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Abstract. The paper presents a GPU implementation of the thermal discrete el-
ement method (TDEM) and the comparative analysis of its performance. Seve-
ral discrete element models for granular flows, the bonded particle model and the
TDEM are considered for quantitative comparison of computational performance.
The performance measured on NVIDIA® Tesla™ P100 GPU is compared with that
attained by running the same OpenCL code on Intel® Xeon™ E5-2630 CPU with
20 cores. The presented GPU implementation of the TDEM increases the com-
puting time of the bonded particle model only up to 30.6% of the computing time
of the simplest DEM model, which is an acceptable decrease in the performance
required for solving coupled thermomechanical problems.
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1 INTRODUCTION

The discrete element method (DEM), originally developed by Cundall and Strack [1],
is considered to be a powerful numerical technique to understand and model the
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phenomena of the particulate media. The concept of the DEM presents the numer-
ical methodology, providing the quantitative description of the discrete particulate
media by considering the motion and deformation behaviour of individual parti-
cles in the frame of Newtonian mechanics. Traditionally, the DEM methodology
is associated with the physical nature of granular materials [2]. However, the ad-
vanced DEM models are also applied to the heterogeneous multi-phase continuum,
such as rock or concrete. Potyondy and Cundall [3] have suggested the bonded
particle model (BPM) for the fracture behaviour. Thus, DEM can simulate the
transition process from the continuum to discontinuum by changing the bond types
between the particles without the need for specialized elements or remeshing lat-
tices. Now, various DEM models are not limited to the analysis of granular ma-
terials [4, 5], but can be effectively applied to studying rock cutting [6], coupled
multi-physical problems [7], sea ice failure [8] and the fracture of reinforced con-
crete [9].

The heat transfer between the contacting particles has been extensively inves-
tigated by the researchers in various fields. The heat conduction and thermome-
chanical problems can also be analysed using the thermal discrete element method
(TDEM). In the case of particulate systems, Batchelor and O’Brien [10] have ad-
dressed the basic mechanisms of heat transfer by using the Hertz’s contact theory
and the approximate analytical solution. Vargas and McCarthy [11] have introduced
the heat transfer algorithm into the DEM. Wu et al. [12] have used Voronoi cells
to capture the influence of the packing structure on the heat transfer of monosized
pebble beds. Wanne and Young [13] have performed the numerical simulation of
thermally fractured granite based on the BPM model, but have not been able to
capture the microscopic crack initiation and propagation processes at the cooling
stage. All the above numerical studies have made a significant contribution and
have proven that the DEM method is a promising approach to simulating the heat
transfer and thermomechanical coupling [14]. However, further studies are still re-
quired to improve the reliability of the DEM models and to extend the field of their
application.

Nevertheless, a long computational time of DEM simulations [15] based on com-
plex models, including fracture or temperature, limits the analysis of industrial-scale
applications. The selection of the efficient parallel solution algorithm is highly de-
pendable on the specific characteristics of the considered problem and the numerical
method used [16, 17, 18]. The emergence of general purpose GPU (GPGPU) com-
puting seems to offer the possibility to simulate large-scale discrete particle systems,
taking advantage of the massive parallel architecture of GPUs and the develop-
ment of their programming tools, such as CUDA and OpenCL [19]. In general,
using single-precision computations and simplified DEM models, not taking into
account the tangential contact force or the time history-dependent friction model,
results in a significant speedup on a GPU. NVIDIA SDK provided a sample code
for DEM [20] and demonstrated the computing speed on the GPU which was over
40 times faster than that on the CPU. However, the contact force employed in
the sample code had only a normal component and single-precision computations
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were considered. Radeke et al. [21] have suggested an approach to using CUDA
for investigating the size effects in granular flows with DEM, allowing for single-
precision simulation of more than two million particles per gigabyte of the GPU
memory. Govender et al. [15] have designed the modular high performance Blaze-
DEMGPU framework for the GPU architecture. Twenty frames per second have
been computed assuming the time history-independent friction model in the case
of the industrial mill filled with 4 million particles. Considering the same assump-
tion, Xu et al. [22] have achieved quasi-real-time simulation of an industrial rotating
drum with 9.6 million particles. Longmore et al. [23] have taken into account par-
ticle shape by using multiple spheres representing a sand grain and could perform
single-precision simulations of 256 000 tetrahedral granules at 120 milliseconds per
time step on the GPU. Kelly et al. [24] have adopted an adimensionalization process
combined with mixed-precision data to simulate 3D scenarios with up to 710 mil-
lion spherical frictionless particles. Washizawa et al. [25] have demonstrated that
the computing speed of the practical model, considering more forces between the
interacting particles, is 7 times slower than that of the simplified model on the
GPU.

Efficient GPU implementations of the practical DEM models are more chal-
lenging, because of the increase in the computing time and the required memory,
which can reduce the number of the simulated particles. Yue et al. [26] have made
a GPU version of the Trubal code and demonstrated its application in die filling.
In 3D simulations, containing 20 000 particles, an average speedup of 19.66 has
been achieved on NVIDIA Tesla K40c card. Pacevič et al. [9] have implemented
the BPM based on the contact bond in the GPU code for simulating the dam-
age and fracture of cohesive solids. Zheng et al. [27] have presented a GPU-based
DEM-FEM computational framework implemented by CUDA FORTRAN for sim-
ulating the tire-sand interaction. To achieve a higher speedup ratio for a larger
number of particles, a few efforts have been made to use the combined GPU and
MPI technology [22, 28]. However, the communication overhead among GPUs sig-
nificantly reduces the parallel performance because of the costly data transfer to
the CPU memory and the MPI message passing among different nodes. There-
fore, the efficient GPU codes with the implemented practical DEM models for
simulating the industrial applications still present challenges, while the quantita-
tive performance assessment remains of practical interest to researchers and engi-
neers. Moreover, to the best of our knowledge, the implementation and evalua-
tion of performance of TDEM on the GPU have not been presented in the litera-
ture.

The paper presents an OpenCL implementation of the TDEM and a quantita-
tive comparison of its computational performance with that of various DEM models
on the GPU. Other parts of the paper are organized as follows: Section 2 outlines
the considered DEM models, Section 3 presents the developed GPU algorithm, Sec-
tion 4 describes the solved applications, while Section 5 provides the performance
analysis and Section 6 gives the concluding remarks.
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2 DISCRETE ELEMENT MODELS

The DEM is a class of numerical techniques to simulate the motion of large numbers
of particles. An arbitrary particle i in the system of N particles undergoes the
translational and rotational motion described in time t as follows:

mi
d2xi

dt2
= F i, Ii

dωi

dt
= M i (1)

where mi and Ii are the mass and the moment of inertia of the particle, respectively,
while the vectors xi and ωi determine the position of the centre of the particle i
and the angular velocity around the particle’s centre of mass. The vectors F i and
M i represent the resultant force and the resultant moment, acting in the centre of
the particle i, that can be computed by using the following formulas:

F i = mig +
Nc∑

j=1,j ̸=i

(
F c

ij,n + F c
ij,t

)
+
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k=1,k ̸=i
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ik,t

)
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M c
ij +

Nb∑
k=1,k ̸=i

M b
ik (3)

where F c
ij,n and F c

ij,t are the normal and tangential vector components of the contact
force between the contacting particles that are indicated by subscript j = 1, Nc,
F b

ik,n and F b
ik,t are the normal and tangential vector components of the bond force

between the bonded particles that are indicated by subscript k = 1, Nb, M
c
ij and

M b
ik are moments of the contacting particles and the bonded particles, respectively,

while g is the acceleration due to gravity. In the present work, the electromagnetic
force [29], the aerodynamic force [30] and other external forces [31], except for the
gravity force, are not considered.

2.1 Granular Flow Model

Simulating granular flows, there are no bonded particles, therefore, Nb, F
b
ik,n, F

b
ik,t

and M b
ik are always equal to zero in Equations (2), (3). The normal contact force

F c
ij,n can be expressed as the sum of the elastic and viscous components. In the

present work, the normal contact force is computed according to the Hertz’s contact
model. The viscous counterpart of the contact force linearly depends on the relative
velocity of the particles at the contact point.

The tangential contact force F c
ij,t is divided into the parts of static friction and

dynamic friction. The dynamic friction force is directly proportional to the normal
component of the contact force. The static friction force [2, 32] is calculated by
summing up the elastic counterpart and the viscous damping counterpart. The
slip distance represented by the tangential displacement follows from the temporal
integration of the tangential component of the relative velocity, starting at the time
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instant, when the particles come into contact. It is worth noting that the length
of the tangential displacement depends on the time history. Thus, the considered
friction model is incremental or time history-dependent, which requires storing the
values of the tangential displacement during the contact between the neighbouring
particles in the memory.

Hereinafter, the simplest granular flow model, computing only the normal com-
ponent of the contact force F c

ij,n, is abbreviated to GN. The DEM model, evaluating
F c

ij,n and the tangential component of the contact force F c
ij,t with the time history-

dependent friction, is termed GNT. The comprehensive granular flow model, which
considers F c

ij,n, F
c
ij,t and the moment M c

ij is abbreviated to GNTM. The details of
the granular flow models can be found in the references [2, 4].

2.2 The Bonded Particle Model

The BPM based on parallel bond [3] is implemented for evaluating the performance
of the damage and fracture simulations. The parallel bond can be envisioned as
a set of elastic springs uniformly distributed over the circular cross-section in 3D,
lying on the contact plane and centred on the contact point. Thus, it can transmit
both the force and the moment between the bonded particles. The parallel bonds
break instantaneously when the tensile stress σ exceeds the tensile strength σlim

or the shear stress τ exceeds the shear strength τlim, leading to crack formation
between two particles. It is worth noting that parallel bonds act in parallel with the
granular portion of the force-displacement behaviour, when the depth of the overlap
between the particles is more than zero. Moreover, after the breakage of the bonds,
the contact forces are calculated according to the granular flow model. The details
of the BPM can be found in [3].

2.3 A Thermal Discrete Element Model

The formulation of the TDEM is based on the assumption that the temperature
difference inside the particles is negligible and the temperature within the particles
can be considered uniform. This assumption is justified for the DEM, employing
relatively small particles, and it is consistent with the formulation of the mechan-
ical problem. The heat balance equation can be written for the particle i as fol-
lows:

micp
dTi

dt
=

Nt∑
j=1,j ̸=i

Qij (4)

where Ti is the temperature of the particle i, cp is the specific heat capacity of the
particle’s material, Nt is the number of the bonded particles added to the number
of the contacting particles of the particle i, Qij is the heat conduction flux trans-
mitted by the contact surface or bond between the two neighbouring particles i
and j. The heat conduction flux between two particles i and j can be expressed
as:
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Qij = −Hcont
ij (Ti − Tj) (5)

where Hcont
ij is the contact conductance coefficient, which might depend on the phys-

ical properties of the particles, the contact surface and the relative positions of the
particles. In the present work, the contact conductance coefficient is computed by
using the following formula [6, 33]:

Hcont
ij =

λAcont
ij

lij
(6)

where λ is the heat conductivity of the material, Acont
ij is the area of heat conduc-

tion or the contact surface between the particles, lij is the distance between the
centres of the discrete particles i and j. However, the exact values of Acont

ij can
be obtained only in the particular cases. In the present work, it is assumed that
the heat flux conducted through the contact area is equivalent to the heat flux
in a bar with the radius equal to the arithmetic mean of the contacting particles’
radii [6].

Thermal expansion is considered, calculating the radii of the particles:

Ri = Rini
i [1− α(Ti − T ini

i )] (7)

where Ri is the radius of the particle i, α is the linear thermal expansion coefficient,
while Rini

i and T ini
i are the radius and temperature of the particle i at the initial

(reference) time instant, respectively. The details of the implemented TDEM can
be found in [6]. Hereinafter, the TDEM implemented with the BPM for simulating
the temperature-dependent damage is abbreviated as TBPM.

3 THE DEVELOPED GPU ALGORITHM

The presented algorithm for shared memory architectures is developed to evaluate
the computational cost of various DEM models implemented in the GPU code. The
DEM code is programmed by using OpenCL [19] to run the same software on all
shared memory architectures, including CPUs and GPUs of various vendors. In
general, the contact search, the computation of forces and time integration are the
most time-consuming procedures in double-precision DEM computations. The main
attention is focused on the computation of forces because the implementation and
evaluation of different forces is the main distinction of various DEM models. The
flowchart of the developed GPU algorithm for double-precision DEM simulations
is presented in Figure 1. The parallel algorithm for shared memory architectures
can be outlined as follows. At the start of the simulation, preprocessing is per-
formed on the CPU and the initial data are copied from the host memory into
the global memory of OpenCL device. No further memory transactions between
the CPU host memory and GPU global memory except for the result’s storage are
required.



The Performance Analysis of the Thermal DEM on the GPU 937

Figure 1. The flowchart of the GPU algorithm for DEM simulations

Kernel 1 starts the time integration of the particles’ positions by using the
accurate fifth-order Gear predictor-corrector algorithm, see [4] for details. The
Gear predictor is performed on the thread per particle basis, which takes advan-
tage of the massive parallel computation capabilities of modern GPUs and can
be considered to be the most suitable parallelism in the case of DEM computa-
tions. In the loop through particles, the main arrays, such as the position, ve-
locity and acceleration of processed particle, are accessed by using the coalesced
pattern. At the beginning of the kernel, the variables of processed particle are
copied from the GPU global memory to the thread private memory, which is usu-
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ally mapped to registers. It is very efficient, when the copied data is used multiple
times. The new values of the positions, velocities and accelerations of particles
are predicted at the time increment by a simple series expansion up to the fifth-
order of accuracy. The predicted values are copied from the private memory to
the global memory at the end of this kernel. The similar data transfers between
the GPU global memory and the private memory of threads are performed in all
kernels.

Kernel 2 performs the contact detection on the thread per particle basis. The
implementation [9] based on the hashed grid is employed in this research. To avoid
storing the grid by using a dense array and to save the GPU memory, each cell is
mapped into a fixed-size hash table. The fast implementation of the contact detec-
tion also exploits the private memory. However, the private memory size is strictly
limited. If the private memory is overfilled, the GPU performance is drastically
reduced, because overhead of the private memory is mapped to the global memory.
In the workgroup, each thread holds information of the 27 neighbour cells in the
local memory to decrease the usage of the private memory and to avoid the per-
formance drops. The particles are sorted according to their hash values by using
the fast radix sort method. Finally, the narrow phase of the contact search is ac-
complished, the collisions are identified, and the output of the kernel contains the
contact list.

Kernel 3 handles the contact history, which consumes a considerable part of
tangential contact force computations. The computation of the elastic counterpart
of the static friction force requires the data on the length of the tangential dis-
placement, which depends on the time history. Thus, the values of the tangential
displacement during the contact between the neighbouring particles should be stored
in the data arrays of the contacts, which considerably increases the consumed mem-
ory. In the case of granular flows, the contacts of the neighbouring particles can
significantly change in time, which leads to intensive manipulation of the data ar-
rays. Processing each particle, the indices of particle contacts and the coordinates
of relevant contact points are copied from the global memory to the local memory of
the workgroup to map the contacts of the previous time step to the newly detected
contacts of the current time step. Finally, the kernel adds the newly computed
increments to the accumulated values of tangential displacement in the relevant
contacts.

Kernel 4 computes the contact forces and the moments between all overlapped
particles. The normal and tangential components of contact forces include the elas-
tic counterparts, viscous counterparts, the dynamic friction force or the static fric-
tion force. Moreover, it also calculates the heat conduction fluxes between the
unbonded overlapped particles. All computations are performed based on a thread
per particle. Thus, the kernel is executed in the loop through particles. Algo-
rithm 1 presents the pseudocode of Kernel 4. In line 11, ID of the current particle
processed by the thread is obtained by OpenCL functionality. The main compu-
tations are performed in the loop through particle neighbours, where Nn is the
number of neighbours. Then, private variables F total,M total, Qtotal are initialized
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by zero. In line 16, the ID of the neighbouring particle is read from the global
memory array by the function get neighbour id(). The overlap of particles hij is
calculated to perform contact check in the following condition. If the overlap is
greater than zero, contact force, moment and heat flux of the processed contact
are computed. In lines 23–25, the computed values of the processed contact are
added to the private variables F total,M total, Qtotal. At the end of the loop, val-
ues of the private variables are written to the output variables stored in the GPU
global memory. Material properties extensively used for computation of forces and
heat conduction fluxes are stored in the constant memory of GPU, which is very
fast, but limited in size and scope. In the case of several materials and thermal
dependencies, the array of material properties can occupy the large part of the
available constant memory. The constant memory of the GPU is cached, and un-
like the private and local memory, it does not need to be copied for each kernel
call. Since constant memory can only be modified from the CPU, it is also use-
ful for storage of constant numerical parameters, such as the time step for time
integration.

The heat fluxes, moments, normal and tangential components of contact forces
require 15, 57, 110 and 107 double-precision floating-point operations for each con-
tact of the processed particle, respectively. It is worth noting that computations of
the tangential contact force requires the value of the normal contact force, while-
computations of moments use the value of the tangential contact force. Kernel 4
performs 289 ·N ·Nc floating-point operations in each time step. Each particle can
have different number of contacts, Nc, which can also vary in time. In the case of
monosized particles, the number of contacts cannot be greater than 12. Thus, the
number of floating-point operations performed by the kernel is bounded by 3 468 ·N
or complexity of Algorithm 1 is O(N). The GPU global memory traffic of Kernel
4 also depends on the number of particle contacts. In the case of maximal number
of contacts, 2 256 bytes of the GPU global memory are transferred during execution
of Kernel 4 for each processed particle. In the case of granular flows or unbonded
particles, Kernel 4 can be treated as the main kernel because it computes the contact
forces, the moments and heat conduction fluxes, thereby performing a large part of
the work.

Kernel 5 computes the forces and the moments of the bonds between the par-
ticles. Moreover, it also calculates the heat conduction fluxes between the bonded
particles for the TBPM. This kernel works on the thread per bond basis, which is
very natural for damage and fracture simulations. Thus, the kernel is executed in the
loop through bonds. The obtained increments of the bond forces and the moments
as well as the computed values of the heat conduction fluxes (5), (6) are stored in
the bonds arrays to avoid the memory writing conflicts, when threads of different
bonds simultaneously write the results into the memory of the same particle. Al-
gorithm 2 presents the pseudocode of Kernel 5. In line 13, ID of the current bond
processed by the thread is obtained by OpenCL functionality. The following con-
dition checks the bond state, because all computations of the kernel are performed
only if the bond is not broken. In line 15, IDs of the bonded particles are read from
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Algorithm 1 Computation of contact forces, moments and fluxes
1: Input
2: x Positions of particles
3: v Velocity of particles
4: ω Angular velocity of particles
5: T Temperature of particles

6: Output
7: F Forces of particles
8: M Moments of particles
9: Q Heat fluxes of particles

10: procedure Kernel4( )
11: i← get global id(0)
12: F total ← 0
13: M total ← 0
14: Qtotal ← 0
15: for k ← 0 to Nn do
16: j ← get neighbour id(i, k)
17: hij ← compute overlap(x[i],x[j])
18: if hij > 0 then
19: F c

ij,n ← compute normal force(x[i],v[i],x[j],v[j])
20: F c

ij,t ← compute shear force(x[i],v[i],ω[i],x[j],v[j],ω[j])
21: M c

ij ← compute moments(x[i],v[i],ω[i],x[j],v[j],ω[j])
22: Qij ← compute heat fluxes(T [i],T [j])
23: F total ← F total + F c

ij,n + F c
ij,t

24: M total ←M total +M c
ij

25: Qtotal ← Qtotal +Qij

26: end if
27: end for
28: F [i]← F total

29: M [i]←M total

30: Q[i]← Qtotal

31: end procedure

the global memory array by the function get bond end points(). In lines 16–19, the
normal and tangential components of bond forces and moments are obtained adding
the computed increments to the current values. In private variables stored values of
forces and moments are necessary for computation of the tensile and shear stresses.
In line 22, the criteria of the normal and tangential failure of the bond are checked.
If the bond is broken zero values are written to output variables and the bond
state array is updated. Otherwise, the normal and tangential components of bond
forces, the normal and tangential components of bond moments and the computed
heat conduction fluxes are written to output variables stored in the GPU global
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Algorithm 2 Computation of bond forces, moments and fluxes
1: Input
2: x Positions of particles
3: v Velocity of particles
4: ω Angular velocity of particles
5: T Temperature of particles

6: Output
7: F n Normal forces of bonds
8: F t Shear forces of bonds
9: Mn Normal directed moments of bonds

10: M t Shear directed moments of bonds
11: Q Heat fluxes of bonds

12: procedure Kernel5( )
13: id← get global id(0)
14: if check bond state(id) then
15: (i, j)← get bond end points(id)
16: F n

ij ← F n[id] + compute bond normal force(x[i], v[i],x[j],v[j])

17: F t
ij ← F t[id] + compute bond shear force(x[i],v[i],ω[i],x[j],v[j],ω[j])

18: Mn
ij ← Mn[id] + compute bond normal moments(x[i],v[i],ω[i],x[j],
v[j],ω[j])

19: M t
ij ←M t[id ] + compute bond shear moments(x[i],v[i],ω[i],x[j],v[j],
ω[j])

20: σ ← compute tesnsile stress(F n
ij,M

t
ij)

21: τ ← compute shear stress(F t
ij,M

n
ij)

22: if σ > σlim or τ > τlim then
23: F n[id]← 0
24: F t[id]← 0
25: Mn[id]← 0
26: M t[id]← 0
27: Q[id]← 0
28: mark bond as broken(id)
29: else
30: F n[id]← F n

ij

31: F t[id]← F t
ij

32: Mn[id]←Mn
ij

33: M t[id]←M t
ij

34: Q[id]← compute heat fluxes(T [i],T [j])
35: end if
36: end if
37: end procedure
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memory. 504 bytes of the GPU global memory are transferred during execution of
Kernel 5 for each unbroken bond. The heat fluxes, moments, normal and tangential
components of bond forces require 24, 65, 156 and 32 double-precision floating-point
operations for each unbroken bond, respectively. Thus, Kernel 5 performs maximum
277 ·Nb floating point operations in each time step. The computational complexity
of Algorithm 2 is O(Nb). The number of bonds, Nb, remains constant during com-
putations. However, the number of unbroken bonds can decrease in each subsequent
time step.

Kernel 6 finishes the algorithm started by the previous kernel, assigning the
contact forces, the moments and heat conduction fluxes, computed by the previous
kernel in the bonds, to the processed particle. It processes the values of the forces
and the moments available in the data arrays of the bonds and stores the results in
the arrays of the particles. The values of the heat conduction fluxes are summed up
and stored in a similar way. This kernel works on the thread per particle basis as
opposed to the previous kernel, performing the computations on the thread per bond
basis. Thus, the concurrent memory writing and atomic operations are avoided to
ensure high parallel performance at the cost of the increased memory usage and the
complexity of the algorithm.

Kernel 7 is aimed at computing the boundary conditions and the external forces.
However, only the gravitational force (2) is required to solve the applications con-
sidered in the present study. The symmetry boundary conditions can be defined by
fixing the positions of the particles located on the symmetry planes in the normal
direction. The velocity of the boundary particles can be specified. The known values
of the temperature or the heat conduction flux can be set in the boundary particles
in the case of TDEM computations.

Kernel 8 completes the time integration, performing the Gear corrector on the
thread per particle basis. The values of the positions, velocities, temperatures and
other variables of the particles are copied from the global memory to the private
memory, corrected and loaded back to the global memory. It is worth noting that
time integration of the angular velocities (1) and temperatures (4) is performed by
using the Euler’s scheme in this kernel. At the end of the time step, the particles’
data can be copied from the GPU global memory to the CPU host memory for
storage on the hard disk drive in HDF5 format. It is recommended to transfer
the data to the host memory as seldom as possible because it is a time-consuming
process. GPU computations can be performed concurrently with the additional
CPU thread writing results to HDF5 file. When all the time steps are finished, the
DEM simulation is ended.

Computationally intensive code for calculating the contact and bond forces is
grouped in several kernels, because very large kernels can lead to performance drops.
In the previous version of the code, all computations of forces, moments and thermal
conduction fluxes were performed by one large kernel. However, the kernel overfilled
the private memory, and its overhead was automatically mapped to the global mem-
ory. The overall performance of the code was approximately reduced by 20% of the
execution time.
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The implemented DEM models are tightly coupled, therefore, it is difficult to
efficiently implement them in separate kernels. The TDEM is often required to
simulate the granular flows, as well as the thermally induced damage. Thus, the
computations of heat conduction fluxes are implemented to simulate the granular
flow temperature in Kernel 4. Moreover, the values of the normal contact force can
be used to compute the area of heat conduction between the particles calculated
by using Hertz’s contact theory [10, 11]. The heat conduction fluxes are computed
to handle the temperature-dependent material damage by the TBPM in Kernels
5 and 6. Thermal expansion, which represents the direct coupling of thermal and
mechanical problems, is evaluated by calculating the radii of the particles (7) at
the end of the time step in Kernel 8. Thus, the computations of the TDEM are
implemented in the main kernels, working with the forces, moments, time integration
and boundary conditions.

4 THE CONSIDERED APPLICATIONS

Various applications are solved by the developed OpenCL code for the performance
analysis and evaluation of the computational costs of various DEM models.

4.1 Gravity Packing

The gravity packing problem of granular material, falling under the influence of
gravity into a container, is considered to investigate the computational costs of the
DEM models because it often serves as a test problem for performance measure-
ments [21, 28]. The solution domain is assumed to be a cubic container with the
2.0m long edges. Half of the domain is filled with monosized particles, using a face-
centred cubic structure. Granular material is represented by an assembly of 83 300,
686 000, 1 362 944 and 3 015 300 particles with the radii equal to 0.02m, 0.01m,
0.008m and 0.0061m, respectively. The initial velocities of the particles are defined
randomly with uniform distribution, with their magnitudes being in the range of
[0.0; 0.1]m/s. The physical data of the particles of the artificially assumed material
are as follows: the density is equal to 920 kg/m3, the Poisson’s ratio is 0.352, the
elasticity modulus is equal to 9.33 · 106 Pa and the friction coefficient is 1.0. Viscous
damping coefficients in the normal and tangential directions are assumed to be equal
to 1 500 and 150, respectively. The simulation of the granular material falling under
the influence of gravity is interrupted after 1.5 s, when the particles reach the state
of rest with the negligibly small average acceleration.

4.2 Uniaxial Tension of Reinforced Concrete

The tensile test of reinforced concrete prisms instrumented with the internal strain
gauges [34] is used for evaluating the computational performance of the BPM. The
reinforced concrete prisms of 150.0 × 150.0 × 270.0mm and the reinforcing bars
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with the diameter of 20.0mm are tested. The height, width and pitch of the ribs
are equal to 1.3mm, 2.0mm and 120°, respectively. The distance between the ribs
is 8.0mm. Due to the axial symmetry, only one eighth of the reinforced concrete
specimen is modelled. The particles located at the end of the steel reinforcing bar
are moved with the specified constant velocity in y direction, which simulates the
uniaxial tension. The symmetry boundary conditions are defined on the opposite
plane, setting the displacement of concrete and steel particles to zero in y direc-
tion. The normal components of the displacements of the particles are also fixed on
the other two symmetry planes, crossing each other on the y axis. The reinforced
concrete is represented by an assembly of 88 872, 627 264, 1 377 576 and 3 000 848
monosized spherical particles. The curve, representing the reinforcing bar with ribs,
is rotated about the y axis to define the interface surface between the concrete and
the reinforcing steel bar. Sufficiently fine discretization is required to accurately
describe the interface surface, which leads to large numbers of particles [9].

4.3 Heating of Refractory Concrete

Sharp temperature changes on the refractory concrete lining of thermal equipment,
such as biomass-fired furnaces, cause a large temperature gradient, which leads to
the formation of a high stress in the refractory material of the lining. Despite the
advances in experimental measurements of the temperature and numerical methods,
the prediction of the lining’s lifespan still remains an important challenge. There-
fore, the heating and cooling of refractory concrete is considered to help validate the
TBPM results and to study the computational performance of its GPU implemen-
tation. 200× 200× 200mm specimens of refractory concrete were produced for the
experiment. The time of curing of the specimens is 48 h. The specimen is mounted
on the bottom of the laboratory furnace, where drying and firing of concrete take
place to avoid cracking caused by vapour formation during the sharp heating. The
mechanical properties of concrete are as follows: density is equal to 2 250 kg/m3,
cold compressive strength is equal to 106MPa, bending strength is 13.5MPa and
the elasticity modulus is equal to 23.2GPa. The thermal properties of concrete are
as follows: specific heat capacity is 900 J/kgK, the heat conductivity is 1.5W/mK
and the thermal expansion coefficient is equal to 0.66·10−6C−1. To compare the per-
formance with that of other DEMmodels the specimen is represented by an assembly
of 87 808, 665 500, 1 372 000 and 3 014 284 monosized particles. In the TBPM, the
above-mentioned macro-level values of the specific heat capacity, heat conductivity
and the thermal expansion coefficient are used along with the calibrated parameter
relevant to the area of heat conduction (6) or the bar radius.

Heating is applied to the upper surface of the specimen, measuring the temper-
ature by a thermocouple. A cycle of heating and cooling is performed according
to the following mode: the temperature rises to 900°C at 300°C/h, while retaining
the temperature of 900°C for 30 minutes and cooling is performed with the open
cover of the furnace (400°C/h). Figure 2 shows the comparison of the experimental
measurements with the numerical results of the TBPM. The measured temperature
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Figure 2. The comparison of the experimental measurements and the results of the TBPM

(the curve “Thermal load” in Figure 2) is specified as the boundary condition on
the upper square surface of the solution domain. All sides of the specimen are ther-
mally isolated, therefore, a zero heat flux is specified as the boundary condition on
the relevant surfaces of the solution domain. The bottom surface of the specimen
is surrounded by the air of the temperature reaching 20°C. Thus, at the bottom of
the solution domain the mixed boundary conditions are specified, which leads to
heat convection from the heated surface to the air of the ambient temperature of
20°C. Figure 2 shows a good agreement of the TBPM results (the curve “TBPM”)
with the experimental temperature measurements (the curve “Experiment”) at the
bottom of the specimen.

5 THE PERFORMANCE ANALYSIS

The implementations of the considered DEM models have been validated comparing
the obtained solutions with the experimental measurements. The implemented BPM
has been validated solving the uniaxial tension of reinforced concrete problem in [9].
The validation of the TBPM against the experimental measurements of temperature
has been presented in Figure 2.

Thus, the applications of gravity packing, uniaxial tension of reinforced con-
crete and heating of refractory concrete are considered to evaluate the computa-
tional performance of various DEM models implemented on the GPU. All double-
precision computations are performed on the NVIDIA® Tesla™ P100 GPU Com-
puting Accelerator (56 Streaming Multiprocessors, 1 792 FP64 CUDA Cores, 12GB
HBM2, 549GB/s memory bandwidth). Hardware characteristics of the workstation
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used for quantitative comparison of parallel performance are listed below as follows:
Intel®Xeon™ E5-2630 2.20GHz 2× CPU, 32GB DDR4 2 133MHz RAM.

The host code is compiled with GCC 7.3.0 and -O3 optimization flag. OpenCL
2.0 is employed for CPU computations, while OpenCL 1.2 is used for GPU compu-
tations, because NVIDIA® Tesla™ P100 does not support higher OpenCL version.
The default compilation and optimization flags are used for compilation of kernels.
No floating-point arithmetic optimization is enabled to preserve accuracy of numer-
ical solutions. The HDF5 version 1.8.20 is used to store results on the hard disk
drive. The actual computation time of 100 000 time steps is measured to investigate
the computational efficiency of the developed OpenCL code in the case of various
numbers of discrete particles. Preprocessing, visualization and computations are
performed on the computational infrastructure [35] of the Vilnius Gediminas Tech-
nical University.

Figure 3. The memory consumed by the considered DEM models

Figure 3 shows the amount of memory consumed by various DEM models on
the GPU. In the legend, the names of curves “GN”, “GNT”, “GNTM”, “BPM” and
“TBPM” match the abbreviations of the considered models. As expected, the sim-
plest granular flow model GN requires the smallest amount of memory, which does
not reach 1GB in the case of double-precision simulation of 3 015 300 particles. The
evaluation of the tangential component of the contact force with the time history-
dependent friction model is very expensive, therefore, the GNT model consumes 2.4
times the memory of the GN model. The computation of the moments is not so
expensive in terms of the used memory as it adds only 13.0% of the memory used
by the GNT model.
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The applications of gravity packing, the uniaxial tension of reinforced concrete
and the heating of refractory concrete are solved by using various numbers of par-
ticles. However, the linear dependency of the consumed memory on the number of
particles can be observed in Figure 3 and, therefore, linear interpolation is applied.
The BPM significantly increases the used memory up to 86.2% of the memory re-
quired for the comprehensive model of the granular flows (GNTM) or up to 237.2%
of the memory used by the GN model. On the contrary, the TBPM increases
the memory used by the BPM only up to 33.8% of the memory used by the GN
model. However, the most expensive TBPM model, including the computations of
the bonded particles, as well as granular flows, requires 5.4 times the memory of
the simplest GN model, evaluating only the normal component of the contact force.
It is worth noting that a large amount of memory is required by the DEM models
performing the operations and storing the results in the data arrays of the bonds or
contacts between the neighbouring particles.

Figure 4. The contribution of computational procedures to the total benchmark time

Figure 4 shows the contribution of the execution time of computational proce-
dures implemented as GPU kernels (Figure 1) to the total time of the considered
benchmarks based on various DEM models. The columns represent the computing
time of the performed benchmarks in the case of the largest numbers of particles,
exceeding three million. The abbreviations of the models denote the same things
as the curves in Figure 3. The names of the columns (“Integration”, “Search”,
“Forces”, “Contact”, “Bonds” and “External”) represent the time integration (Ker-
nels 1 and 8), the contact detection (Kernel 2), the computations of the contact
forces, the moments and heat fluxes (Kernel 4), the handling of the contact history
(Kernel 3), the computation and assignment of the forces, the moments and heat
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fluxes of the bonds (Kernels 5 and 6) as well as the evaluation of the external forces
and the boundary conditions (Kernel 7).

The impact of the computation of the gravity force and the boundary conditions
on the benchmark time is very small. It depends on the solved application and varies
between 1.5% and 2.8% of the relevant execution time. It can be observed that
time integration always consumes a similar amount of time. However, increasing
the benchmark time decreases the consumed time percentage from 10.7% (the GN
column) to 4.8% (the TBPM column) of the relevant benchmark time. The contact
search takes 68.9% of the benchmark time in the case of the GN model. However,
in the case of the TBPM model, the consumed time percentage is much lower,
reaching 26.3% of the benchmark time. Handling the contact history required for
the computation of the tangential force component always needs a similar period
of time, except for the GN model, which considers only the normal component of
the contact force. Kernel 3 performs intensive manipulation of data arrays, storing
the information of the contact history, which might significantly change in time.
Its percentage of the execution time varies from 16.0% to 8.6% of the relevant
varying benchmark time. The computations of the contact forces, the moments and
heat fluxes take from 18.0% to 31.9% of the relevant benchmark time. The time
consumed by this kernel strongly depends on the DEM model. In the case of the
GNT model, the computing time of the contact forces is two times as long as that of
the GN model. In the case of the GNTM model, the computation of the moments
adds 24.5% of the computing time of the forces. In the case of the BPM based on
the parallel bond, the computation of the bond forces and moments by the kernels
5 and 6 is rather expensive and takes 22.4% of the benchmark time. Moreover, in
the case of the TBPM model, the kernels 5 and 6 also compute the heat fluxes of
the bonds and consume 26.2% of the benchmark time. It can be concluded that
the time required for computing the forces, the moments and the heat fluxes varies
most strongly in the context of various DEM models.

Figure 5 shows the scaling performance of the considered DEM models and the
quantitative comparison of the performance measured on the GPU and the CPU.
The average execution time of the same OpenCL code of the time step is measured
on NVIDIA® Tesla™ P100 (GPU) and dual Intel® Xeon™ E5-2630 (CPU) with 20
physical cores to evaluate the speedup ratio of CPU to GPU. In the legend, the
abbreviation “GPU” represents the execution time measured on the GPU, while the
abbreviation “CPU” and the dotted lines denote the benchmark time measured on
the 20 cores of CPU. The abbreviations of the DEM models have the identical mean-
ings given in Figure 3. In the case of the granular flow model (GNTM), the speedup
ratio of CPU to GPU varies from 3.0 to 7.2 for various numbers of particles. In the
cases of more time-consuming models (BPM and TBPM), the speedup ratio is up
to 7.4. It is worth noting that OpenCL intensively uses the advanced vector exten-
sions on the sufficiently powerful dual Intel®Xeon™ E5-2630 CPU with 20 physical
cores, which considerably reduces the measured speedup ratio. In absolute values,
the measured Cundall number (FPS×number of particles) varies from 1.62 · 107 to
4.45 · 107, depending on the complexity of the DEM model implemented on the
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Figure 5. The scaling performance of the considered DEM models

GPU. As expected, the largest Cundall number equal to 4.45 · 107 is achieved in
the case of the simplest GN model. The comprehensive granular flow model GNTM
allows for obtaining the Cundall number equal to 2.83 · 107. The lowest numbers
1.84 ·107 and 1.62 ·107 can be observed in the cases of the complex BPM and TBPM
models, respectively.

Figure 6 shows the computational overhead of the implemented DEM models
and supplements the results presented in Figure 6 in the case of the largest numbers
of the particles, exceeding three million. The overhead is calculated according to
the execution time of the simplest GN model, which computes only the normal
component of the contact force. The abbreviations of the DEM models used in the
legend have the meanings identical to those given in Figure 3. The performance
analysis reveals that the simplest DEM model (GN) requires the smallest amount
of computational resources. The computation of the tangential component of the
contact force with the time history-dependent friction model is very expensive and
increases the computing time up to 40.5% of the time required for the GN model on
the GPU. The computation of the moments is less expensive, adding to the GNT
model up to 12.1% of the execution time of the GN model, which results in the
total overhead equal to 52.6% of the execution time of the GN model on the GPU.
In the case of the CPU, this overhead is higher and is equal to 62.4% of the GN
model’s execution time.

The nearly linear dependency of the computing time on the number of particles
can be observed in Figure 5, therefore, linear interpolation is applied to computing
the time of various applications solved by using slightly varying numbers of par-
ticles. The application of the BPM results in another significant increase in the
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Figure 6. The computational overhead of the implemented DEM models compared to the
normal contact force model GN

computing time, which is qualitatively similar to the increase caused by handling
the contact history, which is required for computing the tangential contact force.
Assuming linear dependency, the BPM adds to the granular flow model GNTM
81.2% of the execution time of the GN model, which results in the total overhead
equal to 133.6% of the execution time of the GN model. It is worth noting that the
parallel bond is very expensive in terms of computational performance compared
to simpler bond implementations [9]. Moreover, to perform the quantitative com-
parison with other DEM models the contact search is performed in each time step,
which is rarely required for damage simulations. The computations of temperature
and heat fluxes is not so costly, therefore, the TBPM adds to the computing time
of the BPM 30.6% of the benchmark time of the GN model. However, the most
expensive TBPM model, including the computations of granular flows and bonded
particles, adds the overhead equal to 164.5% of the execution time of the simplest
GN model on the GPU. In the case of the CPU, the measured overhead is even
larger, reaching 180.5% of the execution time of the simplest GN model. Moreover,
the percentage of the increased memory required by the complex DEM models is
even higher.

Figure 7 presents the basic roofline model, considering the GPU global mem-
ory traffic. The horizontal axis represents the arithmetic intensity (Flops/byte),
which means the number of double-precision floating-point operations per byte of
GPU global memory transfers incurred during the execution of a kernel. The verti-
cal axis represent double-precision floating-point operations performed by a kernel
per second (Flops/s). Both axes are in logarithmic scale. The curve “NVIDIA
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Figure 7. The basic roofline model

P100” represents the peak bandwidth ceiling (diagonal line) and the peak perfor-
mance ceiling (horizontal line) measured by mixed operational intensity OpenCL
kernels of GPU synthetic benchmark suite Mixbench [36]. The points “Kernel 4”
and “Kernel 5” represent performance of the computationally intensive kernels for
calculating the forces, the moments and the heat conduction fluxes of the TBPM
model. Kernel 4 computes the contact forces between all overlapped particles, while
Kernel 5 computes the bond forces between bonded particles. It is evident that all
TBPM computations are memory bound because they use many arrays stored in
the GPU global memory. Kernel 5 accesses even more global memory than Ker-
nel 4 because the number of bonds is larger than the number of particles. Finally,
Kernel 4 performs more double-precision floating-point operations per second than
Kernel 5. However, the performance of Kernel 5 is closer to the performance of the
synthetic GPU benchmark than that of Kernel 4.

6 CONCLUSIONS

The paper presents the OpenCL implementation of the thermal discrete element
method and the quantitative comparison of its computational performance with that
of various DEM models on shared memory architectures. Based on the performed
study, some observations and concluding remarks may be drawn as follows:

• The performance analysis reveals that a relatively high CPU to GPU speedup
ratio up to 7.4 has been achieved in spite of the intensive usage of the advanced
vector extensions by the OpenCL on the 20 core CPU.
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• The time required for the computation of the forces, the moments and heat
fluxes of the bonds and the contacts between the particles is highly dependent
on the complexity of the considered DEM model, while all relevant Kernels 3, 4,
5 and 6 can generally consume from 18% to 66.7% of the benchmark execution
time.

• The GN model, considering only the normal component of the contact force,
requires the shortest computing time because of the simple computations per-
formed only on the thread per particle basis.

• The GNT model is very expensive in terms of the memory and the computing
time because of the time history-dependent length of the tangential displace-
ment, which requires the storing and processing of the contact lists of variable
size.

• The difference in the computing time between the BPM based on the parallel
bond and the comprehensive granular flow model GNTM varies from 30.7% to
81.2% of the execution time of the GN model, which is the largest increase in
computational resources among the investigated DEM models.

• The DEM models, performing the operations and storing the results in the data
arrays of the bonds or contacts between the neighbouring particles, require the
large amount of memory and long computing time.

• The presented implementation of the TBPM increases the used memory and
the computing time of the BPM model up to 33.8% and 30.6% of the memory
and the execution time of the simplest GN model, respectively, which is an
acceptable increase in the computational resources required for modelling the
additional coupled field.
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[4] Kačeniauskas, A.—Kačianauskas, R.—Maknickas, A.—Markauskas, D.:
Computation and Visualization of Discrete Particle Systems on gLite-Based Grid.
Advances in Engineering Software, Vol. 42, 2011, No. 5, pp. 237–246, doi:
10.1016/j.advengsoft.2011.02.007.

[5] Tiscar, J.M.—Escrig, A.—Mallol, G.—Boix, J.—Gilabert, F.A.: DEM-
Based Modelling Framework for Spray-Dried Powders in Ceramic Tiles Industry.
Part II: Solver Implementation. Powder Technology, Vol. 377, 2021, pp. 795–812, doi:
10.1016/j.powtec.2020.08.095.

[6] Rojek, J.: Discrete Element Thermomechanical Modelling of Rock Cutting with
Valuation of Tool Wear. Computational Particle Mechanics, Vol. 1, 2014, pp. 71–84,
doi: 10.1007/s40571-014-0008-5.
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Staškūnienė, M.—Davidavičius, G.: Development of Cloud Services for Patient-
Specific Simulations of Blood Flows Through Aortic Valves. Advances in Engineering
Software, Vol. 103, 2017, pp. 57–64, doi: 10.1016/j.advengsoft.2016.01.013.

[36] Konstantinidis, E.—Cotronis, Y.: A Quantitative Roofline Model for GPU Ker-
nel Performance Estimation Using Micro-Benchmarks and Hardware Metric Profil-
ing. Journal of Parallel and Distributed Computing, Vol. 107, 2017, pp. 37–56, doi:
10.1016/j.jpdc.2017.04.002.

https://doi.org/10.1002/nme.2953
https://doi.org/10.1115/1.4010702
https://doi.org/10.1016/j.commatsci.2012.11.021
https://doi.org/10.1016/j.engstruct.2019.05.069
https://doi.org/10.1016/j.advengsoft.2016.01.013
https://doi.org/10.1016/j.jpdc.2017.04.002
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