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Abstract. In order to eliminate the hidden dangers caused by tire bubble defects,
considering that the two-dimensional technology is sensitive to light, the 3D point
cloud technology is used to obtain the tire surface morphology. This paper proposes
a 3D point cloud network model named PointVotes, a point based target detection
method. The designed structural framework includes: the fusion sampling layer, the
voting layer and the proposal refinement layer. By observing the spatial character-
istics of the detected target, a new point sampling method named C-farthest point
sampling (C-FPS) is proposed. Combining with the fusion sampling strategy, the
FPS and the C-FPS are sampled in a certain proportion. It solves the problem that
the proposal box cannot be generated due to less available prospect information
when generating suggestions for small targets. The network model uses Set Ab-
straction layers in multiple PointNet++ to extract features, arranges and combines
features of different scales, forms high-dimensional features of points and votes,
judges whether there are bubble defects through classification, and then generates
proposals and regression to the prediction frame. Experiment results show that
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the mean average precision of the model can reach 82.8% with a detection time of
0.12 s.

Keywords: 3D point cloud, target detection, point sampling method, neural net-
work, vote

1 INTRODUCTION

In recent years, 3D point cloud technology has become a more and more important
element in the field of computer vision, it has been applied in many directions, es-
pecially in auto driving scenes and target detection. Compared with 2D technology,
3D point cloud has natural advantages in expressing the whole picture of the target,
which is insensitive to illumination changes and has good robustness. Its accuracy
is directly determined by the point cloud sensor.

The structure of automobile tire is complex. The bubble defects shall be eas-
ily produced due to the influence of materials and production technology in the
formation process. As shown in Figure 1, its existence will seriously endanger the
driving safety of automobiles, thus it must be eliminated in time. Considering the
advantages of 3D point cloud, Kinect 2.0 is used as a sensor to obtain the dense
point cloud of the target. The difference between point cloud and image lies in the
irregularity of point cloud, which makes the traditional convolutional neural network
(CNN) unable to deal with point cloud directly. However, current point cloud pro-
cessing methods, whether voxel, volume, mesh or Bird’s Eye View (BEV), have the
phenomenon of synthesizing local point areas into one point. Although these meth-
ods can generate proposals for targets with the help of Region Proposal Network
(RPN) in real time, these methods will lose local information and are not obvious
in some places with subtle spatial changes. Therefore, they are not conducive to the
detection of small targets. Herein, the point-based method is used to make up for
the local information and avoid the loss of information.

Figure 1. Schematic diagram of tire bubble defect

Inspired by [1], this paper proposes a defect detection method using 3D point
cloud named PointVotes. It can directly process the original point cloud, extract the
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final center point, arrange and combine the features of different scales and vote to
predict the possible defects. By observing the spatial characteristics of the detected
targets, a new point sampling method named C-farthest point sampling (C-FPS)
is proposed. Combining with the fusion sampling strategy, the FPS and C-FPS
are sampled in a certain proportion, which solves the problem that the proposal
box cannot be generated due to the less available foreground information of small
targets when generating suggestions. The Set Abstraction (SA) layer in multiple
PointNet++ is used to extract features, arrange and combine the features of differ-
ent scales to form the high-dimensional features of points, and to vote, group and
propose the cluster points after voting.

The main contributions of the paper are as follows.

1. PointVotes samples the point cloud geometry to preserve the edge points of the
defect.

2. Unlike voxels or BEV, PointVotes can save the local feature information of the
point cloud and indirectly increase its detection accuracy by directly operating
the original point cloud. Compared with other networks, it has a good effect on
detecting target defects in self-made data sets, and its detection time reaches
0.12 s.

The rest of the paper is organized as follows. Section 2 introduces a number of
related works. Section 3 presents the PointVotes network architecture and details
the implementations of the components. Section 4 validates the proposed work and
describes the experimental settings and results. Section 5 concludes the paper.

2 RELATED WORK

The target detection network can be divided into one stage and two stages. Com-
pared with the first stage, the second stage has more selection and regression of
the proposal box, while the first stage is usually the direct prediction result, so the
detection accuracy of the second stage is higher than the first stage. At present,
the target detection network is mostly used in traffic, furniture and other directions,
and this paper uses the self created data set for bubble defect target detection.

Although the accuracy of convolution is similar to that of 2D image, it is also
more complex than that of 3D image. In 2014, RCNN [2], as a pioneering work,
applies convolutional neural network to extract the features of 2D images. Fast
RCNN [3] proposes feature pooling to realize the end-to-end training process and
greatly improves the training speed. Later, the faster RCNN [4] improves the detec-
tion speed to achieve real-time detection. In particular, the RPN network proposed
by fast RCNN also has many applications in target detection of 3D point cloud, and
can even be used as the basis of two-stage target detection.

At present, 3D target detection can be roughly divided into the following cate-
gories.
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1. Point based methods. PointNet [5] solves the difficult problems of point cloud,
and PointNet++ [6] adds the extraction of local features as an improvement
of PointNet. Then PointNet and PointNet++ are widely used in various point
cloud models. VoteNet uses the SA layer as the backbone to generate central
points and vote, and groups the voted points to form clusters for generating
suggestions. It has good results in ScanNet [7] and SUN RGB-D [8] data sets.
PointRCNN [9] first separates the foreground and background of the point cloud,
standardizes the coordinates of each local point, and completes the refinement
of the bounding box in combination with the global features. As a single-stage
detector, 3DSSD [10] takes PointNet++ as the backbone layer and uses im-
proved SA layer fusion sampling to replace the removed FP layer, which greatly
improves the detection speed on the premise of considerable performance. The
sampling strategy of StarNet [11] is different from that before. When selecting
the center point, it only generates two-dimensional center point coordinates in
a Z-dimensional plane. PointConv [12] regards the weight of convolution kernel
as a continuous function, and constructs convolution network by combining local
coordinates, density and input characteristics of points. ELF-Net [13] proposes
Local Points Encoding Module (LPEM), which is used to encode the information
of eight orientations and 3D coordinate information of local points.

Point based method is a direct point cloud processing algorithm, which is also
a more widely used method. Its core is to directly operate the local and global
features of points and better retain the detailed information. This study is also
designed based on point clouds and voting to detect the target.

2. Voxel or mesh based method. In this method, all point clouds are divided into
a voxel or three-dimensional grid, and then detected by CNN. As a classic work
of voxel target detection, literature [14] proposed the characteristics of voxels
encoded in VFE layer and combined with RPN to generate detection. STD [15]
and SECOND [16] also use VFE to encode voxels. Literature [17] applies CNN
to voxels, and the weight of the voting mechanism is obtained from the weight
of flip convolution, while document [18] votes on the divided grid in the form of
sliding window. PV-RCNN [19] down sampled 1/16 of voxels to obtain the char-
acteristics of each stage and aggregated the characteristics in combination with
BEV, while literature [20] down sampled only 1/8. PointPillars [21] represented
the point cloud with pillars, stacked the sparse pillars to form dense pillars, and
used efficient 2D convolution operation. However, whether it is voxel, volume
or mesh, the local regional features of points will be lost, which will reduce the
detection accuracy. EPC-Net [22] proposes a lightweight network module to
aggregate the local geometric features for lower memory consumption. GSV-
NET [23] converts the regions of the 3D point cloud into color representation
and captures region features with a 2D wide-inception network.

3. Method based on aerial view. BirdNet [24] generates the BEV view from the
point cloud. The maximum height of the midpoint of each grid represents the
height information. The down sampling method is similar to PV-RCNN [19]
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and PIXOR [25]. YOLO3D [26] takes the BEV diagram as the input to es-
tablish the height and density of a grid containing point. However, the disad-
vantage of this method is that the generation of BEV will lead to a large loss
of Z-dimensional information, which will reduce the network performance. Lit-
erature [27] also projects the preprocessed point cloud onto a 2D surface and
generates masks.

4. Method of combining RGB image and point cloud. Literature [28, 29, 30, 31]
combines the feature information obtained by 2D detector in RGB image with
BEV representation or original 3D point cloud to generate suggestions, so as
to save the detection time. Literature [32] transforms 3D point cloud into
front view and aerial view as input and convoluted to extract features. Lit-
erature [33] adopts multiple views and adds the mlpconv layer to obtain the
characteristics of the object. This method may cause loss in the process of
combining 2D and 3D, and taking into account RGB image and point cloud
at the same time will inevitably lead to the decline of detection speed. Liter-
ature [34] fuses the point cloud and RGB image, and voxelizes the raw point
cloud which can form a frustum. Literature [35] uses Res2Net to extract the
features from multiple 2D views and achieves higher classfication accuracy and
better performance.

3 NETWORK FRAME

As shown in Figure 2, the PointVotes architecture described in this paper is mainly
composed of three parts: the fusion sampling layer, the point voting layer and the
proposal and refinement layer. Fusion sampling uses SA layer to sample under the
point cloud, and uses different sampling methods to sample according to a certain
proportion, so that some front scenic spots can be retained. The voting layer ar-
ranges different scale characteristics of the points, votes and groups each central
point. The last part is the generation of proposals and the regression of the predic-
tion box.

3.1 Fusion Layer

As mentioned in Section 2, most of the steps of the point-based method include the
process of proposal generation and box refinement. In this study, the SA layer in
PointNet++ is used as the backbone to sample the original point cloud and obtain
feature information. An SA layer includes feature point sampling, grouping and
local feature extraction (PointNet).

The common point cloud sampling method is the farthest point sampling (FPS),
which is a uniform sampling method. Although some local information can be
retained, the sampling effect is general for places with curvature. Moreover, since
the detection defect target in this paper is small, FPS may take less front scenic
spots, which will result in poor detection effect. Therefore, this paper proposes
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Figure 2. Schematic diagram of PointVotes network model

a sampling method, named C-farthest point sampling (C-FPS), based on curvature
features extracting in Euclidean space, which can effectively retain the front scenic
spots with small detection targets.

In the Euclidean space, Ns represents neighborhood with s number of points at
point Ni, i ∈ R of point cloud, the surface normal vector at point Ni is vi, point
xj represents other points in the neighborhood, and its surface normal vector is vj.

Then the equation can be expressed as θ(i, j) = a cos
(

vivj
||vi||||vj ||

)
, θ(i, j) ∈ (0, π).

As shown in Figure 3, when there are no defects on the surface of the point cloud,
the normal vector of each point will be parallel and the included angle will be 0°
in the ideal state. When there is a defect on the surface of the point cloud, the
value of part θ(i, j) will change in the edge neighborhood of the defect. Setting the
threshold θ(i, j) to 10°, if the value exceeds the threshold, the point is regarded as
the front scenic spot; else if the value is less than the threshold, it will be regarded
as the background point. Therefore, the points in each neighborhood with such
characteristics can be retained, which will greatly increase the number of foreground
points in the example, remove a large number of useless background points, and
provide favorable conditions for subsequent detection.

However, if all C-FPS are used to sample the point cloud, a large number of
front scenic spots will be concentrated in the target area, and duplicate proposal
boxes will be generated in a small range, which will result in reduced accuracy and
efficiency. In order to obtain sufficient points in the sampling process, this work uses
the fusion sampling strategy to collect a certain proportion of points in the sampling
layer of SA by FPS and the proposed C-FPS, as shown in Equation (1).
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Figure 3. Arrangement diagram of normal and bubble defects

Ntotal = λNC-FPS + βNFPSλ+ β = 1 (1)

where Ntotal represents total number of points, NC-FPS and NFPS represent the set of
points extracted using the methods of C-FPS and FPS, respectively, λ and β rep-
resent the corresponding sampling proportion. This method preserves more front
spots for smaller target detection, thus has enough background points for classifica-
tion, and does not use FP layer to preserve front spots. Furthermore, it can provide
the sampled points as input to subsequent grouping steps. Generally speaking, the
problem of large gap between foreground and background points due to small de-
tection targets still exists. This study uses the focus loss function [36] to balance
the gap between the number of points.

In this paper, the feature extraction of the input point cloud is completed with
the help of multi-layer perceptron. After completing the C-P fusion sampling, the
density and other features of Nn

2
number of points are added. The density char-

acteristics are estimated by kernel density, which is represented by Nn

2
× 1. Other

features of points are represented by Nn

2
× C.

Considering that the number of each group of point clouds in the data set is
about 24 000, and the number of corresponding annotation box points is about 200,
1/20 of the original point number is initially taken as the network input, which
is the ratio of the number of points included in the detection target to the total
number of points. In order to make up for the shortage of former scenic spots as
much as possible, set an appropriate number of SA layers to 3, as shown in Table 1.
Table 2 shows the comparison between four layers of SA and three layers of SA.
When n = 4, the parameters increase, thus the running time and training time also
increase accordingly, and the mean average precision (mAP) is also higher than that
of n = 3.

The input point cloud can be expressed as N × 3. Let λ = β = 1/2, that is, half
quantity points are used for FPS and C-FPS respectively. After the first feature
extraction in the C-P fusion sampling layer, the outputs of the two methods are
expressed as N1

2
×C1 and

N1

2
×C

′
1, respectively, and half number of points are taken,
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SAn
Input Point Output Point

MLPn
Search

Feature Feature Radius/m

n = 1 about 24 000× 3 1 024× (3 + 256) (128, 128, 256) 0.01
n = 2 1 024× (3 + 256) 512× (3 + 512) (256, 256, 512) 0.02
n = 3 512× (3 + 512) 256× (3 + 512) (256, 256, 512) 0.04

Table 1. Parameters of SA layer

Number of Layers Running Time/s mAP/%

n = 3 0.12 82.80
n = 4 0.17 83.15

Table 2. Performance comparison of SA layers with different layers

respectively. After the second feature extraction, it can be expressed as N2

2
×C2 and

N2

2
×C

′
2, and half of the points are taken again. Until it passes through the nth feature

extraction layer, the output includes Nn points, which is composed of two parts. One
part is generated by FPS, represented by Nn

2
× Cn, and the other part is generated

by C-FPS, represented by Nn

2
× C

′
n. They use different sampling methods, so their

characteristics will be different. So use Cn and C
′
n to distinguish them. Therefore,

the final result consists of Nn

2
× C

′
n from GFE Branch and Nn

2
× (Cn + C + 1) from

LFE Branch.

3.2 Voting Layer of Points (PV Layer)

In order to ensure the detection accuracy and fully capture the local and global
features of points, this section arranges and combines the points after feature ex-
traction at different scales to form a new feature vector set (similar as [18]). Its
output is a feature oriented quantum set of n points. Each point in the subset will
correspond to a vote, and each vote will be voted through the MLP network. The
voting layer of points can be divided into two branches: the local feature branch
(LFE branch) and the global feature branch (GFE branch).

LFE branch consists of three parts to extract global features at different scales.

1. In this paper, parts of NFPS points and their characteristics after FPS sampling
are retained, and the output through the maximum pool layer is regarded as
a global feature. This global feature is added to the feature vector set as the
first part of the new feature vector set.

2. Due to the density change of the detected defect target in some local areas, this
paper adds the density feature of points and other features as the subsequent
part of the feature vector set. For the density features of points, the kernel
density is used to estimate the density features, and the density features and
other features are extracted into the vector set with the help of multi-layer
perception and maximum pooling operation.
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The function of GFE branch is to extract the points processed by C-FPS as
local features. After the original point cloud is processed in the SAn layer (multiple
SA layers) by using the fusion sampling strategy, a subset {xi|x ∈ (1, 2, . . . , n)}
and corresponding features processed by the C-FPS sampling method are obtained.
Taking this subset as the initial center point, the initial center point moves relatively
under the supervision of the loss function. This process is the same as VoteNet, it
can generate the final center points. These points will be output as local features
which shall be added in the LFE branch.

3.3 Refinement Layer

In the point cloud sampling process, even after the sampling process described in
Section 3.1, some points in the point cloud are not accurately located on the target
surface position they should represent, or even deviate far, and the existence of the
error will make some background points detected as front scenic spots. This error
point is called pseudo front scenic spot. This problem is caused due to the accuracy
error of the depth camera and the error caused by shooting factors, which results
in non-ideal position between the point clouds. In this situation, the proposal is
generated after voting, which undoubtedly does great harm to the detection results,
and detecting such pseudo defects in the point cloud without target defects will
seriously reduce the efficiency.

To solve this problem, the following methods are used. Since the detection type
of this paper is defect detection, the target is single. It belongs to two categories
of target detection. There are only bubble defects and background in the required
categories. In order to avoid generating and refining the proposal frame for each
collected 3D point cloud, and to save the detection time, this paper proposes a simple
method to judge whether there is a defective target in the frame point cloud, and
put the classification of the target object before the 3D box proposal. If the target
object is classified, then make the proposal and refinement, otherwise the process
will not take effect.

Firstly, the cluster points CP = {Ci, Fi}, i = 1, . . . , n and the centroid b of the
cluster points are defined. Among them, Ci ∈ R3 represents the coordinates of
cluster points and Fi ∈ R represents the characteristics of cluster points. If there
are defective targets in the point cloud, the number of cluster points generated
is much larger than that generated by the point cloud without defective targets.
Defining Ci − b and applying it to transform the cluster points into the centroid
local normalized coordinate system. Since the cluster points of defective targets
are relatively concentrated, taking the centroid as the center point, for Euclidean

space with defective targets, there exists ri =
∑i

n=1 ||Ci−b||
i

< r, which means that the
average value of the neighborhood point and the central point near the center point
is less than a threshold value r. However, the cluster points without defect targets
will irregularly disperse in the whole point cloud space, so there will be a small
amount of characteristics and a large ri.
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Figure 4. Schematic diagram of improved bounding box coding method

Each point in the cluster generates a 3D bounding box. Since it is relatively
complex to directly encode the eight corners of the bounding box, the coding method
of the bounding box needs to use the ground plane given by the sensor. The exper-
imental device in this paper is carried out on the cylinder, thus the ground plane
is a curved surface that cannot be given. We still use the method similar to [29] to
encode the four corners and two heights of the bounding box to reduce the high-
dimensional number to 10, as shown in Figure 4. The difference is that the two
heights refer to the distance from the upper and lower planes of the bounding box
to the sensor (it can be obtained by the sensor), and the four corners are the four
points of the upper plane of the bounding box, so the target to be regressed is
(x∗

1 ∼ x∗
4, y

∗
1 ∼ y∗4, l

∗
1, l

∗
2). The information useful to us is distinguished by comparing

the IoU (Intersection over Union) between the bounding box and the ground real
box. If the IoU is less than 0.4, it is considered as the background point; other if
the IoU is greater than 0.6, it is divided into the front scenic spot. For redundant
bounding boxes, 3DNMS is used to improve the accuracy.

3.4 Loss Function

After the 3D bounding box is proposed, the target to be regressed is seven parame-
ters such as (xµ, yµ, zµ, lµ, wµ, hµ, θµ), µ ∈ (g, a), where (x, y, z) represents the center
coordinate value of the box, (l, w, h) represents the size of the box, θ represents
the angle, the subscript g indicates the real box of the ground and the subscript a
indicates the bounding box. The regression residuals of the ground real box and
bounding box can be expressed as Equation (2).

∆x = xgt−xan

dan
, ∆y = ygt−yan

dan
, ∆z = zgt−zan

han ,

∆w = log wgt

wan , ∆l = log lgt

lan
, ∆h = log lgt

lan
,

∆θ = sin θgt − θan

(2)
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where dan =
√
(wa)2 + (la)2, the superscript gt is the real ground frame and the

superscript an is the bounding box. The regression residual loss of the two can be
expressed as: Lreg =

∑
(Smooth− L1(∆(x, y, z, l, w, h, θ)).

Due to the large difference between the number of foreground and background
points, the focus loss function is used in the classification loss, which can be ex-
pressed as: Lcls = −αan(1 − pan)

γ log pan, where pan is the category probability
of the bounding box. The target defect does not have azimuth requirements like
the vehicle, so the proportion of classification loss function is reduced to 0.001. In
addition, the corner loss is the Euclidean distance between the four corners on
the bounding frame and the GT box and the distance between the upper and
lower planes of the bounding frame and the sensor, so it can be expressed as
Lcorner =

∑4
i=1(||xi − xi||) +

∑2
j=1(li − li). The total loss function can be expressed

as Ltotal = Lreg + Lcls + Lcorner + Lvotenet.

4 EXPERIMENTAL DEVICE AND RESULTS

In order to establish bubble defect data set independently, the experimental device
shown in Figure 5 is built. The length and width of bubble defects vary from a few
millimeters to a few centimeters. In this paper, clay is used to simulate a variety
of bubble defects with different shapes, as shown in Figure 1, so as to maintain the
diversity of the data set. The computer configuration used in the experiment is:
GTX1660s-6GB, 16GB memory capacity.

The data set contains 2 500 samples. The data set is divided into training set
and test set, with a ratio of 9:1. The training set has 2 250 samples and the test set
has 250 samples. During the training process, the global parameters are as follows:
the sample batch size is 4, the maximum sample training times (epochs) is 210, and
the initial learning rate is set to 0.001.

In order to verify the quality of the proposed network model, this paper uses
indexes such as average precision (AP), mean average precision (mAP), recall and
average recall (AR) to evaluate the model, where precision is defined as: precision =
number of correct information extracted/number of information extracted; and re-
call is defined as: recall = number of correct information extracted/number of
information in the sample. Since the target detection classification described in this
paper only includes background and detection target, AP and mAP, recall and AR
have the same meaning. As shown in Table 3, when the IoU threshold is 0.3 and 0.6,
respectively, the model is evaluated every 10 times of training. When the thresholds
are different, there are some differences in the law of mAP. It can be seen that at
the beginning of training, mAP has a large shock between 10 to 20 and 40 to 50,
which can reach 30%. When the training times reach 70, there will be no large
shock, but a stable rise. After the training times reach 90, there will be a small
shock, which means that the performance of the model reaches the peak, and the
maximum shock value reaches 80%. The training times in the table fluctuate to
some extent before 50, and then rise steadily until it is stable. Through the ex-
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Training Times/Epochs
mAP/%

IoU Threshold of 0.3 IoU Threshold of 0.6

10 33.54 22.97
20 65.69 46.05
30 38.49 29.52
40 52.33 41.43
50 29.67 25.12
60 61.61 41.01
70 57.72 42.47
80 63.45 46.52
90 78.71 49.93

100 74.90 47.69
110 79.91 49.74
120 74.17 47.81
130 76.20 51.18
140 78.66 48.44
150 79.46 50.70
160 75.18 52.36
170 76.22 50.88
180 80.80 53.23
190 80.28 50.99
200 82.80 52.34
210 80.88 50.04

Table 3. Changes of mAP

perimental results, it can also be proved that a large learning rate will lead to the
oscillation of mAP, and with the continuous decline of learning rate, mAP also rises
steadily. As it can be seen from Table 4, the target AR decreases with the increase
of threshold.

IoU Threshold 0.3 0.6

AR/% 97.14 99.43

Table 4. Comparison of AR under different IoU thresholds

Figure 6 shows the change of loss function in the training process. The solid
line indicates the total loss value. The initial value is high. With the increase of
training times, the function value continues to decline, and there is a shock between
40–90 training times. After reaching the 100th training, the downward trend of
the loss function slows down and converges to about 0.01. The double solid line
indicates the size loss. The initial value is 0.02, which is slightly lower than the total
loss, and its trend is basically the same as the total loss. Without considering the
direction loss, it can be considered that the size loss guides the trend of the total
loss, and the value converges to 0.0078. The dotted line indicates the central loss,
which finally converges to 0.0003, and its value is about 1/10 of the total loss, so the
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Figure 5. Experimental device

trend fluctuation is not obvious. The average size of the sample frame marked in
the data set is (0.045, 0.047, 0.03). After training, the size loss accounts for 16–26%
of the average size, while the center loss accounts for 0.1–6.38%.

Figure 6. Variation trend of loss function in different training stages

Table 5 shows the performance comparison between the PointVotes network
model proposed in this paper and other point cloud models (including one-stage and
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two-stage algorithms). When the IoU threshold is 0.3, the mAP of PointVotes has
a high improvement of 16.08% comparing with MV3D, and has a small improvement
of 1.86% comparing with PointRCNN. When the IoU threshold is 0.6, the mAP
of this method is 8.36% higher than that of MV3D, but there is still a small gap
comparing with Voxel, PointRCNN and PointPiers. This is mainly due to PointVotes
adding C-FPS to the fusion sampling, so that the features in the foreground can be
fully captured. The processing time is 0.5 s faster than Vote3Deep, but 0.1 s slower
than PointPillars. By selecting an appropriate number of SA layers, the running
time can be stabilized at about 0.12 s. On the whole, PointVotes model still shows
good performance.

Methods 0.3 IoU 0.6 IoU Run Time/s

PointVotes 82.80 51.47 0.12
MV3D 66.72 43.11 0.33
Vote3Deep 69.43 48.38 0.62
Frustum 77.33 49.19 0.17
Joint3D 79.45 50.84 0.10
Voxel-FPN 81.35 52.05 0.03
PointRCNN 80.94 52.10 0.11
PointPillars 77.02 51.65 0.02

Table 5. Comparison of AR under different IoU thresholds

5 CONCLUSION

Compared with two-dimensional images, 3D point cloud has better robustness to
light and can more accurately express the appearance shape of tire bubble defects.
This paper proposed the PointVotes model, a defect detection method that can
directly process 3D point cloud and extract the features of different scales for group
merging and voting, to achieve the purpose of detecting bubble defects. By observing
the spatial structure characteristics of the target, the C-FPS method was proposed,
and it was sampled in proportion to the FPS to increase the foreground information.
Even small targets can generate a proposal box when generating suggestions. Before
generating the proposal box, they were classified and confirmed to have bubble
defects before proposal operation.

The designed structural framework can be divided into three parts: fusion sam-
pling layer, voting layer and proposal refinement layer. The SA layer in multiple
PointNet++ was used to extract features. The global and local features were ob-
tained by establishing LFE branches and GFE branches, and the features of dif-
ferent scales were arranged and combined to form the high-dimensional features of
points and vote, and then the cluster points after voting were grouped and pro-
posed.

In this paper, the performance of the training model was evaluated. Results show
that the network model has the following advantages. The essence of the network
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model is based on points, which completely retained local features, while adding
global features to improve the detection accuracy. Using the new sampling method
C-FPS, the edge position of bubble defects can be more accurately expressed, and the
appropriate evaluation interval was set to observe the training process of the network
model under different thresholds. The mAP can reach 82.8% with a detection time
of 0.12 s.
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