
Computing and Informatics, Vol. 41, 2022, 1002–1024, doi: 10.31577/cai 2022 4 1002

SCALING SUBGRAPH MATCHING
BY IMPROVING ULLMANN ALGORITHM

Karam Gouda

Faculty of Computers and Artificial Intelligence
Benha University, Egypt
e-mail: karam.gouda@fci.bu.edu.eg

Gyöngyi Bujdosó

Faculty of Informatics
University of Debrecen, Hungary
e-mail: bujdoso.gyongyi@inf.unideb.hu

Mosab Hassaan

Faculty of Science
Benha University, Egypt
&
Faculty of Informatics
University of Debrecen, Hungary
e-mail: mosab.hassaan@fsc.bu.edu.eg

Abstract. Graphs are vastly used to represent many complex data semantics in
several domains. Subgraph isomorphism checking (an NP-complete problem) is
a regular operation with this kind of data. In this paper, we propose an improve-
ment of Ullmann algorithm, a well-known subgraph isomorphism checker. Our new
algorithm is called Ullmann-ONL. It utilizes a novel sorting method for query
vertices and L-levels of vertex neighborhoods (NL) to confine the search space of
Ullmann algorithm. Our performance study shows that Ullmann-ONL outperforms
previously proposed algorithms with a wide margin.

Keywords: Subgraph matching, NP-complete, graph database

https://doi.org/10.31577/cai_2022_4_1002

Scaling Subgraph Matching by Improving Ullmann Algorithm 1003

1 INTRODUCTION

Graphs have been used to represent a lot of complex objects and their relationships
in the real world. Images entities [1], social networks [2], and chemical compounds [3]
are data graphs examples. For instance, in social networks, a person x corresponds
to a vertex wx in the current network, and another person y corresponds to another
vertex wy in the current network. If x and y have a relation (business), then an edge
e = (wx, wy) will exist, which joins the two vertices wx and wy. Testing whether
a graph contains another graph is considered as one of the main graph operations.
In drug-discovery, for instance, given a large graph that represents a large chemical
compound, a chemist may need to test if this large graph contains a small substruc-
ture or not. This test assists the designer of drugs to gain a primary view of the
given substructure because these substructures have many similar biological activi-
ties. The containment testing operation is named as subgraph isomorphism problem
and abbreviated as SGI . SGI is NP-complete [4]. Formally, a query graph g is
a subgraph of another data graph H, if there is an injection from g vertices to
H vertices which preserves the edge labels, the vertex labels, and the connections
among vertices.

Figure 1 reports an example of SGI , where a query graph g and a data graph H
are listed. The character beside each vertex represents its index and the character
inside the vertex represents its label, and the character through the edge represents
its label. Here, H contains g because the g vertices w1, w2, and w3 can be mapped
to the H vertices z1, z3, and z4, respectively. In this mapping, we preserve the vertex
labels, the edge labels and the connections among vertices. Unfortunately, SGI is
very difficult since it may require testing many of the injection candidates for labels
and connections preservation before catching the correct one.

g

C

w
 1

w
2

w
3

z
2

z
4

z
1

z
3

z
5

H

S S S
S

S

S
R

T T

T

C C

D D

D

DD

Figure 1. H: a data graph and g: a query graph

Our Contributions. In this paper, we propose an efficient subgraph isomorphism
checking algorithm. It is based on Ullmann algorithm. Here, the search space is
sharply reduced by following a novel sorting method of the query vertices, and by
utilizing the label information at different levels of vertex’s neighborhood. The
new algorithm is called Ullmann-ONL, where -ONL stands for the bold letters in:

1004 K. Gouda, G. Bujdosó, M. Hassaan

Subgraph checking by efficient sOrting the query’s vertices and applying the la-
beled information of L-levels of vertex’s Neighborhood. A preliminary version of
this paper is listed in [5]. This paper extends the preliminary version by generaliz-
ing the neighborhood concept. Extra experiments are conducted to further assess
Ullmann-ONL. These experiments are performed to evaluate the effect of the new
neighborhood concept on reducing the search space. Comparing to the well-known
basic algorithms Ullmann [6] and Vflib [7], Ullmann-ONL achieves up to 1-3 orders of
magnitude and outperforms the recent QuickSI [8] by more than a factor four. An-
other experiment also shows that Ullmann-ONL performs well on large data graph,
by comparing it with vflib3 and DAF. In this experiment, we found that DAF is the
worst whereas Ullmann-ONL and vflib3 have similar performance.

The remainder of this paper is organized as follows. Section 2 represents the
related work. Section 3 discusses the preliminary concepts. Section 4 reviews the
Ullmann algorithm in details. Section 5 presents our algorithm, Ullmann-ONL. The
experimental results are reported in Section 6. Finally, the paper is concluded in
Section 7.

2 RELATED WORK

Ullmann [6], Vflib2 [7], and QuickSI [8] are well-known algorithms for the subgraph
isomorphism problem. Ullmann is based on the branch and bound paradigm [9]. It
has poor performance for querying against the huge data graph. More details about
Ullmann algorithm are given in Section 4.

Vflib2, on the other hand, utilizes an optimal version of Ullmann. It proceeds by
constructing and changing a match state. The match state consists of a matched-
set. This matched-set is a vertex pairs set matching between the two graphs, query
graph g and the data graph H. If the matched-set consists of all the query vertices,
then g is subgraph isomorphic to H and returns. Otherwise, the algorithm tries to
insert a new vertex pair. This is done by tracking the in(out)-set of each graph,
that are the vertices sets immediately connected to the matched-set. These two sets
select the optimal vertices that can be inserted to a given state. The only pairs that
can be inserted are either in the in-sets or in the out-sets of the two graphs. The
algorithm also utilizes backtracking to search for either a successful match state, or
terminate. Vflib3 [10] is an extension of vflib2 which leverages more pruning rules
such as matching order and vertex classification. QuickSI significantly improves
Ullmann by using the label and edge frequencies in the data graph to determine
an effective search order of the search space.

Spath [11], TurboIso [12], GADDI [13], BoostIso [14], and DAF [15] are recently
proposed algorithms for SGI . In Spath [11], paths are used as matching entities
and neighborhood signatures of vertices are used to minimize the search space.
TurboIso [12] combines similar query vertices and BoostIso [14] generalizes the idea
of TurboIso to the data graphs.

Scaling Subgraph Matching by Improving Ullmann Algorithm 1005

GADDI [13] proposed a novel structure distance based approach to search ma-
tches of the running query graph in efficient way. Based on DAG ordering, DAF [15]
adopted adaptive matching order and failing sets were used to enhance the pruning
power.

In [16], a fair experimental study is conducted for the state-of-the-art subgraph
isomorphism algorithms. The study revealed that vflib3, QuickSI, and DAF are the
best three subgraph matching algorithms.

3 PRELIMINARY CONCEPTS

This paper focuses on simple, undirected graphs with vertex labels and edge labels.
The terminology in this paper is presented as follows.

Definition 1 (Labeled Graph). A labeled graph H is a 4-tuple ⟨VH , EH , LH , lH⟩,
where VG is the vertex set, EH is the edge set, LH is the label set, and lH is a labeling
function that maps each vertex or edge to a label in LH .

The number of edges in graph H is called H size.

Definition 2 (Labeled Path). A labeled path from a vertex w1 to a vertex wk in
a labeled graph H is a sequence of vertex and edge labels in the following order:
l(w1)l((w1, w2))l(w2)l((w2, w3))l(w3) . . . l(wk−1)l((wk−1, wk))l(wk), where (wi−1, wi)
∈ EH is an edge in the graph.

Definition 3 (Vertex Neighborhood). Given a graph H, the neighborhood of ver-
tex w ∈ VH is the set NH(w) = {x ∈ VH | (w, x) ∈ EH}.

Note that the degree of a vertex w ∈ VH denoted as deg(w) is the size of its neigh-
borhood, i.e. deg(w) = |NH(w)|.

Definition 4 (Subgraph Isomorphism). Given two graphs X = ⟨VX , EX , LX , lX⟩
and Y = ⟨VY , EY , LY , lY ⟩. A subgraph isomorphism from Y to X (Y ⊆ X) is
injection mapping f : VY 7−→ VX that satisfying the following three conditions:

• ∀(w1, w2) ∈ EY , there is an edge (f(w1), f(w2)) ∈ EX ,

• lY (w1) = lX(f(w1)) and lY (w2) = lX(f(w2)),

• lY ((w1, w2)) = lX((f(w1), f(w2))).

The definition of graph isomorphism is as in Definition 4 except we use the
bijection mapping instead of the injection mapping.

There may exist several subgraph isomorphisms from Y to X. Each represents
an embedding (or occurrence) of the subgraph Y in X. A graph automorphism is
an isomorphism mapping from a graph to itself. Two occurrences are redundant if
their corresponding subgraphs are automorphic.

1006 K. Gouda, G. Bujdosó, M. Hassaan

w1 w2 w3

f1 z1 z3 z4
f2 z1 z4 z3
f3 z2 z4 z5
f4 z2 z5 z4

Table 1. All possible subgraph isomorphisms (all embeddings)

Example 1. Consider the two graphs g and H in Figure 1. Here, g is a subgraph
isomorphic to H based on the mapping f with f(w1) = z1, f(w2) = z3 and f(w3) =
z4. In Table 1, all possible subgraph isomorphisms from g to H (all embeddings) are
listed. The subgraph isomorphisms f1 and f2 represent two redundant embeddings.
This also occurs with f3 and f4.

1 2

3 4 5

3

2 4 5

4

2 3 5

5

2 3 4

1 3 4 5

3 4 5

Root

2

Level Vg

1 w
1

2 w
2

3 w
3

Figure 2. A subtree search of the Ullmann algorithm

The set of all symbols used through this paper is reported in Table 2

4 ULLMANN ALGORITHM

Ullmann algorithm is the earliest and known algorithm for SGI. Given a query
graph g and a data graph H. To test if g is subgraph isomorphic to H, Ullmann
algoritm enumerates all possible mappings from g vertices (Vg) to H vertices (VH)
using a depth-first-tree-search. Figure 2 reports a part of the search tree generated
by checking the two graphs g and H in Figure 1. At each level l of this search
tree, a vertex wl in Vg is mapped to some vertex in VH (in the tree, the variable
k inside each vertex represents its id in the data graph H). A complete mapping
is represented by a path from the root of the search tree to the last level (|Vg|).
If there exists a complete mapping preserving the connections in the two graphs g
and H, then g is subgraph isomorphic to H, otherwise not. In Figure 2, the bold
path (f(u1) = z1, f(u2) = z3, and f(u3) = z4) is a complete mapping preserving
the connections in the two graphs g and H. Therefore, g is subgraph isomorphic
to H.

Note that, in Ullmann algorithm, the complete mappings count is exponential
with respect to the vertices of the running query and data graphs. Thus the to-

Scaling Subgraph Matching by Improving Ullmann Algorithm 1007

Symbol Description

g and H Two graphs (the running query graph and the running data graph, respec-
tively)

VX and EX The set of vertices and edges of a running graph X, respectively.

deg(w) The degree of vertex w that belongs to the vertices set of running graph.

NX(w) The neighborhood of vertex w ∈ VX .

f The mapping between two sets of vertices (for instance, VX and VY) such
that f is injection mapping.

LX The label set of running graph X that maps each vertex w ∈ VX (or each
edge e ∈ EX) to vertex label, l(w) (or edge label, l(e)).

⊆ Subgraph isomorphism between two running graphs.

V ′
g Efficient sorting of Vg based on the first optimization. Note that, g is the

running query graph.

L The neighborhood level which equals to one or two.

NL
H(w) L-scope Labeled Neighborhood of a vertex w ∈ VH .

Cand0(w) The naive matching candidate set of vertex w ∈ Vg where g is the running
query graph.

CandL(w) The neighborhood matching candidate set of vertex w ∈ Vg where g is
the running query graph.

DNL
X The distinct labeled neighborhoods set of running graph X.

MDNL A bit matrix with size |DNL
g | = αLxβL = |DNL

H | which based on the con-

tainment between DNL
g and DNL

H .

PL
X A position array with size equals to |VX |. For each vertex w ∈ VX , the index

of its labeled nighborhood is stored in position w.

Table 2. All symbols used through the paper

tal response time will be increased even for some small graphs. To address these
challenges of SGI , Ullmann proposed a refinement procedure. Using the refinement
procedure, the search space is pruned as much as possible. More details about
refinement procedure are discussed by a three conditions as follows:

Condition I (Checking Label and Degree). A vertex w ∈ Vg is mapped to
a vertex z ∈ VH via the injection mapping f , i.e. z = f(w), if

1. lg(w) = lH(z),

2. deg(w) ≤ deg(z).

Condition II (Checking One-to-One Mapping). If f(w) = z where w ∈ Vg

and z ∈ VH then we must not map any vertex w′ ∈ Vg to z ∈ VH .

Condition III (Checking Neighbor). Here, Ullmann checks the feasibility of the
mapping w ∈ Vg to z ∈ VH by taking into account the preservation of structural
connectivity. If there exist edges connecting w with previously explored vertices
of the query graph g and at the same time there are no counterpart edges in H,
the mapping check is failed.

1008 K. Gouda, G. Bujdosó, M. Hassaan

Based on the first condition, the naive matching candidate set of query vertices is
defined as follows.

Definition 5 (Naive Matching Candidate Set). Given a query g and a data graph
H. Let w ∈ Vg be a query vertex, the naive matching candidates set of w, based on
the label and degree condition, is given as follows: Cand0(w) = {x ∈ VH : lg(w) =
lH(z) and deg(w) ≤ deg(z)}.

Thus in Ullmann algorithm, for each vertex w ∈ Vg, an exhaustive search of
all possible one-to-one correspondences to z ∈ Cand0(w) is searched. Thus, Ull-
mann search space is

∏P
l=1Cand

0(wl), where P = |Vg|. The worst-case of the time
complexity is O(T P), where T = |VH | and P = |Vg|. This is a result of the NP-
completeness of SGI .

5 ULLMANN-ONL

In this section, we propose Ullmann-ONL, a novel algorithm for SGI . Ullmann-
ONL is based on Ullmann. Note that the search space of Ullmann is huge even after
applying the refinement procedure. To address this problem, Ullmann-ONL uses
two novel optimizations to reduce the search space as much as possible as follows.

Algorithm: Sort Vertices(Vg)

Input: Vg = {w1, w2, . . . , w|Vg |}
Output: An sorting of Vg, V

′
g = {w′

1, w
′
2, . . . , w

′
|Vg |}

1 V ′
g = ϕ

2 for each w ∈ Vg

3 Compute deg(w)
4 w′

1 = wl, l = argmaxw∈Vg deg(w)
5 Insert w′

1 in V ′
g and delete wl from Vg

6 for k = 2 . . . |Vg|
7 w′

k = wm, m = argmaxw∈Vg |{(w,w′) ∈ Eg : w
′ ∈ V ′

g}|
8 Insert w′

i in V ′
g and delete wk from Vg

9 return V ′
g

Figure 3. Sorting query vertices algorithm

5.1 Opt1: Sorting the Query Vertices

In Ullmann, the search order of query vertices is random. This default sorting of
Vq can possibly result in a search order that seriously slows down the Ullmann as
the connectivity between consecutive query vertices could be lost, which requires
the Ullmann to consume a lot of time testing the feasibility of the partial mappings.

Scaling Subgraph Matching by Improving Ullmann Algorithm 1009

Query vertices must be explored in the sort which facilitates obtaining the all benefits
of using the neighbor condition. The sorting of query vertices requires that the
current processing vertex must have a high connections with the query vertices
which previously explored. In other words, if wl ∈ Vg is the current processing
vertex then wl must have a higher connections with the vertices w1, w2, . . . , wl−1 in
Vg. This novel sorting method discards the false mappings as early as possible during
the search. Therefore, we save a lot of time that Ullmann takes on searching the
false long partial mappings. The algorithm in Figure 3 presents this optimization.

5.2 Opt2: Utilizing Different Levels of Vertex Neighborhood

In this optimization, we propose a new condition based on the neighborhood labels
of matching vertices. By this condition, the search space is reduced by minimizing
|Cand0(u)| for each query vertex w ∈ Vg. Note that this condition is more effective
than the label and degree condition in the Ullmann. See the following for more
details.

For each vertex, we define its L-size labeled path and its L-scope labeled neigh-
borhood, for a non-negative integer L, as follows.

Definition 6 (L-size labeled path of a vertex). The L-size labeled path of a vertex
u is a simple, labeled path of size L, starting or ending at u.

Definition 7 (L-scope Labeled Neighborhood of a vertex). Given a graph G and
a vertex u ∈ VG, the L-scope labeled neighborhood of u, denoted NL

G(u), is the set
of L-size labeled paths of u. Here L is also called the neighborhood level.

Next theorem reports the necessary condition required for mapping a vertex
w ∈ Vg to a vertex z ∈ VH .

Theorem 1. Given the two graphs g andH such that g is subgraph isomorphic toH
via the injection mapping f . If w ∈ Vg is mapped to z ∈ VH , then NL

g (w) ⊆ NL
H(z).

According to Theorem 1, if the labeled neighborhood of vertex z ∈ VH does not
include the labeled neighborhood of vertex w ∈ Vg, w cannot be mapped to z. By
this containment test, we reduce the search space as much as possible. The following
condition generalizes the first condition of Ullmann by applying this containment
test rather than the degree test.

Label and neighborhood containment condition. A vertex w ∈ Vg can be
mapped to z ∈ VH using the injection mapping f , i.e. z = f(w), if

1. lg(w) = lH(z),

2. NL
g (w) ⊆ NL

H(z).

Note that if we set L = 1 and N1
g (w) ⊆ N1

H(Z) is satisfied, it directly leads to
deg(w) = |N1

g (w)| ≤ |N1
H(z)| = deg(z).

1010 K. Gouda, G. Bujdosó, M. Hassaan

Example 2. Given the query graph g and the data graph H in Figure 1. According
to the label and neighborhood containment condition and let L = 1, we can map
vertex w1 ∈ Vg to z1 ∈ VH since

1. lg(w1) = lH(z1) = C, and

2. N1
g (w1) = {(C, S,D), (C, S,D)} ⊆ {(C,R,C), (C, S,D), (C, S,D)} = N1

H(z1).

Based on Theorem 1 we have the next definition.

Definition 8 (Neighborhood Matching Candidate Set). Given the query graph g
and the data graph H. Assume that there is a vertex w ∈ Vg. The neighborhood
matching candidate set of w is CandL(w) = {z ∈ VH : NL

g (w) ⊆ NL
H(z) with L = 1

or 2}.

Next example shows the search space size when using the naive matching can-
didate set, Cand0 and the neighborhood matching candidate set CandL where L =
1 or 2.

Figure 4. Running example (Opt2: utilizing neighborhood labels)

Example 3. Given the query graph q and the data graph G in Figure 4. We have
three cases of the matching candidate set.

1. The first case if we use the naive matching candidate set, Cand0 (Ullmann).
Then Cand0(u1) = {v1, v3, v6, v8, v10}, Cand0(u2) = {v2, v4, v5, v9}, Cand0(u3) =
{v3, v8}, Cand0(u4) = {v2, v4, v5, v9}, Cand0(u5) = {v2, v4, v5, v9}, and
Cand0(u6) = {v3, v6, v8}.
The search space size is as follows:

|V (q)|∏
i=1

|Cand0(ui)| =
6∏

i=1

|Cand0(ui)| = 5× 4× 2× 4× 4× 3 = 1 920.

Scaling Subgraph Matching by Improving Ullmann Algorithm 1011

Figure 5. The candidate vertices based on N1
G, Cand

1

2. The second case if we use the neighborhood matching candidate set and let
L = 1, Cand1 (Ullmann-ON1). Then Cand1(u1) = {v10}, Cand1(u2) = {v9},
Cand1(u3) = {v3, v8}, Cand1(u4) = {v2, v4, v5}, Cand1(u5) = {v2, v4, v5}, and
Cand1(u6) = {v3, v6, v8}. See Figure 5.

The search space size is as follows:

|V (q)|∏
i=1

|Cand1(ui)| =
6∏

i=1

|Cand1(ui)| = 1× 1× 2× 3× 3× 3 = 54.

3. The final case if we use the neighborhood matching candidate vertices and let
L = 2, Cand2 (Ullmann-ON2). Then Cand2(u1) = {v10}, Cand2(u2) = {v9},
Cand2(u3) = ϕ, Cand2(u4) = {v4}, Cand2(u5) = {v5}, and Cand2(u6) =
{v3, v6}. See Figure 6.

1012 K. Gouda, G. Bujdosó, M. Hassaan

Figure 6. The candidate vertices based on N2
G, Cand

2

Scaling Subgraph Matching by Improving Ullmann Algorithm 1013

The search space size is as follows:

|V (q)|∏
i=1

|Cand2(ui)| =
6∏

i=1

|Cand2(ui)| = 1× 1× 0× 1× 1× 2 = 0.

From the previous example, Ullmann-ONL algorithm cuts down the search space
by using the new vertex labeled neighborhood. The best case here is the final case
that we used L = 2 (Cand2) i.e. |Cand2| < |Cand1| < |Cand0|. In experimental
evaluation section we test the size of Cand0 (Ullmann), Cand1 (Ullmann-ON1, which
applies the first level of the neighborhood), Cand2 (Ullmann-ON2, which applies the
second level of the neighborhood), and Cand1,2 (Ullmann-ON1,2, which applies the
first and the second levels of the neighborhood together) on different datasets.

Recall, we reduce the search space as much as possible using the label and
neighborhood containment condition. Unfortunately, computing the containment
test is very expensive especially for large and dense graphs. Therefore, we propose
a novel efficient method to compute the containment test. Our novel method is
based on the following observation. In real graphs, a lot of vertices in these graphs
share a similar neighborhood. Next example demonstrates this observation at L = 1.

Example 4. Assume, we have the query graph g and the data graph H given in
Figure 1 and L = 1. We have the following:

1. In the data graph H : N1
H(z1) = N1

H(z2) = {(C,R,C), (C, S,D), (C, S,D)},
N1

H(z3) = N1
H(z5) = {(D,S,C), (D,T,D)}, and N1

H(z4) = {(D,S,C), (D,S,C),
(D,T,D), (D,T,D)}.

2. In the query graph g : N1
g (w1) = {(C, S,D), (C, S,D)}, and N1

g (w2) = N1
g (w3) =

{(D,S,C), (D,T,D)}.

Also, the previous observation occurs at L = 2. Therefore, we will minimize
the cost of the containment tests by cashing many of duplicated computations as
follows:

• Compute the distinct labeled neighborhoods set for the two graphs g and H,
namely DNL

g and DNL
H , respectively.

• Construct a bit matrix MDNL = (mL
ij)αLβL where αL = |DNL

g | and βL = |DNL
H |,

to maintain the containment relationship between distinct neighborhoods of g
and H, with mL

ij = 1 if DNL
g [i] ⊆ DNL

H [j], otherwise mL
ij = 0.

• For a graph X (query or data graph), construct a pointers array PL
X with size

|VX |. This array is called position array. Each slot t in this array holds the id
of the vertex t labeled neighborhood at DNL

X .

Therefore, for each w ∈ Vg and z ∈ VH , we have the following:

NL
g (u) ⊆ NL

H(v) iff mPL
g (u)PL

H(v) = 1.

1014 K. Gouda, G. Bujdosó, M. Hassaan

Then, we can replace the test 2. in label and neighborhood containment condition
by the following:

mPL
g (u)PL

H(v) = 1.

5.3 Ullmann-ONL Algorithm

Figure 7 reports the Ullmann-ONL algorithm. Line 1 outlines Opt1 (the first op-
timization), whereas lines 2–5 apply Opt2 (the second optimization). In line 5,
for each query vertex w ∈ Vg, the vertices of data graph z ∈ VH that satisfy the
first condition (modified one) are inserted into CandL(w) (the candidate set of the
vertex w). The procedure Recursion Search matches wi over CandL(wi) (line 5)
and proceeds step-by-step by recursively matching the subsequent vertex wi+1 over
CandL(wi+1) (lines 6–7), or sets the value of Flag to TRUE and returns if every ver-
tex of g has its counterpart in H (line 10). If wi exhausts all vertices in CandL(wi)
and still cannot find matching, then the procedure Recursion Search backtracks to
the previous state for further exploration (line 11). The function Joinable outlines
the condition 3. This function outputs the first embedding only. To output all em-
beddings, we can delete the lines 1 and 9 in the procedure Recursion Search. Based
on the Optimization 2, for each query vertex w, the candidate set of w (CandL(w)) is
sharply minimized. Moreover, based on Optimization 1, false mappings are removed
in early state. This saves more of required computations that Ullmann spent.

6 EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of Ullmann-ONL on real and synthetic
graphs. Ullmann-ONL is implemented in C++ with STL and compiled with GNU
GCC. Experiments were run on a PC with Intel 3GHz dual Core CPU and 4GB
memory running Linux.

In the following experiments, we consider vertex-labeled and edge-(un)labeled
simple graphs.

6.1 Datasets

Experimental evaluation are performed on a group of real and synthetic datasets
as follows. There are three real datasets (AIDS 40K, Chem 1M, and HRPD) and
one synthetic dataset (Syn 10K). The corresponding information of these real and
synthetic datasets is summarized in Table 3, where |D| represents the number of
graphs, Avg. Vertex and Avg. Edge are the average vertex size and the average edge
size, respectively. While Dist. Vertex Lab. and Dist. Edge Lab. denote the distinct
vertex and edge labels, respectively.

1 http://dtp.nci.gov/
2 ftp://ftp.ncbi.nlm.nih.gov/pubchem/

http://dtp.nci.gov/
ftp://ftp.ncbi.nlm.nih.gov/pubchem/

Scaling Subgraph Matching by Improving Ullmann Algorithm 1015

Algorithm: Ullmann-ONL

Input: A query graph (g), a data graph (H), and the neighborhood level (L).
Output: TRUE or FALSE: g is a subgraph isomorphic to H?
Flag = FALSE; // Boolean Global Variable
1 V ′

g = Sort Vertices(Vg) // First Opt.
2 Compute DNL

g , DNL
H , and MDNL

3 Compute the two arrays PL
q and PL

H

4 for each w ∈ V ′
g do

5 CandL(w) = {z : z ∈ VH , lg(w) = lH(z), and mL
PL
g (w)PL

H(z)
= 1} // Second Opt.

6 Recursion Search(w1)
7 return Flag
Procedure Recursion Search(wi)
1 if NOT Flag then
2 for z ∈ CandL(wi) and z is unmatched do // Condition II
3 if NOT Joinable(wi, z)
4 continue;
5 f(wi) = z i.e. z is matched
6 if i < |V ′

g |
7 Recursion Search(wi+1)
8 else
9 Flag = TRUE;
10 return;
11 f(wi) = NULL i.e. z is unmatched // Backtracking
Function Joinable(wi, z) // Condition III
1 for each (wi, wj) ∈ Eg, j < i do
2 if (z, f(wj)) /∈ EH

3 return FALSE

4 return TRUE

Figure 7. Ullmann-ONL algorithm

Note that we use also the dataset AIDS 10K that contains 10 000 graphs. It is
a subset that is randomly drawn from AIDS 40K.

6.1.1 Query Sets

For the datasets AIDS 40K, Chem 1M and Syn 10K, we use six query sets Q4, Q8,
Q12, Q16, Q20 and Q24. Each set Qk contains 1 000 query graphs with k edges.
For HRPD dataset, we generate only three queries namely, q36, q40, and q44 with
size 36, 40, and 44, respectively.

1016 K. Gouda, G. Bujdosó, M. Hassaan

Dataset |D| Avg. Avg. Dist. Dist.
Vertex Edge Vertex Lab. Edge Lab.

AIDS 40K 1 40 000 25 27 62 3

Chem 1M 2 1 000 000 23.98 25.76 81 3

HRPD 1 9 460 37 000 307 1

Syn 10K 10 000 50 50 3 2

Table 3. Summary statistics of the datasets used in the experiments

6.2 Effects of Optimizations

In this experiment, we show the effect of each optimization independently, and the
effect of both of them combined, on the performance of Ullmann-ONL. For this
purpose, we experimented with four versions of Ullmann-ONL, namely, Ullmann-O
that uses only the first optimization Opt1, Ullmann-N1 that uses only the second
optimization Opt2 with L = 1, Ullmann-N2 that uses only the second optimization
Opt2 with L = 2, and Ullmann-ON1,2 that uses both of the two optimizations and
applies the first and the second levels of the neighborhood together in the second
optimization Opt2 (i.e. L = {1, 2}).

Figure 8 plots the results obtained by running the four versions on AIDS 10K
(Figure 8 a)), Chem 10K (Figure 8 b)), and Syn 10K (Figure 8 c)) for different query
sets. Figure 8 a) shows that Ullmann-N1 and Ullmann-N2 are faster than Ullmann-O
except for Q12 and Q16, where Ullmann-O shows the best performance.

In addition to its influence on speed, the first optimization makes the algorithm
less sensitive to query size. Ullmann-ON1,2 shows the best performance among other
versions. It outperforms Ullmann-O, Ullmann-N1 and Ullmann-N2. These results
confirm the fact that the two optimizations are neither independent nor conflicting,
but they are complementary to each other. Also in Figure 8 b) Ullmann-ON1,2 shows
the best performance. In Figure 8 c) Ullmann-ON1,2 shows the best performance
except for Q20 and Q24, where Ullmann-N2 is roughly faster than Ullmann-ON1,2.

6.3 Performance Study I

In this section, we compare the performance of the three versions of the proposed
algorithm Ullmann-ON1, Ullmann-ON2, and Ullmann-ON1,2.

6.3.1 Search Space Size

Figure 8 also reports the search space size obtained by running the three versions
of the proposed algorithm on various datasets (AIDS 40K: Figure 8 d), Chem 1M:
Figure 8 e), and Syn 10K: Figure 8 f)). Ullmann-ON1,2 always has less search space
size compared with Ullmann-ON1 and Ullmann-ON2.

Scaling Subgraph Matching by Improving Ullmann Algorithm 1017

 1

 10

 100

 1000

Q4 Q8 Q12 Q16 Q20 Q24

T
o
ta

l
R

es
p
o
n
se

 T
im

e
(S

ec
)

(a) AIDS_10K

Ullmann-O
Ullmann-N

1

Ullmann-N
2

Ullmann-ON
1, 2

a)

 1

 10

 100

Q4 Q8 Q12 Q16 Q20 Q24

T
o
ta

l
R

es
p
o
n
se

 T
im

e
(S

ec
)

(b) Chem_10K

Ullmann-O
Ullmann-N

1

Ullmann-N
2

Ullmann-ON
1, 2

b)

 1

 10

 100

Q4 Q8 Q12 Q16 Q20 Q24

T
o
ta

l
R

es
p
o
n
se

 T
im

e
(S

ec
)

(c) Syn_10K

Ullmann-O
Ullmann-N

1

Ullmann-N
2

Ullmann-ON
1, 2

c)

 10000

 1e+08

 1e+12

 1e+16

 1e+20

 1e+24

 1e+28

 1e+32

 1e+36

 1e+40

 1e+44

Q4 Q8 Q12 Q16 Q20 Q24

S
ea

rc
h
 S

p
ac

e
S

iz
e

(d) AIDS_40K

Ullmann-ON
1

Ullmann-ON
2

Ullmann-ON
1,2

d)

 1

 100000

 1e+10

 1e+15

 1e+20

 1e+25

 1e+30

 1e+35

 1e+40

Q4 Q8 Q12 Q16 Q20 Q24

S
ea

rc
h
 S

p
ac

e
S

iz
e

(e) Chem_1M

Ullmann-ON
1

Ullmann-ON
2

Ullmann-ON
1,2

e)

 10000

 1e+08

 1e+12

 1e+16

 1e+20

 1e+24

Q4 Q8 Q12 Q16 Q20 Q24

S
ea

rc
h
 S

p
ac

e
S

iz
e

(f) Syn_10K

Ullmann-ON
1

Ullmann-ON
2

Ullmann-ON
1, 2

f)

Figure 8. Effects of optimizations [a)-b)-c)] and search space size of the three versions [d)-
e)-f)]

1018 K. Gouda, G. Bujdosó, M. Hassaan

6.3.2 Total Response Time: First Embedding and All Embeddings

Figure 9 reports the total response time obtained by running Ullmann-ON1, Ull-
mann-ON2, and Ullmann-ON1,2 on various datasets (AIDS 40K: Figures 9 a), 9 d),
Chem 1M: Figures 9 b), 9 e), and Syn 10K: Figures 9 c), 9 f) when we compute the
first embedding only and all embeddings, respectively).

We can see that Ullmann-ON2 is faster than Ullmann-ON1 in all figures except
Q4 in Figure 9 f) while Ullmann-ON1,2 shows the best performance except for Q20
and Q24 in Figures 9 a), 9 c), 9 f).

6.3.3 Scalability: First Embedding and All Embeddings

Figure 10 a) reports the search space size obtained by running the three versions
(first embedding) on scalability test of Chem 1M. Here, we used Q8 as query set.
The figure shows that the three versions scale linearly and Ullmann-ON1,2 has the
least search space size. While the Figures 10 b) and 10 c) report the total response
time obtained by running the three versions on scalability test of Chem 1M with Q8
when we compute the first embedding only and all embeddings, respectively.

Figure 10 b) shows that Ullmann-ON1,2 outperforms Ullmann-ON1 and Ull-
mann-ON2 by two factor and three factor, respectively. Figure 10 c) shows that
Ullmann-ON1,2 outperforms Ullmann-ON1 and Ullmann-ON2 by 1.5 factor and more
than three factor, respectively.

Recall, in [16], a fair comparison is provided for state-of-the-art subgraph iso-
morphism algorithms. The overall top three algorithms are vflib3, QuickSI, and
DAF. Therefore we compare our method with vflib2 and QuickSI in Section 6.4 and
with vflib3 and DAF in Section 6.5.

6.4 Performance Study II

From the performance study I, Ullmann-ON1,2 has the best performace among the
other versions of the proposed algorithm with respect to time and search space size.
Then in this study we compare the performance results of Ullmann-ON1,2 algo-
rithm with those obtained on the same datasets by Ullmann3, Vflib2 (abbreviated
as Vflib)4, and QuickSI (we got its executable from authors).

6.4.1 Total Response Time (Labeled Datasets)

Here, QuickSI was excluded from this experiment since QuickSI works with unla-
beled edges datasets only. Figures 10 d), 10 e), 10 f) report the total response time
obtained by running Ullmann, Vflib, and Ullmann-ON1,2 on various datasets such
as AIDS 10K: Figure 10 d), Chem 10K : Figure 10 e), and Syn 10K: Figure 10 f).

3 Ullmann is implemented in C++ with STL and compiled with GNU GCC
4 http://mivia.unisa.it

http://mivia.unisa.it

Scaling Subgraph Matching by Improving Ullmann Algorithm 1019

 10

 20

 30

 40

 50

Q4 Q8 Q12 Q16 Q20 Q24

T
o
ta

l
R

es
p
o
n
se

 T
im

e
(S

ec
)

(a) AIDS_40K

Ullmann-ON
1

Ullmann-ON
2

Ullmann-ON
1, 2

a)

 100

 200

 300

 400

 500

 600

 700

Q4 Q8 Q12 Q16 Q20 Q24
T

o
ta

l
R

es
p
o
n
se

 T
im

e
(S

ec
)

(b) Chem_1M

Ullmann-ON
1

Ullmann-ON
2

Ullmann-ON
1, 2

b)

 5

 10

 15

 20

 25

 30

Q4 Q8 Q12 Q16 Q20 Q24

T
o
ta

l
R

es
p
o
n
se

 T
im

e
(S

ec
)

(c) Syn_10K

Ullmann-ON
1

Ullmann-ON
2

Ullmann-ON
1, 2

c)

 30

 60

 90

 120

 150

 180

Q4 Q8 Q12 Q16 Q20 Q24

T
o
ta

l
R

es
p
o
n
se

 T
im

e
(S

ec
)

(d) AIDS_40K

Ullmann-ON
1

Ullmann-ON
2

Ullmann-ON
1, 2

d)

 100

 400

 700

 1000

 1300

 1600

Q4 Q8 Q12 Q16 Q20 Q24

T
o
ta

l
R

es
p
o
n
se

 T
im

e
(S

ec
)

(e) Chem_1M

Ullmann-ON
1

Ullmann-ON
2

Ullmann-ON
1, 2

e)

 5

 20

 35

 50

 65

 80

Q4 Q8 Q12 Q16 Q20 Q24

T
o
ta

l
R

es
p
o
n
se

 T
im

e
(S

ec
)

(f) Syn_10K

Ullmann-ON
1

Ullmann-ON
2

Ullmann-ON
1, 2

f)

Figure 9. Total response time (first embedding [a)-b)-c)] and all embeddings [d)-e)-f)])

1020 K. Gouda, G. Bujdosó, M. Hassaan

 1e+11

 1e+12

 1e+13

 0.2M 0.4M 0.6M 0.8M 1M

S
ea

rc
h
 S

p
ac

e
S

iz
e

(a) Chem_Scalability (Q8)

Ullman-ON
1

Ullman-ON
2

Ullman-ON
1, 2

a)

 0

 100

 200

 300

 400

 500

 600

 0.2M 0.4M 0.6M 0.8M 1M

T
o
ta

l
R

es
p
o
n
se

 T
im

e
(S

ec
)

(b) Chem_Scalability (Q8)

Ullman-ON
1

Ullman-ON
2

Ullman-ON
1, 2

b)

 50

 200

 350

 500

 650

 800

 0.2M 0.4M 0.6M 0.8M 1M

T
o
ta

l
R

es
p
o
n
se

 T
im

e
(S

ec
)

(c) Chem_Scalability (Q8)

Ullmann-ON
1

Ullmann-ON
2

Ullmann-ON
1, 2

c)

 1

 10

 100

 1000

 10000

Q4 Q8 Q12 Q16 Q20 Q24

T
o
ta

l
R

es
p
o
n
se

 T
im

e
(S

ec
)

(d) AIDS_10K

Ullmann
Vflib

Ullmann-ON
1, 2

d)

 1

 10

 100

 1000

Q4 Q8 Q12 Q16 Q20 Q24

T
o
ta

l
R

es
p
o
n
se

 T
im

e
(S

ec
)

(e) Chem_10K

Ullmann
Vflib

Ullmann-ON
1, 2

e)

 1

 10

 100

 1000

Q4 Q8 Q12 Q16 Q20 Q24

T
o
ta

l
R

es
p
o
n
se

 T
im

e
(S

ec
)

(f) Syn_10K

Ullmann
Vflib

Ullmann-ON
1, 2

f)

Figure 10. Scalability test (search space size [first embedding: a)], time [first embedding:
b)], and time [all embeddings: c)]) and total response time [labeled datasets: d)-e)-f)]

Scaling Subgraph Matching by Improving Ullmann Algorithm 1021

Ullmann-ON1,2 always spends less time compared with Ullmann and Vflib and
it is faster by more than two order of magnitude. This happens because Ullmann-
ON1,2 has better optimizations.

6.4.2 Total Response Time (Unlabeled Datasets)

Here, we used the two datasets AIDS 10K and Chem 10K after removing the edge
labels and we denoted them as Unlabeled AIDS 10K and Unlabeled Chem 10K.
Figures 11 a), 11 b) report the results on the two datasets respectively. From these
figures, QuickSI outperforms Ullmann and Vflib on the two datasets. Also, Ullmann-
ON1,2 shows the best performance, it outperforms Ullmann, Vflib, and QuickSI on
Unlabeled AIDS 10K dataset by more than two order of magnitude, more than one
order of magnitude, and more than four factors, respectively (note that Ullman is
not shown for the query sets, namely, Q16, Q20, and Q24 since it failed to run on
our machine).

 1

 10

 100

 1000

 10000

 100000

Q4 Q8 Q12 Q16 Q20 Q24

T
o
ta

l
R

es
p
o
n
se

 T
im

e
(S

ec
)

(a) Unlabeled_AIDS_10K

Ullmann
Vflib

QuickSI
Ullmann-ON

1, 2

a)

 1

 10

 100

 1000

 10000

Q4 Q8 Q12 Q16 Q20 Q24

T
o
ta

l
R

es
p
o
n
se

 T
im

e
(S

ec
)

(b) Unlabeled_Chem10K

Ullmann
Vflib

QuickSI
Ullmann-ON

1, 2

b)

 0.1

 1

 10

 100

 1000

 10000

1k 10k 100k 1000k

T
o
ta

l
R

es
p
o
n
se

 T
im

e
(S

ec
)

(c) Chem_Scalability (Q8)

Ullmann
Vflib

Ullmann-ON
1, 2

c)

 40

 100

 160

 220

 280

 q36 q40 q44

T
o
ta

l
R

es
p
o
n
se

 T
im

e
(M

S
ec

)

(d) HPRD

DAF
Vflib3

Ullman-ON
1

d)

Figure 11. Total response time (unlabeled datasets) [a)-b)], scalability on dataset size [c)],
and large dataset [d)]

1022 K. Gouda, G. Bujdosó, M. Hassaan

On Unlabeled Chem 10K dataset, Ullmann-ON1,2 outperforms Ullmann, Vflib,
and QuickSI by one order of magnitude, more than two order of magnitude, and
more than four factors, respectively.

6.4.3 Scalability

Figure 11 c) shows the scalability of Ullmann, Vflib and Ullmann-ON1,2 with respect
to the number of graphs using the dataset Chem 1M with Q8. The figure shows that
the three algorithms scale linearly. However, Ullmann-ON1,2 outperforms Ullmann
by three factor, and Vflib by more than two order of magnitude.

Moreover, Vflib is not shown for 1 000K graphs, since it failed to run on large
datasets. Recall, QuickSI was excluded from this experiment since QuickSI works
with unlabeled edges datasets only.

6.5 Performance Study III

In these experiments, Ullmann, vflib, and QuickSI were excluded due to these algo-
rithms having been originally designed for handling small graphs only. Therefore we
compare Ullmann-ONL against DAF5 and Vflib36 on HPRD dataset (one large data
graph). Here we set L to 1 in our method. Total response time in MSec for the three
queries (q36, q40, and q44) is recorded and demonstrated in Figure 11 d). DAF is
the worst in this experiment whereas Ullmann-ON1 and Vflib3 have approximately
the same performance.

7 CONCLUSION

In this paper, we proposed an efficient algorithm for SGI called Ullmann-ONL.
Ullmann-ONL minimizes sharply the search space by sorting the query vertices in
efficient way and by using the different levels of vertex neighborhoods. We imple-
mented three versions of the proposed algorithm (Ullmann-ON1, Ullmann-ON2, and
Ullmann-ON1,2) and we found that Ullmann-ON1,2 version has the best performance
with respect to time and search space size on small data graphs. Experimental re-
sults on real and synthetic datasets demonstrate that Ullmann-ON1,2 outperforms
Ullmann and Vflib by 1-3 order of magnitude and outperforms QuickSI verifier by
more than four factors. Ullmann-ON1,2 has excellent scale-up properties with respect
to the number of graphs. In large dataset, Ullmann-ON1 has the best performance
among the other versions and it outperforms DAF by more than four factors and
has the same performance as in Vflib3.

5 http://github.com/SNUCSE-CTA/DAF
6 http://mivia.unisa.it

http://github.com/SNUCSE-CTA/DAF
http://mivia.unisa.it

Scaling Subgraph Matching by Improving Ullmann Algorithm 1023

REFERENCES

[1] Petrakis, E.—Faloutsos, A.: Similarity Searching in Medical Image Databases.
IEEE Transactions on Knowledge and Data Engineering, Vol. 9, 1997, No. 3,
pp. 435–447, doi: 10.1109/69.599932.

[2] Cai, D.—Shao, Z.—He, X.—Yan, X.—Han, J.: Community Mining from Multi-
Relational Networks. In: Jorge, A.M., Torgo, L., Brazdil, P., Camacho, R., Gama, J.
(Eds.): Knowledge Discovery in Databases: PKDD 2005. Springer, Berlin, Hei-
delberg, Lecture Notes in Computer Science, Vol. 3721, 2005, pp. 445–452, doi:
10.1007/11564126 44.

[3] Willett, P.—Barnard, J.M.—Downs, G.M.: Chemical Similarity Searching.
Journal of Chemical Information and Computer Sciences, Vol. 38, 1998, No. 6,
pp. 983–996, doi: 10.1021/ci9800211.

[4] Garey, M.R.—Johnson, D. S.: Computers and Intractability: A Guide to
the Theory of NP-Completeness. W.H. Freeman&Co., 1990.

[5] Gouda, K.—Hassaan, M.: A Fast Algorithm for Subgraph Search Problem.
2012 8th International Conference on Informatics and Systems (INFOS), 2012,
pp. DE–53–DE–59.

[6] Ullmann, J. R.: An Algorithm for Subgraph Isomorphism. Journal of the ACM,
Vol. 23, 1976, No. 1, pp. 31–42, doi: 10.1145/321921.321925.

[7] Cordella, L.—Foggia, P.—Sansone, C.—Vento, M.: A (Sub)Graph Iso-
morphism Algorithm for Matching Large Graphs. IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 26, 2004, No. 10, pp. 1367–1372, doi:
10.1109/TPAMI.2004.75.

[8] Shang, H.—Zhang, Y.—Lin, X.—Yu, J.X.: Taming Verification Hardness:
An Efficient Algorithm for Testing Subgraph Isomorphism. Proceeding of the VLDB
Endowment, Vol. 1, 2008, No. 1, pp. 364–375, doi: 10.14778/1453856.1453899.

[9] Land, A.H.—Doig, A.G.: An Automatic Method of Solving Discrete Pro-
gramming Problems. Econometrica, Vol. 28, 1960, No. 3, pp. 497–520, doi:
10.2307/1910129.

[10] Carletti, V.—Foggia, P.—Saggese, A.—Vento, M.: Challenging the Time
Complexity of Exact Subgraph Isomorphism for Huge and Dense Graphs with VF3.
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 40, 2018, No. 4,
pp. 804–818, doi: 10.1109/TPAMI.2017.2696940.

[11] Zhao, P.—Han, J.: On Graph Query Optimization in Large Networks. Pro-
ceeding of the VLDB Endowment, Vol. 3, 2010, No. 1-2, pp. 340–351, doi:
10.14778/1920841.1920887.

[12] Han, W. S.—Lee, J.—Lee, J. H.: Turboiso: Towards Ultrafast and Robust Sub-
graph Isomorphism Search in Large Graph Databases. Proceedings of the 2013 ACM
SIGMOD International Conference on Management of Data (SIGMOD ’13), 2013,
pp. 337–348, doi: 10.1145/2463676.2465300.

[13] Zhang, S.—Li, S.—Yang, J.: GADDI: Distance Index Based Subgraph Match-
ing in Biological Networks. Proceedings of the 12th International Conference on Ex-

https://doi.org/10.1109/69.599932
https://doi.org/10.1007/11564126_44
https://doi.org/10.1021/ci9800211
https://doi.org/10.1145/321921.321925
https://doi.org/10.1109/TPAMI.2004.75
https://doi.org/10.14778/1453856.1453899
https://doi.org/10.2307/1910129
https://doi.org/10.1109/TPAMI.2017.2696940
https://doi.org/10.14778/1920841.1920887
https://doi.org/10.1145/2463676.2465300

1024 K. Gouda, G. Bujdosó, M. Hassaan

tending Database Technology: Advances in Database Technology (EDBT ’09), ACM,
2009, pp. 192–203, doi: 10.1145/1516360.1516384.

[14] Ren, X.—Wang, J.: Exploiting Vertex Relationships in Speeding Up Subgraph
Isomorphism over Large Graphs. Proceeding of the VLDB Endowment, Vol. 8, 2015,
No. 5, pp. 617–628, doi: 10.14778/2735479.2735493.

[15] Han, M.—Kim, H.—Gu, G.—Park, K.—Han, W. S.: Efficient Subgraph Match-
ing: Harmonizing Dynamic Programming, Adaptive Matching Order, and Failing Set
Together. Proceedings of the 2019 International Conference on Management of Data
(SIGMOD ’19), ACM, 2019, pp. 1429–1446, doi: 10.1145/3299869.3319880.

[16] Zeng, L.—Jiang, Y.—Lu, W.—Zou, L.: Deep Analysis on Subgraph Isomor-
phism. 2020, doi: 10.48550/arXiv.2012.06802.

Karam Gouda is Dean of the Faculty of Computers and Artifi-
cial Intelligence, Benha University, Egypt. His research interests
are string data management, data mining, and query processing
in graph databases.

Gyöngyi Bujdos�o is Senior Lecturer at the Faculty of Infor-
matics, University of Debrecen, Debrecen, Hungary. Her re-
search interests are cybersecurity and privacy awareness, web
design, disruptive technologies in education, and integration of
on-line visual communications into on-line education.

Mosab Hassaan is Lecturer of computer science at the Depart-
ment of Mathematics and Computer Science, Faculty of Science,
Benha University, Egypt. His research interests are query pro-
cessing in graph databases and data mining tasks.

https://doi.org/10.1145/1516360.1516384
https://doi.org/10.14778/2735479.2735493
https://doi.org/10.1145/3299869.3319880
https://doi.org/10.48550/arXiv.2012.06802

