time, i.e., φt,
by the following expression:

φt−1 = (1− µt) ∗ φt−1 + µt ∗ φ̃t, (4)

in which “∗” is the element-wise operator.

3.2 Sequence-to-Sequence Neural Networks

Cho et al. [24] and Sutskever et al. [25] independently proposed similar two-part
deep learning architectures consisting of two RNN, namely encoder and decoder. In
the present study, we used the historical observations of wind fields and Hs as the
input sequence into the encoder, and the output of the encoder and the forecasted
24-hour wind fields (based on the WRF model) are given to the decoder. Since the
size of the encoder output vector is different from that of the input vector of the
decoder, the encoder output vector needs to be processed accordingly. In this study,
we used a layer of one-dimensional convolutional network (CNN1D) to compress the
encoder output vector, by taking the following equation:

Ck
out =

c∑
i=1

n∑
j=1

ωk
(i,...,j) · E(i,...,j) (5)
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Figure 2. Framework of the proposed GRUS based on the encoder-decoder architecture
with GRU and attention mechanism

where E(i,...,j) represents the encoder output vector, c is the number of features of
E(i,...,j) at each moment, ω(i,...,j) represents the convolution kernel, n is the size of
the convolution kernel, Ck

out is the output of the convolution calculation, k is the
number of the convolution kernel and also the number of features in the output of
the convolution.

In the present study, we use the Cout and the forecasted wind speed and direction
data (respectively represented by U and F ) as the input data given to the decoder,
the GRU calculation process in the decoder network is consistent with that in the
encoder introduced above (see Equations (1), (2), (3) and (4)), where U , F and Cout

are used instead of V , D and S. Then, the GRUS model uses attention calculation
and a full connection (FC) network to achieve the prediction for Hs.

3.3 Activation and Loss Function

In this study, the PReLU, tanh activation functions are used in the GRUS for model
training, while the ReLU is used for other models also tested in this study for model
comparison (see Section 4.3 for details). The ReLU is a piecewise linear function
that outputs zero if its input (x) is negative, which can be expressed as:

f(x) = max(0, x). (6)
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The parametric rectified linear unit, i.e., PReLU, is common to use as follows:

f(α, x) =

{
x, x ⩾ 0

αx, x < 0
[]. (7)

In addition, the loss function used for training in this study is the mean square
error (MSE). The MSE has the advantages of convenient calculation, accurate mea-
surement error, and good convergence effect, and can be expressed as:

Loss = MSE =
1

m

m∑
i=1

(yi − ŷi), (8)

in which y and ŷ represent observation and prediction values, respectively.

4 EXPERIMENTAL SETUP

4.1 Datasets

The region of interest in the study is the Taiwan Strait, which extends from 21.5 °N–
26.0 °N and 117.5 °E–121.0 °E (Figure 1). Three buoys acquired by Marine Forecast-
ing Center of Fujian Province of China are available for the region. The geographic
locations of these buoys are given in Figure 1.

The collected buoy data adapted in the present study were provided hourly,
consisting of wave and wind parameters, including Hs, wind speed and direction at
10m height above the sea surface. The data covering period for each buoy used in
this study is listed in Table 1. Some data were not recorded over a span of several
days.

In addition to buoy measurement wind data, forecasting wind speed and direc-
tion data, interpolated to the buoy locations, are also used in the wave forecasting
models of the present study for model testing. The forecasting wind data were taken
from an operational atmospheric model developed by Marine Forecasting Center of
Fujian Province (MFCF) of China, which was based on the WRF (Weather Re-
search and Forecasting) model (WRF-Based model). The model domain extends
from 15 °N–45 °N, 95 °E–150 °E, with the spatial resolution of 5 km×5 km. The model
results were carefully validated, by the comparison with observational data.

Three models for Hs forecasting (see Section 4.4 for details) were trained and
tested in this study, to compare the model performances. We used a year data (Ta-
ble 1) including previous 72-hour Hs and wind observations as well as next 24-hour
predicted wind data, to train the prediction models. By means of the training mod-
els, the forecasting models were established for next 24-hour Hs prediction. Another
one-year data, including observed Hs and wind data as well as predicted wind data
from the WRF-Based model, were used for testing the models.
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Buoy
Year

Vmean Vmax (Hs)mean (Hs)max
No. of Samples

Training Testing Training Testing

S1 2016 2017 8.6 29.5 1.7 6.7 7 192 8 736
S2 2017 2019 7.7 23.5 1.4 6.8 8 715 8 664
S3 2016 2017 7.9 23.0 1.6 6.0 8 425 8 736

Table 1. List of measurement buoys in the Taiwan Strait region and some fundamental
mean wind and wave characteristics as well as information of the data covering period
and number for training and testing samples. Main wind and wave characteristics were
statistically calculated, including wind speed, V (m/s); significant wave height, Hs (m).

4.2 Comparison Algorithm

In the present study, we compared the results of the GRUS with those of the other
models based on WaveNet and LSTM algorithms, to illustrate the performance of
the proposed GRUS model.

The WaveNet is a fully convolutional neural network, which has also been used
for wave height prediction. For example, Liu et al. [26] implemented a WaveNet
model to process the obtained sensor data and predict wave height and period. In
this study, we also performed this algorithm to predict Hs, following the study of
Liu et al. [26].

The LSTM is a variant of RNN aimed at avoiding the vanishing gradient problem
by gated regulators [27], which has been used for wave state prediction (e.g., [19]).

4.3 Parameter Settings

In this study, all deep learning models used Adam optimizer with the learning rate
(g) of 0.001, while the training iteration (p) for all models is 500. The model
parameter settings are listed in Table 2. We use the greedy strategy to optimize the
parameters of the deep-learning model.

WaveNet model parameter settings: Following Liu et al. [26], we also used a 1D
convolutional neural network with the same parameter settings, except that h1 =
48 and h2 = 24 in the present study.

LSTM model parameter settings: First, we performed three sets of experiments
to obtain the optimal number of LSTM layers. The number of the LSTM layers,
l, for the three sets of experiments is, respectively, set to 2, 3 and 4 (denoted as
LSTM-2, LSTM-3, LSTM-4), and the number of the neurons, h, in each LSTM layer
is set to 24, while a FC layer also with 24 neurons is added to each of the LSTM
models. Then, we carried out the other 21 experiments with h = 26, 28, 30, 32, 34,
36 and 38 neurons for LSTM-2, LSTM-3 and LSTM-4, respectively, to select the
optimal number of neurons. The activation functions are tanh and PReLU. These
experimental results show that the LSTM-2 with 24 neurons has the best results
(hereafter referred to LSTM-2).



894 Y. Zeng, J. Ma, X. Chen, M. Guo, Z. Ren, Y. Jiang, Z. Zhang

LSTM model parameter settings: In this study, a set of experiments were carried
out, to obtain the optimal number of GRU neurons in the encoder and decoder, by
means of 12, 16, 18, 22, 24, 26, 30, 34, 38, 42, and 46 GRU neurons. The activation
functions are tanh and PReLU. Finally, these model experiments demonstrate that
the model can provide the best results when the number of GRU neurons is 24.

Model Component Parameter Settings

LSTM-2
LSTM l = 2, h1 = 24, h2 = 24, activation = tanh
FC l = 1, h1 = 24, h2 = 24, activation= PReLU

WaveNet
Conv1D k1 = 3, n1 = 16, k2 = 5, n2 = 32, k3 = 11, n3 = 64 p = 500
FC l = 2, h1 = 48, h2 = 24, activation= ReLU g = 0.001

GRUS
GRU l = 1, h1 = 24, activation = tanh
FC l = 1, h1 = 24, activation= PReLU

Table 2. Model parameter settings. l represents the number of the model hidden layers,
hi is the neuron number in each layer, ni represents the number of convolution operations
in the ith layer, ki represents the length of the convolution operations in the ith layer, g is
the learning rate, and p represents the training number.

4.4 Evaluation Measures

In this study, the performances of the proposed model, i.e., GRUS model, are com-
pared to the WaveNet and LSTM forecasting models, at the three buoy stations in
the study area. To objectively evaluate the forecasting models, we carried out some
quantitative evaluations, using the estimates of root mean square error (RMSE), the
correlation coefficient (R) and Mean Absolute Error (MAE).

RMSE is a metric showing the average distance between the predicted values
from the model and the actual values in the dataset, which can be calculated as:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi) (9)

where n is the sample size, yi is the predicted value for the ith observation in the
dataset, and ŷi is the observed value for the ith observation in the dataset.

Correlation coefficient is used to measure the strength of the relationship be-
tween two variables, and is defined as:

R =
Cov(y, ŷ)√
Var(y)Var(ŷ)

(10)

where Cov(·) and Var(·) refer to the covariance and variance operator, respectively.



Ocean Wave Height Prediction Based on GRU and Sequence-to-Sequence Networks 895

MAE is the average difference between the observations and model predictions,
which can be calculated by:

MAE =
1

n

N∑
i=1

|yi − ŷi|. (11)

5 EXPERIMENTAL ANALYSIS

5.1 Wind and Wave States

In this study, we analyzed the wind and wave states in terms of the observed data
for the year 2017. The time series of hourly wind speeds based on the buoy data
in 2017 is plotted by Figure 3. It can be observed that wind speeds in the study
area were mostly smaller than 20m/s. Relatively high wind speeds of larger than
20m/s happened occasionally, mostly occurring with extreme weather events such
as tropical cyclones. Wind direction and wind speed for different seasons at the
buoys is presented in terms of a wind rose figure (Figure 4). In spring, autumn
and winter, winds were mostly from NE, followed by N and NNW; in summer, the
prevailing wind direction was SW, while occasionally from NE.

Hourly Hs at the buoys considered in this study is also plotted in Figure 3.
We can see from this figure that Hs was smaller than 4m, most of the time, while
relatively larger Hs values exceeding 5m over the year are found only in some rare
cases due to relatively strong winds. The correlations between the wind speeds and
Hs at the stations are considerably high.

The fundamental characteristics of wind speeds and Hs, in terms of the annual
mean and maximum wind speed (i.e., Vmean and Vmax), annual mean and maximum
Hs (i.e., (Hs)mean and (Hs)max) are summarized in Table 1. In the study area, Vmean

and (Hs)mean in 2017 were over 7.7m/s and 1.4m, respectively. The maximum values
of wind speeds and Hs at the buoys are 29.5m/s and 6.8m, respectively.

Overall, the Taiwan Strait region displays its own unique characteristics in winds
and Hs states, which is of importance for forecasting models to provide reasonable
forecasting results.

5.2 Model Results

In this section, we compared the model forecasting results with buoy observations,
to objectively study the performance of the forecasting models for 24-hour Hs pre-
diction. Figure 5 shows the time series of the hourly observed and forecasted Hs at
the buoy stations for the testing period (see Table 1). It is seen that the forecasted
Hs variations of the models are generally in agreement with observations. The cor-
relations between the model results and observations of Hs at each buoy for the
testing period are displayed by the scatter diagram (Figure 6) with the statistics of
the RMSE and correlation coefficient (R). Figure 6 exhibits that the R values are all
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Figure 3. Time series of hourly wind speed (m/s) and significant wave height (Hs in m)
at the buoys (S1–S3) shown in Figure 1 for the year 2017

statistically significant (R > 0.78), indicating that the models can provide generally
reasonable results of Hs variability in 24-hour prediction for the study region.

The comparison between the model results shows that the WaveNet provides
the worst model results, with lowest R while largest RMSE values among all model
results (Figure 6). The RMSE values are all larger than 0.5m for the WaveNet
model, while smaller than 0.5m for the other models. The correlation coefficients
of the LSTM-2 model are over 0.9 at the buoy stations. Most importantly, the
comparison between the model results exhibits that our proposed GRUS model
outperforms the other methods in Hs forecasting. It is apparent that all indicators
of GRUS are better than those of the other models. The RMSE values of the GRUS
at S1–S3 are, respectively, 0.42, 0.38 and 0.38, while the lowest values of the other
models are 0.50, 0.46, and 0.45, respectively (Table 3).

For high wave state prediction (e.g., Hs > 4m), it is observed from Figure 6
that the WaveNet, LSTM-2 and GRUS models are insufficient, especially for extreme
waves. For the wave states of Hs > 4m, most of the forecasted Hs are smaller than
the observed Hs; this insufficiency is most evident for the WaveNet model, while, in
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Figure 4. Seasonal wind speed and direction roses based on the measurement for the buoys
S1–S3 for the year 2017

contrast, of all the models, the GRUS provides the best results that are considerable
close to the observations.

Prediction horizon in time is an important aspect of the ability of forecasting
methods, especially for long-term prediction. In general, the longer the prediction
horizon is, the weaker the correlation in the data series is. In this study, we further
analysed the trend of the forecasting accuracy of the modelled Hs for next X-hour.
X is between 1–24 in the present study, meaning the prediction horizon in time is
between 1–24 (h). The RMSE values of different prediction horizons are shown in
Figure 7. It can be seen from the figure that the RMSEs of the proposed GRUS are
smallest within 24-hour prediction, indicating, again, that the performance of the
GRUS model is the best among these models. With prediction horizon increasing
(i.e., X increasing), prediction errors of the models show overall increasing trends,
with different increasing rates. Furthermore, it is noticed from Figure 7 that the
GRUS RMSEs are significantly low for less than 6-hour prediction, illustrating that
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Figure 5. Comparison between modelled and observed Hs within 24-hour prediction at
S1–S3

the GRUS has remarkable ability for short-term prediction. For example, for 3-h
prediction, the RMSE values of the GRUS are reduced by over 29%, 31% and 22%
at S1–S3, respectively, compared to other model results. Overall, the performance
of the GRUS developed in this study provides the best forecasting results for Hs,
especially for short-term prediction.

6 CONCLUSIONS

In recent years, approaches based on deep learning techniques have become popular
in wave forecasting. The goal of this study is to develop the forecasting techniques
to improve the wave forecasting accuracy for the Taiwan Strait, where the wave
states own its unique characteristics. Three buoy observations in wind and wave
states were selected to represent the spatial feature of the study region. The hourly
variability in Hs is highly correlated to that of wind speeds. Seasonality can be
observed in Hs, wind speed and directions. NE winds prevail in winter time, while
SW winds mostly occur in summer.
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Figure 6. Comparison between modelled and observed Hs within 24-hour prediction at
S1–S3. R represents correlation coefficient.

Station Error Index WaveNet LSTM-2 CLSF GRUS

S1
RMSE (m) 0.57 0.50 0.46 0.42
MAE (m) 0.42 0.36 0.32 0.28
R 0.88 0.90 0.92 0.93

S2
RMSE (m) 0.63 0.46 0.46 0.38
MAE (m) 0.45 0.34 0.33 0.27
R 0.89 0.91 0.92 0.94

S3
RMSE (m) 0.50 0.45 0.39 0.38
MAE (m) 0.37 0.34 0.29 0.27
R 0.91 0.91 0.94 0.94

Table 3. Error indices between forecasted next 24-hour Hs with corresponding observa-
tions
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Figure 7. RMSE of forecasted Hs for next X-hour compared with observations. X rep-
resents the time on X-axis.

In this study, we developed a deep learning model by means of a GRU-based
encoder-decoder architecture used in Seq2Seq networks, i.e., GRUS. The implemen-
tation of the model performance was carried out by means of the comparison between
model results and buoy observations. We also compared the performances of the
other deep learning models of the WaveNet and LSTM-2 from previous studies. We
used one year data to train the models and another year data to test the models.
Model parameters were optimized by means of various model experiments. Com-
parison results show that the proposed GRUS model outperforms the other models
in Hs forecasting, while the GRUS has remarkable ability for short-term prediction
(prediction horizon is less than 6 h). Moreover, the models are insufficient in predic-
tion of high wave states (e.g., Hs > 4m), while the GRUS model provides the best
results among the models.
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