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Abstract. Internet of Things (IoT) has been recognised as a promising area for au-
tomating numerous processes, however, the major problem with IoT is its potential
for rising complexities. Several approaches have moved attention to the edge nodes
associated with IoT, hence concepts of edge-computing, resource allocation and
load balancing are tantamount to a more robust heterogeneous IoT. The resource
optimization terrain comes with several complications for the resource allocation
and scheduling algorithms. Load balancing, one of the key strategies for improving
system performance and resource utilization in distributed and parallel comput-
ing, generally views an effective load balancer as a ‘traffic controller’ of resources
by directing tasks to available and capable resources. In this paper, a framework
appropriate for modelling and reasoning about IoT resource optimization is devel-
oped. Further, implementation of an optimized resource allocation algorithm taking
into consideration the users’ quality of experience (QoE) and the quality of service
(QoS) is made available. Simulation results authenticate analysis and validate the
improved performance over existing work.
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1 INTRODUCTION

Society today has a great desire for instant gratification, be it in the form of online
shopping, booking a table for dinner, bank management or even planning a journey.
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As long as these activities require an online presence there is need for use of one
or more intelligent device. The use of such devices is synonymous to ample data
movement, sharing, manipulation and end-to-end communication between nodes.
Although the boom in big data has produced satisfactory data privacy, users are still
unintentionally exposed repeatedly to disappointing services and security threats as
data is manipulated, owing to excess overhead cost, bottleneck and latency and
scalability issues.

Internet of Things (IoT), a fast-evolving concept, has been maturing at a contin-
uous rate, with an increasing number of analyses over the last few years. These anal-
yses have led to several concepts depicting different approaches in making IoT more
manageable. A paramount approach is making the edge nodes more efficient by con-
ceptualising and implementing resource allocation. The works of [1, 2, 3, 4, 5, 6, 7, 8]
affirm that recent paradigms are shifting concentration from the core structure of
IoT to the individual nodes building up the IoT. The approach to tackle issues at the
nodal level increasingly shows that the previous thought insurmountable challenges
can be broken down and dealt with from the ground level up, using dogmas of divide
and conquer algorithms. [2, 8, 9, 10] have put forward the ideology of using edge
computing and/or blockchain, they have also compared results to existing works
suggesting that their theories and models produce more meaningful outputs. The
work of [1] suggests that an effective but challenging way to manage services on edge
servers is by keeping the services running effectively via the means of appropriate
resources allocation.

In a generation where the use of the internet has become as essential as breathing,
a central topology approximately equal to IoT cannot be condoned and so, it is
paramount to decentralise functionalities by developing decentralised mechanism
and/or topologies that will bring about more effective systems and consequently
eliminate major concerns that arise when a server is down.

Figure 1 illustrates how devices, referred to as edge nodes, connect randomly to
edge or cloud servers. The random connections equate multi connections and with
an addition of just a device to the network comes an exponential increase in number
of connections. These connections are multiple and may lead to bottleneck, excess
overhead costs, redundancy issues, as well as user dissatisfaction. IoT’s increas-
ing popularity poses several challenges, these challenges include increasing demand
for higher quality of experience (QoE) and quality of service (QoS), such as high
data rates, low communication latency, and low energy cost on data communica-
tion and processing [11]. QoS’ parameter can be divided into the following forms:
RAM (Random Access Memory) parameters; Network bandwidth; Cost; and Com-
pletion time [12]. Current works show that QoE’s verified management models with
subjective tests, do not capture or understand the implications of quality degrada-
tion caused by intelligent machines [13]. The explosive growth in IoT necessitates
that IoT applications have the capacity to support all connected devices and users
without dilapidation in QoE and QoS. Consequently, attempts have been made to
develop a scalable, low latency, and optimized resource allocation IoT. Generally,
effective load balancers act as ‘traffic controllers’ of resources. This act directs tasks
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Figure 1. Scenario of existing systems

to available and capable resources, ensuring optimized processing without exertion
of excess strain on resources, and resulting in better QoS and QoE. Current re-
search focuses on resource allocation at the detriment of resource scheduling, QoS
and QoE. Considering these lapses, a proposed framework of deliberation is one that
promotes: a reduction in the number of connections edge nodes establish; decen-
tralizing the IoT’s topology; and making IoT scalable. IoT’s centralised topology
comes with strict hardware specifications that may lead to several inefficiencies. Re-
source optimization needs to consider the components of the IoT architecture to
guarantee efficiency. This paper therefore seeks to address the problems of scala-
bility and latency with intentions to improve users’ experiences, and optimization
of functionalities to form a solid foundation for an optimal and more secure IoT
by decentralising IoT’s topology and facilitating geographically challenged machine
communication. To answer the major question: what computational and algorith-
mic theories are suitable, in practice, for management and resource optimisation of
Internet of Things? this paper sets to produce the following new contributions:

1. A framework appropriate for modelling and reasoning about IoT resource opti-
mization – improving IoT’s current state of the art by producing a decentralised
topology ensuring scalability and improved latency;
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2. Implementation of an optimized resource allocation algorithm, taking into con-
sideration the users’ QoE and the QoS;

3. Experiments and evaluation of developed model, comparison with other ap-
proaches and suggestion of further steps to take.

The rest of the paper is organised as follows. Section 2 features related works
and motivation. Section 3 introduces the system model. Section 4 presents the
implementation of the proposed model, emphasising the architecture with relation
to the implementation process. Section 5 presents the experimental results, giving
in-depth evaluation. Finally, Section 6 closes the paper.

2 RELATED WORK AND MOTIVATION

This section contains a detailed description of related work. It additionally expati-
ates the motivation behind the implementation.

2.1 Related Work

Edge computing, a thriving approach to solving the issues of scalability and la-
tency, consists of different paradigms, such as cloudlets, mobile-edge computing,
and fog computing; it has several surveys that summarise the architecture of such
paradigms [7]. Edge computing uses the Service Level Agreement (SLA) as a com-
mitment between a service provider and a client [1, 2]. Quality of experience (QoE)
which is a measure of users’ acceptance of applications or services, usually influenced
by expectations as well as users’ context, is a challenging criterion to gauge as there
are no standardized step-by-step platforms for measuring users’ quality perceptions,
i.e., their quality of experience (QoE), for IoT-based services [14]. Given previous
works and set frameworks, the frameworks produced by [5, 14] show some link be-
tween service effectiveness and service allocation, these frameworks will govern the
measure of QoE in this paper.

IoT itself can simply be viewed as clusters of networks, specifically intranets that
are interconnected. The heterogeneity of IoT earns a “significant challenge for the
edge cloud to effectively allocate multidimensional limited resources (CPU, memory,
storage, bandwidth, etc.) with constraints of applications’ quality of service (QoS)
requirements” [5]. This heterogeneous nature has incurred a classification of its re-
sources by researchers, a classification of focus is the classification by [2] where “one
type of resource corresponds to nodes/things, including the computational resources,
storage capacity, and energy resources” and the other type “is the resources corre-
sponding to the communication channel or the network resources, including channel
bandwidth, load balancer, and traffic analyser”. [5] developed a novel framework
named DeepEdge that allocates resources to the heterogeneous IoT applications
with the goal of maximizing users’ quality of experience (QoE). They achieve this
by developing a QoE model that considers aligning the heterogeneous requirements
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of IoT applications to the available edge resources and a Q-value (Quality-value)
approximation approach to tackle the large space problem of Edge-IoT.

Q-value approximation approach provides a means to control the positive false
discovery rate, as Q-values are an estimation of the positive of taking a course of
action at point X. The Q factor, a dimensionless parameter, will be the backbone
for the proposed generic framework for measuring the QoE of IoT-based services,
as depicted in the work of [14], the parameter was further broken into five major
steps, specifically: Defining the IoT services and formulating the QoE; Defining the
users who implement IoT services; Mean Opinion Score (MOS) survey to indicate
the level of the Absolute Category Rating with Hidden Reference (ACR-HR) score;
Calculating Differential MOS (DMOS) as the ACR-HR value scale; and Develop-
ing strategic implications. Li and Xu in [2] suggest that wireless sensor networks
(WSNs) have recently emerged as a platform for several applications, they further
suggest that a major problem with WSNs is limited bandwidth. Resource optimiza-
tion, a term used more frequently in recent research concerning IoT has multiple
approaches. These approaches inadvertently have effect on the enterprise architec-
ture, most especially architectures for service-based IoT systems [2]. The resource
optimization terrain comes with various complications for the resource allocation
and scheduling algorithms. Load balancing, one of the key strategies for improving
system performance and resource utilization in distributed and parallel computing,
can be divided into two categories: Static Load Balancing (SLB) and Dynamic Load
Balancing (DLB). SLB is achieved when the load can be determined and divided
by a certain method before execution, whereas DLB is achieved if the system load
requires monitoring, and dynamically adjusting while executing [15].

2.2 Motivation and Lapses

The Internet over the years has experienced massive evolutionary trends that have
associated the cloud with devices – intelligent devices. This evolution makes cross
cultural communication and instant indulgence a norm; these and the ability to
control activities directly and/or indirectly as well as automation of daily routines
with the aid of intelligent devices connected to actuators and sensors have inadver-
tently made the world an amazingly comfortable tiny global village. This current
invention’s bonus to our society does however have its lapses – security, excess com-
putational overhead, scalability, latency and many others. “IoT devices are known
to be constraint devices in terms of power, cost, and size. With constraints in
place, maintaining security is a challenge” [16]. “Traditional security solutions and
protocols cannot be implemented well in IoT specific environment that is typically
constrained by limited computing and power resources” [17], furthermore, the het-
erogeneous nature of IoT devices as well as resources, various perception-action and
widely distributed devices and computing resources are other factors that influence
IoT based systems. The heterogenous and widely distributed nature of IoT neces-
sitates a topology that accommodates its attributes to ensure an optimized IoT.
An optimized IoT will be a sturdy foundation on which security can ride.
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3 SYSTEM DESCRIPTION AND MODEL

This section gives a description of the proposed system, highlighting the frame-
work. The intended system is made up of four major entities, where each entity
is inter-connected with easy access for all processes. The first entity is the client –
comprising of the edge node and the Cluster Heads (CH): the edge nodes are IoT
devices that are assigned services, they are made up of varying storage, processing,
and computational capacity. The CHs are responsible for sending and receiving
tasks/requests, they can communicate with all nodes and local servers; the second
entity comprises the service, these are software, that perform required tasks (threads,
processes, data flows, etc.), responding to hardware events and/or listens for data
requests from other software; the third is the server: they are programs or hardware
that provide services and processes that are specified response to requests made by
the clients. The CHs and servers form the Dew layer; finally, the cloud makes the
fourth and is to some extent intertwined with the third entity as they are remote
servers responsible for producing services.

The algorithm regulating the functionality of the proposed system is a hybrid
algorithm tagged (RR-RB): unifying a static and dynamic algorithm to allow the
best of both worlds, the two unified algorithms are the:

• Static algorithm: Round Robin (RR),

• Dynamic algorithm: Resource based (RB).

The proposed topology is a three-tiered model which minimises the number of con-
nections made by individual nodes. The major layers in a bottom-up fashion are:

• Edge node (IoT devices) layer – first layer: Made up of IoT devices, also referred
to as edge nodes. At this layer, user interaction occurs.

• Dew layer – second layer: Made up of designated cluster heads, these cluster
heads communicate with each other, edge nodes and servers/resources.

• Cloud layer – third layer: Constituting cloud servers, they communicate with
each other and cluster heads as peers.

Figure 2 gives a pictorial representation of the proposed system. Due to the
dynamic nature of nodes within an IoT system, the CHs have been carved out
to tackle the issue of latency and redundancy by creating and storing paths of
frequency and recency, this singular step will abate the unnecessary time required
in producing a pathway each time a service is prompted, or a request is made. These
cluster heads will also be saddled with the task of adding and removing paths from
memory. Following is a breakdown of all the properties and plausible interactions
that each entity is charged with. This breakdown has been categorised into three
main phases: the classification, where all IoT devices are classified as either edge
nodes or cluster heads and activities are classified as either tasks or resources; the
resource allocation and scheduling, governed by the hybrid load balancing algorithm;
and the communication between all nodes involved.
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Figure 2. Model architecture

3.1 Classification

Node Classification. At the Edge Node layer, the classification of all nodes sim-
ply divides the nodes into two categories: the edge nodes or cluster heads. Assume
there are N nodes, let N = {n1, n2, . . . , nnum} denote the set of all edge nodes in
the system where num is the total number of edge nodes and CHn ⊆ N is the set
of cluster heads. At the Dew and Cloud layers: let S = {s1, s2, . . . , sn} denote all
servers and ESn ⊆ S be the set of edge servers. Each node ni, si, esi has storage
capacity Sti and computing power Ci (i.e., the number of hash operations per unit
time), where ni, chi, si, esi, sti, ci respectively represent the ith node, cluster head,
server, edge server, storage capacity and computational power; i = 1, 2, . . . , n.

For a node to be considered the CH, it must, at the time of designation, be
free and unsaddled with workload or responsibilities and have high storage and
computational capacity in comparison to all other nodes. The CH may or may not
be the requester of a given service at a given time. Given the circumstance, the
CH is then encumbered with the responsibility of providing the edge node with the
necessary information from its archive required for task completion for the node of
contention. The CH and the edge servers create the Dew layer, at this layer, the
nodes and servers communicate as peers. At the initialization stage, the nodes at



1432 D.D. Datiri, M. Li

Algorithm 1

1: Initialize: NEdgeNode = NClusterHead = ∅,
minimum space required for storing blockchain: stmin,
time constraint for mining: tM ,
minimum computation required for mining: cMmin;
2: for ni ∈ N do
3: if Sti ≥ stmin and tM · Ci ≥ cMmin then
4: ni → NClusterHead;
5: else
6: ni → NEdgeNode;
7: end if
8: end for
9: Output NEdgeNode, NClusterHead

Table 1. Node classification

the Edge Node (first) level can communicate with each other, however, only the
CH can interact with the servers, this is to ensure that the traffic is controlled,
lighter, and bottleneck is minimal. The CH will be able to key into predetermined
paths, centred on the frequency of requests and consequently rate of recurrence of
traversing a given path.

Task or Resource Classification. An effective resource allocation strategy needs
to comprehensively consider several conditions: the load, network conditions of the
server at time t, and QoS parameters in order to effectively realise task classifica-
tion [12]. In the proposed model, each node n has T processing tasks, defined as
T = {t1, t2, . . . tn}, assigned to R resources also defined as R = {r1, r2, . . . , rm},
where ti represents the ith task; i = 1, 2, . . . , n and rj represents the jth resource;
j = 1, 2, . . . ,m.

The edge nodes may at a given time make some demands that do not require the
facilities of a resource, owing to the fact that such demands at the time of prompting
can be handled at the first/Edge Node layer. Therefore, for a demand from an edge
node to be considered a ’task’, the demand must require the facilities of a resource.
On the other hand, for a server to be considered a resource, it must at a given time
have all necessary functionalities to meet the demands made by the task.

3.2 Resource Allocation and Scheduling

Load balancing is key for efficiency of the proposed model. “The main reason
of introducing any load balancing algorithm is achieving scalability. Basically, it
means ability to increase system’s performance by extending the cluster with new
nodes” [18]. The concept of load balancing views resources as processors, it is not
bounded by medium or locality, and services can be accessed globally. Load bal-
ancing has two facets: allocation and scheduling. Allocation is usually the focus
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of most load balancing algorithms as it is viewed the most important. Resource
allocation allows for the addition and removal of virtual servers pending on the re-
sources needed, thereby eliminating problems associated with downtime creation.
Scheduling builds on that and assigns resources to tasks as it tackles the problem of
which resources needed to be allocated to the received task [19]. Load balancing al-
gorithms can be classified based on four major features: physical location of cluster
nodes; visibility in IP network; OSI model layer on which they operate; and static
or dynamic character [18].

In the proposed system, the balancing of resources/tasks is structured by the
hybrid algorithm, merging the static round-robin (RR) and dynamic resource-based
algorithm. By creating this hybrid, not only will there be an active use of feedback
from servers to make request distribution decisions, but also an expected low over-
head cost. Other advantages of using this hybrid include enhanced performance,
resilience, security, and scalability.

Efficient load balancing algorithms take into consideration the total execution
time and available resources, ensuring that there is no disruption of service and that
there is fast recovery, and extra allowance for fault tolerance. The RR algorithm,
when working with resources of equal value, depends on a rotation system to sort
traffic, by transferring tasks to the first available server, which is then placed at the
bottom of the queue. The resource-based algorithm, on the other hand, harnesses
a report of the current task and resource availability to make informative decisions,
directing the task to the best suited resource at a given time. The RR-RB therefore
aids in obtaining resource optimization.

The total task size TTS generated by N for execution has a transfer rate TR.
Q represents the quantum time, that is the time the scheduler allows for a task to
run. Assuming that the quantum time of the ith task in the jth resource is Q(i, j),
the task size is TS(i, j), and transfer rate is TR(i, j), then the turnaround time
(TAT) can be expressed as:

TAT =
TS(i, j)

TR(i, j)
×Q(i, j) (1)

where Q(i, j) is defined as:

Q =
TTS(i, j)

TR(i, j)
. (2)

And TTS is the Total Task Size, that is the summation of all tasks’ (ΣT) awaiting
resources. During resource allocation, at each node ni, chi, si, and esi, the data
size generated by task is prone to data redundancy Td. The measure of the data
redundancy is used

Td =

1, if Tdlower < Datanode,

0, else,
(3)

where Td is the device data redundancy. The upper limit, Tdupper, and the lower
limit, Tdlower, can be obtained from the underlying edge node.
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3.3 Communication

At the layers, it is assumed that all nodes (ni, si, and esi) must communicate with
CHs. Therefore, for each case of the load balancing when allocating and scheduling
resources, the total cost of communications (Tc) must be calculated.

Tc =

∑|V g |
j=1

(
drjXdg

)
P

(4)

where |Vg| is the total number of cluster heads, drj is the total cost of transferring

data between ith cluster head and all resources connected to it, dg is the total cost of
communication between cluster heads, and P is the total value of penalty considered
for balancing. Equations (5), (6), (7) and (8) further elaborate each sub-component
found in Equation (4):

drj =

|V j
g |∑

k=1

εjk (5)

where εjk is the cost of communication between jth cluster head and all resources
connected to it.

∣∣V j
g

∣∣ is the number of connected resources to cluster head j.

dg =

|Vg |∑
i=1

|Vg |∑
j=1
j ̸=1

lij (6)

where lij is the cost of communication between servers i and j.

P = 1 +

|Vg |∑
i=1

Pi (7)

where Pi is the penalty for the ith cluster head. The value of Pi is calculated as
follows:

Pi =

1, if gti ≤ ϵ Vr|
|V g |

,

0, if gti > ϵ
|V r|
|V g |

.
(8)

In which, gti is the number of resources assigned to cluster head i, |Vr| is the number
of resources and ϵ is a constant number.

4 ALGORITHM AND IMPLEMENTATION

The following section looks intently at the algorithm and implementation of the
proposed model.
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4.1 Algorithm of Proposed System

Load balancing algorithms migrate Virtual Machines (VM) between hosts in order
to balance host loads. Migrated VMs experience performance degradation which
results in lower quality of service (QoS) and can possibly result in Service Level
Agreement Violations (SLAV). Hence, an optimal load balancing method should
reduce the number of over- and under-utilized hosts with a minimal number of
VM migrations [20]. In the proposed model, the host nodes requesting for re-
sources are allocated VMs by a time-shared policy. The use of the RR-RB hy-
brid algorithm works diligently to achieve optimization by taking into consideration
the total execution time and available resources, ensuring that there is no inter-
ruption of service and that there is quick recovery, and surplus margin for fault
tolerance. The RR algorithm, considered the most optimal algorithm amongst
several algorithms, is used for scheduling in the CPU and can be implemented
to schedule the processes in real time. RR’s attribute of scheduling resources in
real time and its ability to allocate requests to a list of resources via the DNS
were harnessed in the proposed algorithm, thereby ensuring that all task schedul-
ing occurs in real time and tasks are sent directly to allocated resources. RB,
a dynamic load balancing algorithm, on the other hand, allocates load based on
what resources each server has available at the given time. Specialized software
(called an “agent”) running on each server measures that server’s available CPU
and memory, and the load balancer queries the agent before distributing traffic
to that server. RB’s ability to allocate resources to tasks dynamically based on
available resources at any given time was used and incorporated into the proposed
model.

The intended model’s ability to apply aspects of both algorithms allows for the
allocation of resources to tasks based on resource/server rates and request/task size
as well as scheduling of resources in real time, thus eliminating the tendency to
under or over utilize resources. Given that, the essence of this system is to tackle
scalability, and latency issues that give rise to computational overheads, the struc-
ture of the proposed model enables this to be met, whilst taking into consideration
QoE and QoS. The RR-RB algorithm significantly reduces, almost eliminates, the
vulnerability of resource competition by controlling the number of connections as
well as over-utilization of hosts. This step ensures performance interference and
subsequently degradation leading to bandwidth congestion, increase in network la-
tency and the likes are tackled. The proposed RR-RB algorithm places equal im-
portance on resource allocation and scheduling; allocation of the tasks to proces-
sors, and scheduling of the tasks allocated to a processor are conducted in each
case.

Algorithm 2 depicted in Table 2 shows how the proposed system functions, nodes
requesting services/resources are allocated resources that have a larger or equal size
and capacity for optimal processing. For a resource to be allocated, its size and
capacity must surpass or equal the request/task size.
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Algorithm 2

1: Initialize: N = T = R = ∅ Task size: TS, resource size: RS;
2: for ni ∈ N do
3: if ri ≥ tj and rsi ≥ tsj then
4: ni → R;
5: else
6: ni → i++;
7: end if
8: end for
9: Output: Optimized resource allocation.

Table 2. Proposed system resource allocation algorithm

4.2 Implementation

Recently, multiple work on resource allocation have been put forward and there
appears to be a plethora of algorithms to choose from. In a bid to make the simula-
tion as close to reality as possible, the dataset is a collection of random tasks with
varying sizes – ranging from 1 to 140, with the number of resources set at 5. This
emulates how resource allocation can be manipulated with limited resources. The
major parameters that will be used to generate results are time, data transmission
rate and size. Table 3 shows a breakdown of the previously mentioned parameters.

Parameter Metric

Time Quantum time (ms)
Execution time (ms)
Turnaround time (ms)

Data transmission rate Sever rate (kb at every ms)
Transfer rate (kbs−1)

Size Task size (kb)
Total task size (kb)
Resource capacity

Table 3. Parameter-metric

The proposed system was simulated in the MATLAB environment, and it is
assumed that the following are known: the number of servers/resources; the pro-
cessing power of each server; and the request size. By developing this model, the
unrealistic expectations, especially for large scale IoT, are resolvable.

Two objects were created: the nodes and servers. The nodes have the attributes:
size of requests and turnaround time – time it takes for the request to be managed.
The server has the transfer rate, measured in milliseconds (ms) – and the number of
requests it can manage at any given time. Each servers’ performance will be judged
based on how they carried out assigned requests, however, the system’s performance
will be the turnaround time for all requests processed. Each item in the edge node
will be added to a server with iteration set at 20. Each CH interacting with a server
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pending on initiated requests of any kind, computes the time it takes for each request
to be processed, that is from request initiation to completion of task. The output is
collated to checkmate server’s performance. This crucial step allows for appropriate
allocation of resources, thus an efficient output, making QoS and QoE palpable. The
handling of resources by the server via the edge nodes follows a one-to-one mapping
and it is expected that any additional technique added to load balancing should
reveal a level of improvement.

At the Edge Node (first) layer, the RR-RB algorithm is used to publish how
many available resources can be spared at a given time as well as the resource
computing power, these information are provided to the CHs by edge nodes after
completion of a request. The CH stores and utilizes this information as well as the
request/task size from incoming edge nodes for appropriate resource allocation. By
declaring the performance level of each server of interest, for instance, how many
requests a server can address at any given time and showing the performance of the
server in relation to the load handled at a given time as oppose just focusing on the
overall performance, the RR-RB algorithm ensures a reduction of overhead costs. If
a node is being served, it will have a record of both the best and worst case, this
information stored in the CH will be provided.

The three major instances for consideration after implementations are:

• Load balancing based on number of tasks (requests), as depicted in Figure 3:
where nodes are assigned servers randomly whilst considering number of tasks
awaiting resources;

• Applying load balancing but focusing on the task’s size: here, allocation is
dependent on the size of the request made by the node, this is portrayed in
Figure 4;

• Comparing the results of resources allocated based on number of tasks (Figure 3)
and resource allocated based on task size (Figure 4), as shown in Figures 5 and 6.

A fourth instance where results of the proposed model will be compared with an
existing algorithm, as depicted in Figures 7 and 8, will be presented.

These simulated instances thereby enable the analysis of data to produce an out-
put of several graphs and charts that show consistent improvement of resource
optimization as a result of the simulated load balancing technique as well as the
superiority of the proposed model over an existing model.

5 EXPERIMENTS AND ANALYSIS

This section elaborates the results obtained, giving evaluations on the performance
of the proposed algorithms under various conditions and setups, as well as comparing
with existing works.
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5.1 Analysis of Proposed System

The experiment outputs three main test scenarios/selection criterion as well as com-
parison of existing approaches. All simulated scenarios maintain the same dataset
and have a bottom-up approach. After analysis and comparisons are made, sugges-
tions for future work will be proffered.

The output of Figure 3 expresses the simulation imitating the existing sys-
tem (random allocation), one where any request/task can be assigned to any re-
source, without any form of optimization technique. Here, each task/request is
randomly assigned to a resource/server regardless of the task size and resource ca-
pacity. The optimized allocation however, considers the server/resource capacity
as well as the number of tasks requiring resources, each node that sends a request
will be assigned to an available and appropriate resource. The outcome of Figure 3
shows the immense improvement when aspects of resource allocation are applied.
This implies that resources allocation can positively influence a more efficient sys-
tem.

 

Figure 3. Load balancing based on number of tasks (requests)

Taking a further step to make the optimization techniques even more efficient,
the task/request size is taken into consideration in the comparisons made in Figure 4,
as oppose Figure 3’s approach where the task/request size is not considered. The
task/request size measured in bytes is the dimension of the task requiring a resource
at any given time. This comparison of random resource allocation and allocation
based on request size shows that once the size of the task is known in conjunction
with the rate at which a server processes, tasks can be assigned and allocated to an
appropriate resource. This is made possible by accessing records stored in the CH of
previous turnaround time, paths of frequency and recency, by nodes answerable to
the CH, thereby ensuring that resource allocation is balanced and not random. By
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Figure 4. Load balancing based on task (request) size

allocating resources based on task’s size, the problem of straining a resource that
has higher capacity when there are equally capable resources with lesser capacity is
evaded.

 

Figure 5. Comparison of load balancing based on number of tasks (requests) and task
(request) size

The evident improvement, as depicted in Figures 3 and 4, makes the optimized
allocations and the optimized allocation based on request size appear flat planed
with TATs closer to zero as oppose the large TAT (17 000ms) of random allocation.
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Figure 6. Comparison of load balancing based on random allocation, number of tasks
(requests) and task (request) size

The huge gap in TAT of the compared algorithms in Figures 3 and 4 do not give
room for a detailed representation of optimized allocations’ outputs. However, when
compared with more optimized algorithms, as represented in Figures 5, 6, 7 and 8
the evident fluctuations of the optimized approaches are seen, this is due to the
TATs of the compared algorithms being significantly closer.

The pictorial representation in Figures 5 and 6 highlights the need to con-
sider the task size over the number of requests when allocating tasks to resources,
as it shows how optimization based on request size is relatively more efficient.
Consider a scenario where server A has transmission capacity of 200Gbps and
server B has transmission capacity of 100Gbps, given the capacity of these re-
sources, when optimizing based on number of tasks/requests, there is a tendency
to saddle server A with more tasks than server B. This leaves server A strained
and prone to down time. However, when optimizing based on task size, the task is
assigned to the sever with sufficient capacity, thus resulting in efficient processing
and optimized TAT. Although, at certain points, as seen in Figure 6, random al-
location produces a better TAT as oppose the optimized algorithms, it suffices to
say that the consistency of that occurring, especially for larger task sizes is mini-
mal.

5.2 Comparisons of Proposed System and Existing Systems

Multiple approaches have been put forward as solutions for tackling resource alloca-
tion problems in IoT: from genetic algorithm approach to the newer metaheuristic
approach. Ant colony optimization, a probabilistic technique for solving nondeter-
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Figure 7. Comparison turnaround time by different methods

ministic problems is a population-based meta-heuristic optimization method that
finds shortest paths. The apparent similarities of ant colony to the proposed model,
as oppose particle swarm optimization and genetic algorithms, given that the pro-
posed system also tries to find the best/shortest path after harnessing information
about paths of frequency and recency stored in the CH led to comparison of the

 

Figure 8. Comparison turnaround time by different methods (bar chart)
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proposed system with parameters found in [12]. Employing the parameters of the
proposed model and comparing with existing approach in [12] will provide clarifica-
tion as to the effectiveness of the proposed system.

The pictorial results as indicated in Figures 7 and 8 concomitantly show com-
parisons of an existing model with the proposed model. From the results, it is
evident that after applying the ant colony algorithm on the same dataset used
for the proposed system, the proposed system’s algorithm largely performs bet-
ter, especially for larger requests/task sizes. It suffices to say that although certain
parameters are controlled, the random nature of task size cannot be controlled,
hence, although there is a slight dip in the pattern of TAT at task sizes between
65 and 93, as depicted in Figures 7 and 8, the results reflect a real-life situation.
The focus here is on how efficiently these resources are used and how situations
such as bottleneck can be avoided. The model so far indicates that resource op-
timization based on the proposed system is plausible and generally more effec-
tive than the ant colony approach. The results further show that having prior
knowledge of resource availability and task size have better outcome than allo-
cating resources based on the rate of task completion. In Figure 7, the TAT of
both the ant colony and optimized allocation based on request size are closer to
zero as oppose that of random allocation, as depicted in Figures 3 and 4, thus
the TAT representation is more focused, therefore the apparent fluctuations are
noticed.

6 CONCLUSION

Related works indicate that using genetic algorithms produce better solutions, how-
ever, this approach does not scale well with complexities. Given that IoT has a ten-
dency to grow in complexity with an increase in size, resultant of its centralised
topology, the designed and developed model is proffered to tackle the aforemen-
tioned problems by decentralising the IoT topology, thereby drastically reducing
complexities. A hybrid approach combining verified server resources and dynamic
allocation produces more optimal outputs than the existing ant colony methodology,
once the right task is assigned to the right resource, an optimized turnaround time
(TAT) is inevitable. An efficient execution time implies an excellent TAT, and an
improved TAT would have a waterfall effect on the QoE and QoS. The decentralising
of IoT’s topology, however, has its own challenges, as the implementation procedure
is not straightforward and comes with concerns over processing power and storage
capabilities, moreso, security and privacy risks remain a concern, as the network is
based on sharing data and tasks between nodes. Given the results presented after
implementation of the proposed model, future research can build on the developed
model by:

• Utilizing clustering algorithms at the Edge Node layer to further improve the
TAT;
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• Introducing more optimized concepts that will enhance IoT security; and

• Applying the proposed model to an actual environment for testing.
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