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Abstract. There are still two problems of the existing methods of defending against
poisoning attacks of the blockchain-based federated learning: 1) It is difficult to
accurately identify the nodes under attack; 2) The effect of the model is greatly
affected when the number of malicious nodes exceeds a half. So, an innovative se-
cure mechanism is proposed for blockchain-based federated learning, which is called
the training behavior verification mechanism. The mechanism describes the consis-
tent training behavior rules of nodes by constructing the training behavior model,
and distinguishes honest nodes from malicious nodes by comparing the differences
in training behavior models on the training behavior verification algorithm. Ex-
periments show that the new mechanism can effectively resist more than half of
the label-flipping attacks and backdoor attacks, and has the advantages of higher
stability and higher accuracy than methods such as Krum, Trimmed Mean, and
Median.
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1 INTRODUCTION

Federated learning (FL), as a distributed learning framework [1, 2], allows partic-
ipants to train models in a distributed manner while safeguarding their data pri-
vacy [3], effectively solving the problem of “data silos” due to data privacy and other
issues [4]. In traditional FL, a centralized server is used to aggregate, distribute,
and update models [5]. This centralized server does not have a direct access to the
participants’ datasets and training process, and a malicious node can perform a poi-
soning attack by modifying the classification boundaries of the local model [6], which
often affects the entire training process and leads to the failure of the aggregated
model [7]. In this paper, we focus on two common poisoning attacks, one is a label
flipping attack [8], which causes misclassification of the model by flipping the labels
of normal samples to the target labels, and the second one is a backdoor attack [9],
which triggers the classification effect of a specific sample by adding hidden triggers
with strong links to the target labels in normal samples.

Poisoning attacks can lead the malicious node to submit local models containing
malicious parameters. To address this situation, existing research is mainly based on
analyzing the discrepancy between malicious and honest parameters to eliminate ma-
licious parameters. The research solutions are broadly divided into two categories,
one is to construct specific secure aggregation rules, such as Trimmed Mean [11],
Median [11], Krum [10] and other aggregation rules. The idea of mean or median
is used to weaken the effect of malicious parameters on the model during aggrega-
tion; the other category is to prevent the malicious parameters from participating in
aggregation by comparing them with honest parameters in certain dimensions such
as data distribution through the anomaly detection [12, 13] to identify them. For
the data with obvious poisoning effect, the above scheme can be used for safe model
aggregation, but for some backdoor attacks which are not particularly effective [14],
it is difficult to carry out the safe model aggregation.

Traditional centralized servers are often managed by a third party, however,
the reliability of such third parties cannot be guaranteed. A server attacked by
a malicious node can easily cause leakage of important private data, such as finan-
cial data [15]. Driven by some illegal interests, malicious node may return wrong
models to participants in the process of updating models and distributing them
after conspiring with third parties [16]. Moreover, under traditional FL, nodes
are non-anonymous to each other, which allows malicious actors to conspire with
each other, resulting in larger scale attacks. Blockchain, as a distributed shared
ledger maintained by multiple parties, establishes multi-party trust relationships
through cryptographic techniques and has the characteristics of decentralization, im-
mutability, and anonymity. Existing research combines blockchain to build trusted
FL and use blockchain instead of centralized servers to complete FL tasks such
as model aggregation, which effectively solves the third-party trust problem in
FL [17, 18, 19].

However, combining blockchain only ensures the reliability of model parame-
ters in distribution and aggregation, and poisoning attacks still exist. Existing
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research prevents the problem of poisoning attacks in FL on the basis of blockchain,
which are broadly classified into three categories. The first category is by estab-
lishing a committee mechanism in the blockchain [20, 21, 22], which identifies the
authenticated nodes based on the keys issued by the committee, and it is able to
prevent malicious nodes from submitting local models provided that the authenti-
cated nodes are all honest, however, it is also possible for malicious node to execute
attacks by controlling the authenticated nodes. The second category is to maintain
the reliability of model updates by establishing a reputation mechanism [23, 24],
which is often based on a voting mechanism or subjective judgment, which may
lead to subjective judgment errors or malicious node intentionally messing up. The
third category is to combine existing secure aggregation rules or anomaly detec-
tion [25, 26], but these aggregation and detection still have the problems mentioned
above.

In addition, the schemes mentioned above are difficult to accurately identify
malicious nodes after a poisoning attack, and many of them will lose their effective-
ness when the number of malicious nodes exceeds a half. Therefore, if malicious
nodes can be identified and eliminated, and thus malicious parameters involved in
aggregation can be eliminated, secure aggregation by legitimate nodes can be en-
sured. In this paper, we propose a blockchain-based FL based on training behavior
verification mechanism, which can effectively identify malicious nodes by using the
behavioral commonality of nodes in local training models to construct training be-
havior models and combining with training behavior verification algorithms. When
the number of malicious nodes exceeds a half, it can effectively detect the poisoning
attacks that occur during the training process and identify malicious nodes. The
main contributions of this paper are as follows:

• We propose a new secure mechanism (BVFB, Training Behavior Verification
Mechanism for Secure Federated Learning on Blockchain), which effectively en-
sures the reliability of local model aggregation of participating nodes during
the federation learning training process by combining blockchain and federation
learning.

• We propose a training behavior model, which is used to characterize the training
behavior of nodes during the local training process.

• We propose a verification aggregation algorithm based on the training behavior
model, which ensures the security of model aggregation by verifying out the
malicious models that appear during the model aggregation process.

The rest of this paper is organized as follows. Section 2 describes the related
work. Section 3 describes the composition and workflow of the proposed framework,
and outlines the training behavior validation mechanism. Sections 4 and 5 describe
training behavior modeling and training behavior verification. Section 6 conducts
experiments and performance evaluation of the proposed framework. Finally, the
work of this paper is summarized in Section 7.
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2 RELATED WORK

Research on model poisoning attacks in FL has always attracted much attention.
The poisoning attack defense methods under traditional FL are mainly divided
into two categories. One is the use of aggregation rules to ensure the reliability
of model parameters, and these aggregation rules mitigate the damage of malicious
models to the aggregated model by using specific rules in aggregation to reduce
the aggregation participation of malicious parameters. Yin et al. [11] proposed
Trimmed Mean and Median. The former aggregates the model by removing the
maximum and minimum values of the model parameters and calculating the mean
of the remaining parameters, and the latter aggregates by calculating the median of
the model parameters. Blanchard et al. [10] proposed Krum by selecting one of the
models from the model that is similar to all other models for aggregation. With no
more than half of the malicious nodes, Krum is able to select the honest nodes for
aggregation with high probability. While these aforementioned schemes are able to
eliminate the effect of malicious components on the model with a relatively obvious
attack, they show poor results for some backdoor attacks [14]. Another category is
to use anomaly detection to guarantee the reliability of model parameters, which
are distinguished by the differences between malicious models and honest models in
certain aspects, such as data distribution and accuracy. Bhagoji et al. [12] proposed
an accuracy checking method and a weight update statistics method, which were
detected by comparing the effects of different model combinations and comparing
the differences between the histograms of model parameter updates. However, these
anomaly detections were shown to be vulnerable to backdoor attacks.

Traditional FL is vulnerable to malicious attack or illegal control due to the use
of centralized servers for aggregation. The combination of blockchain and FL can
well solve the problem of third-party trust in traditional FL. However, combining
only blockchain still can not effectively defend against poisoning attacks, and the
existing solutions to combine blockchain and solve poisoning attacks are roughly
divided into three categories. The first category is to establish a trust committee
mechanism to guarantee the reliability of model parameters. Li et al. [20] proposed
a committee consensus mechanism and Weng et al. [21] proposed the DeepChain,
which guarantees the reliability of model training by an elected committee. The
VFChain [22] proposed by Peng et al. identifies legitimate participants through the
authentication key issued by the committee. These methods need to be performed
under the premise that the authentication node is not controlled, but the reality
is that even the authentication node may lose control over the node and training
data. The second category is to establish a reputation mechanism to maintain
the reliability of participating nodes. Kang et al. [23] proposed a combination of
reputation and contract theory, using a multi-weighted subjective logic model to
select legitimate nodes. Chen et al. [24] combined reputation and reward mechanism
to select honest nodes by voting. These methods can effectively decide legal nodes
on the premise that all legal nodes abide by the rules, but in the case of illegal nodes
maliciously disrupting, it will affect the effect of the final model. The third category
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is secure aggregation by combining aggregation rules or anomaly detection. Shayan
et al. [25] proposed a Biscotti to prevent poisoning attacks by using blockchain
instead of centralized servers and combining Krum. Chen et al. [27] proposed a FL
approach with model verification to detect the reliability of the model by verifying
the accuracy of the model. But a malicious node can perform a backdoor attack by
maintaining a certain accuracy threshold.

In addition to this, the abovementioned schemes lack effective methods to pre-
vent attacks and identify malicious nodes effectively in the case of more than half
of the malicious nodes. In order to effectively identify malicious nodes, this paper
introduces a training behavior verification mechanism in the blockchain-based FL.
This new secure federated learning ensures that only the local parameters of hon-
est nodes participate in model aggregation to ensure the security and accuracy of
subsequent model aggregation.

3 NEW SECURE MECHANISM FOR FEDERATED LEARNING
ON BLOCKCHAIN

3.1 Work Flow of BVFB

As shown in Figure 1, the blockchain-based FL with training behavior verification
mechanism (BVFB) is mainly composed of three parts, namely the publisher, the
participant and the blockchain. Task publishers mainly publish FL tasks in the
blockchain. Participants are usually distributed on different nodes of the blockchain,
each node has independent local data, and participates in model training on the
premise that the local data is consistent with the publisher’s requirements. The
blockchain replaces the parameter server in traditional FL, is responsible for node
verification and model aggregation. The operation under a global iteration includes
the following steps:

Step 1: Publish the FL task. The task publisher publishes the FL task accord-
ing to the requirements. The FL task generally includes the model convergence
requirements, training data requirements, initialization model and correspond-
ing hyperparameters. When publishers publish tasks, they usually encourage
participants to actively participate in FL through rewards. Tasks are published
in the genesis block of the blockchain.

Step 2: Update the local model. The node downloads the latest global model
from the latest block of the blockchain. The node then uses local training
samples to train on the global model. The gradient is continuously updated
by the optimization algorithm until the value of the loss function is minimized,
and the final local model is obtained.

Step 3: Generate the training behavior model. The node generates training
behavior pace and training behavior direction in the process of local training,
and then build the training behavior model (see Section 4 for details).
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Step 4: Upload to the blockchain. After the node finish local training, the
generated final local model and the training behavior model are packaged and
uploaded to the blockchain network.

Step 5: Verify the training behavior model. Miners in the blockchain verify
the collected training behavior models, and mark the nodes corresponding to
the verified training behavior models as honest nodes (see Section 5 for details).

Step 6: Update the global model. The blockchain aggregates the local models
marked as honest nodes to update the global model.

In the whole FL process, the above steps 2–6 are repeated continuously in each
global iteration until the global model reaches convergence.

Figure 1. The work flow of BVFB

3.2 Training Behavior Verification Mechanism

In the above new framework, the training behavior verification mechanism must
satisfy the following assumptions:

1. Participants have their own local datasets, and the data distribution of training
samples under the same label in these datasets is consistent. Most participants
will honestly follow the design specifications, and some participants may be
maliciously attacked, resulting in erroneous calculation results.

2. After the participants are attacked, they can manipulate their local data sets to
carry out poisoning attacks. The attack methods are divided into label-flipping
attacks and backdoor attacks.
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3. In each global iteration, the number of nodes participating in the aggregation
is N , and the number of malicious actors who initiate poisoning attacks is M .
We assume that there is at least one honest node in the aggregation in each
iteration, and the honest node has the highest local model accuracy.

Figure 2. Training behavior verification mechanism

The training behavior verification mechanism includes two parts: training be-
havior modeling and training behavior verification, as shown in Figure 2. For the
process of node training behavior modeling: first, the participating nodes generate
the training behavior pace according to the local training behavior attribute and
the gradient value updated by the local model, where the local training behavior at-
tribute is composed of the node’s training samples, local iteration times and learning
rate. Second, the change direction of the training behavior pace is calculated, that
is, the training behavior direction. Finally, a training behavior model is constructed
according to the training behavior pace and training behavior direction, which is
used to describe the consistent behavior rules of nodes during local training.

The training behavior verification is responsible for the identification of legal
nodes and ensures the safe aggregation of the model. First, honest nodes are de-
termined by the highest accuracy at each global iteration, based on assumptions.
Secondly, the similarity of other nodes in the training behavior model is calculated
through the honest node, that is, the training behavior honesty. The higher the
honesty, the more honest the training behavior of the node is. Finally, after obtain-
ing the training behavior honesty of these nodes, they are classified according to the
corresponding thresholds, and the nodes larger than the corresponding thresholds
are honest nodes, otherwise they are malicious nodes.
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Through training behavior modeling and training behavior verification, honest
nodes can be effectively selected to participate in model aggregation. Even when
the number of malicious nodes exceeds a half, the malicious nodes can be effectively
screened out before aggregation, thereby maximizing the use of local model updates
of honest nodes and accelerating the convergence of the global model. The two core
parts of the training behavior mechanism are described in detail below: training
behavior modeling and training behavior verification.

4 TRAINING BEHAVIOR MODELING

In the tth global iteration of FL task, after receiving the global model Φ
(t−1)
G of the

previous iteration, the participating node Di starts local iterative training based on

the local dataset Si. The initial local model Φ
(t,0)
i that the node Di trains locally

iteratively is the global model Φ
(t−1)
G . Usually, in order to improve the efficiency

of the next global model aggregation, the node will iteratively train Ei iterations
locally. The purpose of local iterative training is to continuously reduce the local
model loss value [5].

Definition 1 (Local Loss Minimization). Local loss minimization refers to mini-
mum error value between the model predicted value and true values after the local

model Φ
(t,e)
i iteratively trained on the local dataset Si in global iteration t and local

iteration e. It can be calculated as follows:

min
Φ

(t,e)
i

 1

|Si|

|Si|∑
j=1

Loss (y, ŷ)

, i = 0, 1, 2, . . . , N (1)

where Φ
(t,e)
i represents the local model of node Di in global iteration t and local iter-

ation e. Loss (y, ŷ) represents the loss function used to calculate the error between
the true value y and the predicted value ŷ, the cross-entropy loss function [28] is
used here. |Si| represents the size of the training sample. N represents the number
of participating nodes.

Usually, in each local iteration, an optimizer is needed to calculate the optimal
solution of the model parameters. Here, the stochastic gradient descent (SGD)
optimization algorithm [29] is used for the local model update, which usually uses
mini-batch data samples Bi ∈ Si to participate in the calculation.

Definition 2 (Local Model Update). Local model update refers to the process of
updating the local model by performing SGD on the mini-batch data samples Bi in
the global iteration t and the local iteration e. It can be calculated as follows:

Φ
(t,e)
i = Φ

(t,e−1)
i − ηiδ

(
Φ

(t,e−1)
i , Bi

)
, i = 0, 1, 2, . . . , N (2)
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where δ
(
Φ

(t,e−1)
i , Bi

)
represents the gradient of the local model in global iteration t

and local iteration e. Bi represents the mini-batch data samples used for SGD

and δ
(
Φ

(t,e−1)
i , Bi

)
= 1

|Bi|
∑|Bi|

j=1
∂Loss(y,ŷ)

∂Φ
(t,e−1)
i

. ηi represents the learning rate of model

training for node Di.

Since the local iterations Ei, the learning rate ηi, the data samples Xi, the
data labels Yi and the mini-batch data samples Bi involved in SGD are different for
nodes to be used in local training. These different attributes can be regarded as
the behavioral attributes of the nodes trained locally. The tuple consisting of these
attributes is referred to as the training behavior attribute.

Definition 3 (Training Behavior Attribute). Training behavior attribute refers to
a quintet composed of training data samples, training data labels, mini-batch data
samples, learning rate and local iterations when the node Di is trained locally in the
tth global iteration. It can be represented as follows:

BAi
(t) = (Xi, Yi, Ei, ηi, Bi) , i = 0, 1, 2, . . . , N (3)

where Xi represents the training data samples, Yi represents the training data labels,
Ei represents the local iterations, ηi represents the learning rate, and Bi represents
the mini-batch data sample used for SGD.

The essence of local training is to continuously update the local model param-
eters to minimize the model loss, that is, the behavior of nodes in local training is
reflected in the local gradient values. The change rule of the gradient value can re-
flect the training behavior rule of the node, so as to construct the training behavior
portrait of the node. The local model gradient values between nodes have similarity
when the data distribution and the initial local model are consistent, provided that
the nodes are all honest. In order to prevent the weakening of this similarity due to
the different number of local iterations Ei, the average calculation of the gradient
value is used here. Since it reflects the common behavior of nodes in local training,
it is called the training behavior pacing here.

Definition 4 (Training Behavior Pace). The training behavior pace refers to the
average gradient value of node Di after local iteration Ei in the tth global iteration.
It can be calculated as follows:

BP i
(t) =

∑Ei

e=1 δ
(
Φ

(t,e−1)
i , Bi

)
Ei

, i = 0, 1, 2, . . . , N (4)

where δ
(
Φ

(t,e−1)
i , Bi

)
is the gradient of the local model Φ

(t,e−1)
i in the global iteration

t and the local iteration e.

From Equation (3), the training behavior pace BP i
(t) can be obtained by calcu-

lating the difference between the local model of node Di before and after the local



1410 Z. Zhang, J. Hu, L. Ma, R. Pei, P. Wang

iteration divided by the learning rate ηi and the number of local iterations Ei, that

is, BP i
(t) =

(
Φ
(t,Ei)
i −Φ

(t,0)
i

)
ηiEi

.

Only through the training behavior pace cannot fully characterize the training
behavior rules of nodes. In addition to the similarity of gradient values between
honest nodes, there is also similarity in the direction of gradient change between
honest nodes, which reflects the consistency of honest nodes in the direction of
training behavior. Here, the Sgn function [32] is used to calculate the gradient
change direction to reflect the direction of the training behavior, which is called the
training behavior direction here.

Definition 5 (Sgn Function). Sgn function, also known as sign function, refers to
returning an integer variable, indicating the sign of the parameter. It can be calcu-
lated as follows:

Sgn(x) =

 −1, x < 0,
0, x = 0,
1, x > 0.

(5)

Definition 6 (Training Behavior Direction). The training behavior direction refers
to the change direction of the gradient of the node Di after the local iteration Ei in
the tth global iteration. It can be calculated as follows:

BDi
(t) = Sgn

(
BP i

(t)
)
, i = 0, 1, 2, . . . , N. (6)

The commonalities in training behavior among honest nodes can be reflected by
the training behavior pace and training behavior direction. These commonalities
can describe the consistent behavior rules of nodes in local training, through which
honest nodes and malicious nodes can be effectively distinguished. Here, the training
behavior model is constructed to represent these commonalities.

Definition 7 (Training Behavior Model). The training behavior model refers to
the two-tuple composed of the training behavior pace and the training behavior
direction of the node Di in the tth global iteration. It can be represented as follows:

Hi
(t) =

(
BP i

(t), BDi
(t)
)
, i = 0, 1, 2, . . . , N. (7)

In summary, the process of the training behavior modeling of the node Di can be

obtained. First, the node Di is trained based on the global model Φ
(t−1)
G downloaded

from the blockchain to obtain the final local model Φ
(t)
i . Secondly, the corresponding

training behavior pace BP i
(t) and training behavior direction BDi

(t) are obtained
according to the gradient value calculated during the local iteration process. Finally,
BP i

(t) and BDi
(t) together to build the training behavior model Hi

(t). The specific
modeling process is shown in Algorithm 1.
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Algorithm 1 Training Behavior Modeling

Input: Di, Xi, Yi,Φ
(t−1)
G , ηi, Bi, t

Output: Φ
(t)
i , H

(t)
i

1: // 1. Generate local model update

2: Download the global model Φ
(t−1)
G from blockchain

3: Initialize the local model Φ
(t,0)
i ← Φ

(t−1)
G

4: for e ∈ Ei do

5: Compute δ
(
Φ

(t,e−1)
i , Bi

)
= 1

|Bi|
∑|Bi|

j=1
∂Loss(y,ŷ)

∂Φ
(t,e−1)
i

6: Compute Φ
(t,e)
i = Φ

(t,e−1)
i − ηiδ

(
Φ

(t,e−1)
i , Bi

)
7: end for
8: Get final local model Φ

(t)
i = Φ

(t, Ei)
i

9: // 2. Generate training behavior pace and training behavoir direction

10: Compute ∆Φ
(t)
i = Φ

(t,Ei)
i − Φ

(t,0)
i

11: Computer BP i
(t) =

∆Φ
(t)
i

ηiEi

12: Computer BDi
(t) = Sgn(BP i

(t))
13: // 3. Generate training behavior model

14: Generate Hi
(t) =

(
BP i

(t), BDi
(t)

)
15: return Φ

(t)
i , H

(t)
i

5 TRAINING BEHAVIOR VERIFICATION

After collecting the local models and training behavior models of the participat-
ing nodes, the blockchain needs to verify the training behavior models first. Since
the training behavior model reflects the commonality of nodes’ local training be-
haviors, the training behavior models among honest nodes have similarity. By cal-
culating the similarity between the train behavior models of nodes, honest nodes
and malicious nodes can be divided into two groups with different similarities. In
order to calculate the similarity between nodes and improve the calculation effi-
ciency, we select the training behavior model Hh of the honest node Dh with the
highest accuracy in each global iteration and use it as the object of comparison
for calculating the similarity between other nodes. In calculating the similarity
between the nodes’ training behavior models, the Pearson correlation [30] is used
here.

Definition 8 (Pearson Correlation). The Pearson correlation is a linear correlation
coefficient used to reflect the degree of linear correlation between two random vari-
ables. It can be calculated as follows:

ρ (x, y) =

∑n
i=0 (Xi − µX) (Yi − µY )√∑n

i=0 (Xi − µX)
2
√∑n

i=0 (Yi − µY )
2

(8)
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where µ is the mean and µX refers to the mean of X.

Definition 9 (Training Behavior Pace Honesty). Since there are multiple weight
parameters w1, w2, . . . , wb in the training behavior pace of the node training be-
havior model, for each parameter there are multidimensional data corresponding
to it. The similarity between the node Di and the honest node Dh in the pa-
rameters corresponding to the training behavior pace can be calculated, and then
these similarities are accumulated and averaged. The result of the calculation is
referred to here as the training behavior pace honesty, which is calculated as fol-
lows:

BPH
(t)
i =

1

b

b∑
j=0

ρ
(
BP

(t)
i,wj

, BP
(t)
h,wj

)
, 0 ≤ i, h ≤ N (9)

where BP
(t)
h,wj

is the node training behavior pace for weight parameter wj of honest

node Dh in the tth global iteration, b is the number of weight parameters in the
model.

Definition 10 (Training Behavior Direction Honesty). In the same way, the sim-
ilarity between node Di and honest node Dh in the parameters corresponding to
the training behavior direction can be calculated, and then these similarities are
accumulated and averaged to obtain the training behavior direction honesty, which
is calculated as follows:

BDH
(t)
i =

1

b

b∑
j=0

ρ
(
BD

(t)
i,wj

, BD
(t)
h,wj

)
, 0 ≤ i, h ≤ N (10)

where BD
(t)
h,wj

is the node training behavior direction for weight parameter wj of
honest node Dh.

Definition 11 (Training Behavior Honesty). The cumulative average of the above
two honesty degrees can be used as the similarity of the training behavior model
between the node Di and the honest node Dh, which is used as an evaluation metric
at each iteration of verification to assess the similarity of behavior between the node
Di and the honest node Dh, referred to here as the training behavior honesty. It
can be calculated as follows:

BH
(t)
i =

1

2

(
BPH

(t)
i +BDH

(t)
i

)
, 0 ≤ i ≤ N (11)

where BPH
(t)
i and BDH

(t)
i represent the training behavior pace honesty and the

training behavior direction honesty of the node Di. The result range of BH
(t)
i is

[0, 1], and the larger the value, the more similar the training behavior of honest node
Dh, that is, the more honest.
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Algorithm 2 Training Behavior Verification

Input: D =
⋃N

i=1Di,Φ
(t) =

⋃N
i=1Φ

(t)
i , H(t) =

⋃N
i=1H

(t)
i , t, b

Output: DH =
⋃M

i=1Di

1: // 1. Get the honest node with the highest accuracy

2: for Φ
(t)
i ∈ Φ(t) do

3: Compute the accuracy of Φ
(t)
i on the global test dataset: Acc

(t)
i

4: Add Acc
(t)
i into Set(t)acc (the set of Acc

(t)
i )

5: end for
6: Get the honest node Dh with the highest accuracy in Set(t)acc

7: for H
(t)
i ∈ H(t) do

8: // 2. Computer training behavior honesty

9: Computer BPH
(t)
i = 1

b

∑b
j=0 ρ

(
BP

(t)
i,wj

, BP
(t)
h,wj

)
10: Computer BDH

(t)
i = 1

b

∑b
j=0 ρ

(
BD

(t)
i,wj

, BD
(t)
h,wj

)
11: Computer BH

(t)
i = 1

2

(
BPH

(t)
i +BDH

(t)
i

)
12: // 3. Discriminate node by training behavior honesty

13: if BH
(t)
i > θ then

14: Add Di into DH

15: end if
16: end for
17: return DH

Before each iteration of local model aggregation, whether the node is maliciously
attacked, it is determined by calculating the training behavior honesty. When the
training behavior honesty is greater than a certain threshold θ, it can be consid-
ered that the node and its local model is honest and can participate in the model
aggregation. Otherwise, the node and its local models are malicious and should be
removed before aggregation, thus effectively ensuring the security of model aggre-
gation.

In summary, the training behavior verification process of the node can be ob-
tained: Firstly, the accuracy of the local models of the participating nodes is cal-
culated, and the node with the highest accuracy is selected as the honest node.
Secondly, the honesty corresponding to the training behavior pace and training
behavior direction in the training behavior model of each node is calculated, and
the training behavior honesty is obtained after accumulating and averaging these
honesties. Finally, determine whether the training behavior honesty of each node
exceeds the threshold θ, if it does, it is an honest node, otherwise it is a malicious
node. The specific algorithm process is shown in Algorithm 2.
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6 IMPLEMENTATION AND EVALUATION

To verify the effectiveness of the blockchain-based FL with the training behavior val-
idation mechanism, this paper conducts experiments on the public dataset MNIST
dataset [31].

6.1 Experimental Setup

The MNIST dataset consists of 60 000 training data samples and 10 000 test dataset
samples. Each sample is a grayscale handwritten digital image composed of 28× 28
pixels, and the number range is 0 ∼ 9. The MNIST dataset is randomly as-
signed into 20 mutually disjoint subsets and randomly assigned to 20 participant
nodes in the blockchain. To simulate the distributed scenario, we used four servers
equipped with 8GB RAM and 2.40GHz Intel(R) Core (TM) i5-1135G7 processors
for the experiment, and each server started 5 processes to simulate the participating
nodes.

The training model that nodes train locally employs the multi-layer perceptron
(MLP) [33] and is iteratively trained using the stochastic gradient descent (SGD)
optimization algorithm [29]. MLP includes a input layer, two hidden layers and
a output layer, and the corresponding number of neurons is 784, 256, 128 and 10.
In the model, the Sigmoid function [34] is used as the activation function, and the
cross-entropy loss function [28] is used as the loss function. The learning rate of
the node η = 0.1, the number of local model weight parameters b = 6, the number
of global iterations T = 20, and the number of local iterations Ei = 5. The aggre-
gation method between local models adopts the Federated Average (FedAvg) [35]
algorithm. Proof of Work (PoW) [36] is used in the blockchain as the consensus
mechanism. The global model is stored in the block header, and the honest local
model uploaded by the node is stored in the block body. A block in the blockchain
represents a global iteration, and the training behavior verification mechanism is
executed through the smart contract.

The poisoning attacks involved in the experiments include label-flipping [8] and
backdoor attacks [9]. In order to verify the effectiveness of the training behavior
verification mechanism for node verification, we set up two groups of experiments,
respectively using label-flipping and poisoning attacks to attack BVFB with poi-
soning rate 0% ∼ 90%. In order to verify that the BVFB has more advantages
over other frameworks, we set up four groups of experiments, namely Median [11],
Trimmed Mean [11], Krum [10] and BVFB, and the poisoning rate of label-flipping
and backdoor attack is 0% ∼ 90%.

6.2 Experimental Result

The experimental results of node training behavior honesty of nodes under label-
flipping (left) and backdoor attack (right) in BVFB are shown in Figure 3. As
can be seen from the figure, there is a big difference between the honesty of honest



BVFB: Training Behavior Verification Mechanism for Blockchain-Based FL 1415

10% 20% 30% 40% 50% 60% 70% 80% 90%
% of Poisoners

0.2

0.4

0.6

0.8

1.0
tr

ai
ni

ng
 b

eh
av

io
r 

ho
ne

st
y

malicious node

honest node

10% 20% 30% 40% 50% 60% 70% 80% 90%
% of Poisoners

0.0

0.2

0.4

0.6

0.8

1.0

tr
ai

ni
ng

 b
eh

av
io

r 
ho

ne
st

y

malicious node

honest node

a)

10% 20% 30% 40% 50% 60% 70% 80% 90%
% of Poisoners

0.2

0.4

0.6

0.8

1.0

tr
ai

ni
ng

 b
eh

av
io

r 
ho

ne
st

y

malicious node

honest node

10% 20% 30% 40% 50% 60% 70% 80% 90%
% of Poisoners

0.0

0.2

0.4

0.6

0.8

1.0

tr
ai

ni
ng

 b
eh

av
io

r 
ho

ne
st

y

malicious node

honest node

b)

Figure 3. Training behavior honesty under label-flipping a) and backdoor attack b) in
BVFB
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nodes and malicious nodes, the honesty between honest nodes is relatively close,
the honesty between malicious nodes is also relatively close. There is an obvious
dividing line threshold between these two kinds of nodes. Here, θ = 0.6 is selected
as the threshold for judging whether a node is an honest node. As can be seen from
the figure, the threshold θ = 0.6 can identify more than 90% of honest nodes. In
the subsequent comparative experiments, the threshold θ = 0.6 is selected as the
judgment basis for verifying honest nodes.

The accuracy of BVFB under label-flipping attack and backdoor attack with
different poisoning rates is shown in Figure 4, and Krum, Median, and Trimmed
Mean are compared. Among them, Trimmed Mean cannot be used when more
than half of the nodes are attacked, so it cannot be counted when the poisoning
rate exceeds half. We can see that as the poisoning rate of the poisoning attack
increases, especially after the poisoning exceeds 50%, the accuracy of other frame-
works drops sharply. The principle of Krum is to select one of the most similar local
models, but when the number of malicious nodes exceeds half, Krum will select
one of the malicious nodes for aggregation with a high probability, thus affecting
the effect of the global model. Median adopts the method of taking the median of
the parameters, but when the number of malicious nodes exceeds half, the median
will tend to the malicious parameter value. However, using the training behavior
verification mechanism, when there is at least one honest node, it can accurately
determine whether other nodes are honest, so as to eliminate malicious nodes, and
only aggregate the local models of honest nodes to ensure the reliability of the global
model.

Poisoning
Rate

Frame
Krum Trimmed Mean Median BVFB

0% 86.74% 87.33% 87.29% 87.47%
10% 85.51% 85.91% 86.04% 86.97%
20% 84.93% 85.54% 85.93% 86.88%
30% 84.95% 85.40% 85.43% 86.80%
40% 83.69% 84.55% 84.52% 86.68%
50% 77.25% 77.73% 86.54%
60% 76.29% 77.21% 86.47%
70% 66.83% 74.05% 86.26%
80% 65.80% 73.35% 85.97%
90% 58.51% 65.12% 85.94%

Table 1. Accuracy of different frameworks under label-flipping attack

The data in Tables 1 and 2 show the accuracy of BVFB as well as other frame-
works under two poisoning attacks. It can be seen from the data in the table that
after label-flipping and backdoor attacks occur in BVFB, the accuracy of the model
has been maintained at around 86%, and the average accuracy under 50% and over
50% poisoning rate has improved by about 2% and 10% compared to the other
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Figure 4. Accuracy of different frameworks under label-flipping a) and backdoor attack b)
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Poisoning
Rate

Frame
Krum Trimmed Mean Median BVFB

0% 86.74% 87.33% 87.29% 87.47%
10% 85.66% 86.66% 85.75% 87.42%
20% 85.13% 86.33% 85.44% 87.40%
30% 84.09% 86.16% 85.08% 87.39%
40% 83.84% 86.08% 84.59% 87.15%
50% 80.68% 84.18% 87.10%
60% 79.29% 72.07% 86.94%
70% 77.69% 61.71% 86.93%
80% 73.71% 59.97% 86.71%
90% 59.05% 59.20% 85.92%

Table 2. Accuracy of different frameworks under backdoor attack

frameworks, which indicates that BVFB has higher accuracy than other frameworks.
As the poisoning rate increases, the accuracy of the model in the BVFB decreases
between 0% and 1.5%, and the effect of the model is not much affected by poisoning
attack. The accuracy of the models of other frameworks decreases between 1% and
10%, and the change is relatively large. This indicates that the BVFB has a more
stable effect than other frameworks.

Since the change in accuracy with the number of iterations is roughly the same
for different frameworks subjected to poisoning attacks when the poisoning rate
is more than half, the poisoning rate of 70% is chosen here for analysis. Figure 5
shows the trend of the accuracy of different frameworks with the number of iterations
under the poisoning rate of 70% label-flip attack and backdoor attack. It can be
seen from the figure that when the number of malicious nodes exceeds half, the
accuracy of the global model of the Krum and the Median after each iteration of
aggregation is almost lower than that of BVFB, and the global models trained under
the BVFB converge faster than the other frameworks. This is due to the fact that
BVFB involves almost all honest nodes in model aggregation in each iteration and
integrates the data features of all honest nodes, with almost no malicious nodes
messing up, so the model convergence speed and model accuracy are better than
other frameworks.

7 CONCLUSIONS

In this paper, we created a training behavior verification mechanism for secure
blockchain-based federated learning (BVFB) that can effectively distinguish honest
nodes from malicious nodes to ensure secure aggregation of the model, while main-
taining a stable high aggregation accuracy even when more than half of the nodes
are maliciously attacked. In BVFB, training behavior model can characterize the
common behaviors between honest and malicious nodes. The training behavior ver-
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Figure 5. Accuracy of different iterations under 70% poisoning rate label flipping-
attack a) and backdoor attack b)
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ification can effectively distinguish honest nodes from malicious nodes even if only
one honest node exists. The security mechanism proposed in this paper takes the
highest accuracy rate as a judgment basis of the seed honesty node, but the model
aggregation accuracy of honest nodes may not be the highest in practice. So, we
will further consider the case where an honest node cannot be determined by the
highest accuracy.
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