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Abstract. The scale of data shows an explosive growth trend, with wide use of
cloud storage. However, there are challenges such as network latency and energy
consumption. The emergence of edge computing brings data close to the edge of
the network, making it a good supplement to cloud computing. The spatiotempo-
ral characteristics of data have been largely ignored in studies of data placement
and storage optimization. To this end, a temperature matrix-based data placement
method using an improved Hungarian algorithm (TEMPLIH) is proposed in this
work. A temperature matrix is used to reflect the influence of data characteristics
on its placement. A data replica matrix selection algorithm based on temperature
matrix (RSA-TM) is proposed to meet latency requirements. Then, an improved
Hungarian algorithm based on replica matrix (IHA-RM) is proposed, which satisfies
the balance among the multiple goals of latency, cost, and load balancing. Com-
pared with other data placement strategies, experiments show that the proposed
method can effectively reduce the cost of data placement while meeting user ac-
cess latency requirements and maintaining a reasonable load balance between edge
servers. Further improvement is discussed and the idea of regional value is proposed.
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1 INTRODUCTION

Cloud computing has been a hot topic and development trend in recent years. Typi-
cally, data is uploaded to a cloud data center, whose powerful storage and computing
capabilities have met traditional business needs. However, with the development of
artificial intelligence and 5G technologies, powerful applications continue to appear
and the amount of data increases dramatically, which brings high requirements for
network latency. Therefore, edge computing is in great demand because it places
computing at or near the physical location of data source, enabling faster and more
reliable service.

From the perspective of application providers, centralized cloud computing
adapts with difficulty to accommodate frequent data interaction. It has become
increasingly powerless in terms of network latency, broadband load, and data man-
agement costs. Although there have been a large amount of studies regarding to
data placement and storage, the researchers have focused on improving the opti-
mization algorithm itself in terms of cost, availability and other QoS, and have
largely ignored the spatial and temporal characteristics of data. Goodchild [1] pro-
posed that both human and geographic elements have the inherent characteristics
of space, time, and attributes. For example, people in different regions have pref-
erences for different types of videos, and the video data can be reasonably stored
according to the users’ access habits. Most data in the real world have temporal
and spatial attributes, and some data properties also have spatiotemporal relevance
and variability. These characteristics have a significant impact on data placement in
cloud and edge computing environments, but the existing studies lack consideration
in this regard.

Therefore, in this study, we consider the temporal and spatial characteristics
to model and calculate the data, and combine the temperature matrix to select
the data replica that meets the latency. Then, an improved Hungarian algorithm
based on the cost matrix is used to reduce the cost of data placement while ensuring
reasonable load balancing.

This work makes four main contributions, which are as follows.

• The concept of data temperature and its calculation model is proposed. Then,
a data temperature matrix is constructed and used to optimize data placement;

• A data replica matrix selection algorithm based on temperature matrix (RSA-
TM) is proposed, which can generate a replica placement solution that meets
latency requirements;
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• An improved Hungarian algorithm based on data replica matrix (IHA-RM) is
proposed, which aims to optimize the cost and load balance of data placement,
while satisfying user latency needs;

• Data temperature is discussed and analyzed, and a new idea of regional value
based on temperature is proposed, which can further improve the optimization
effect.

The rest of the paper is organized as follows. Section 2 gives a review on related
work. Section 3 presents the system model and problem formulation. The proposed
method is introduced in detail in Section 4, and Section 5 provides experimental
evaluation. A further discussion and improvement based on a novel idea “regional
value” is provided in Section 6. Finally, Section 7 concludes the paper.

2 RELATED WORK

With the rapid increase in the amount of data and the number of users, the place-
ment of data not only needs to meet the high-quality service requirements of users,
but also consider the resource constraints in the real world. Existing researches
about data placement and storage focus on cost optimization, latency optimization,
and load balancing in the cloud computing environment.

Cloud computing has an on-demand usage model. Service providers hope to
reduce operating costs while satisfying user demands. According to the environ-
ments required for cloud storage, cost optimization can be studied for data place-
ment in single- and multi-cloud environments. Yuan et al. [2] proposed a cost-aware
strategy considering the trade-off between computing and storage costs according
to an intermediate data storage strategy. Single-cloud storage has risks such as
low data availability, vendor lock-in, and data privacy. Multi-cloud storage has
become a new trend. Yuan et al. [3] proposed an algorithm to find the best bal-
ance between bandwidth, storage, and computing costs in a multi-cloud environ-
ment, and to compute the minimum cost to store and regenerate a dataset. Wang
et al. [6] proposed an ant colony algorithm-based method to store data for users.
Cost and data availability are considered in their model. Wang et al. [4] defined
a multi-objective optimization problem for multi-cloud storage, which aims to op-
timize the cost and data availability. NSGA-II algorithm was applied to generate
a set of non-dominated solutions, and an entropy-based method was proposed to
help users select an appropriate solution. Wang et al. [5] proposed an adaptive
architecture for multi-cloud data placement, in order to solve the challenge of dy-
namically store users’ data according to time-varying access patterns. The archi-
tecture includes an LSTM-based data retrieval frequency prediction module and
a Q-learning-based data placement optimization module. Chen et al. [7] proposed
a closed-loop method to optimize service quality and cost. An algorithm was pro-
posed to help make choices to reduce costs and maintain a high quality of service,
help select cloud data centers in a multi-cloud environment. Wang et al. [8] pro-
posed an immune-based PSO algorithm to schedule workflow in clouds, which aims
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to optimize the execution cost and make-span under the constraint of user-defined
deadline.

To improve competitiveness, latency has become an important optimization goal
when researching placement strategies. Many users consider the latency of user ac-
cess, as either a constraint or an optimization goal. Wang et al. [9] considered the
problem of multi-cloud data placement for spatial crowdsourcing scenario. The ge-
ographical characteristics of cloud data centers were analyzed by using a density
clustering algorithm. The authors proposed a data placement initialization strategy
based on the clustering results, and then an improved genetic algorithm is used to
further optimize the placement scheme. Rao et al. [10] tried to minimize the total
cost while ensuring the QoS for end users. They considered the location and time
diversity of price in multiple markets. Luo et al. [11] used a constrained linear pro-
gramming method to obtain the best results, ensuring user latency while minimizing
energy costs. Yao et al. [12] presented a two-time scale decision strategy. They used
fast and slow time scales as control decisions, which is used to guarantee the cost
and latency.

Load balance is another important factor, which can greatly affect the perfor-
mance of a system [14]. A severely unbalanced load will waste resources, affect
the processing speed, and increase the response time. Pujol et al. [15] proposed
a method to locate user data while guaranteeing load balance, so as to maintain
a better online social environment. Shao et al. [13] considered transmission la-
tency and formulated a nonlinear programming problem with coupling constraints
so as to ensure the best load balancing and energy consumption of a data center
while meeting consumer service level agreements. Tran and Zhang [16] presented
a method to place data based on an evolutionary algorithm, which aims to opti-
mize the load balance of servers. Chen et al. [17] explored the relationships between
users in social networks, and proposed a method to balance the workload among
servers.

Cloud computing supports data storage with the computing power of data cen-
ters. The emergence of edge computing can provide real-time and low-latency ser-
vices for users. A large amount of studies on content placement for edge com-
puting have been conducted. Cao et al. [18] proposed a framework combined
NSGA-II algorithm with multi-group strategy, in order to help users select ap-
propriate cloud and edge services to place their data. Wang et al. [19] proposed
a method to cache data and schedule tasks jointly for mobile edge computing.
Li et al. [20] considered the QoE-driven mobile edge buffer placement problem,
considering the different rate-distortion (RD) characteristics of video. Optimal
buffer placement was performed through the representation of multiple videos. Xu
et al. [21] studied the problem of service caching in MEC’s cellular network, and
proposed an online algorithm to optimize computational latency under the con-
straint of long-term energy consumption in edge computing environment. Chae
et al. [22] determined the trade-off between gains in content diversity and coop-
eration based on content placement, and proposed probabilistic content placement
to optimize it. Wang et al. [23] studied the placement of application entities in
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the edge computing environment for social virtual reality applications. A fast it-
erative algorithm was proposed, constructing a graph in each iteration to encode
all costs, and converting cost optimization to a graph cutting problem. Golrezaei
et al. [24] proposed a video transmission network architecture, expressing the dis-
tributed caching problem as the maximization of sub-module functions. A method
to deal with the backhaul problem was proposed, replacing it with a small base
station with a low-bandwidth link and high storage capacity. Nikolaou et al. [25]
studied the problem of cache placement on collaborative cache based on a single
client cache in online social network. Jia and Wang [32] studied the problem of data
placement and service deployment in cloud-edge environment, in order to mini-
mize response latency. Xia et al. [33] investigated the collaborative data caching
problem in edge computing environment with the aim to minimize the system
cost.

While there has been much research on data storage in cloud computing en-
vironment, and much discussion of the multi-cloud environment, there is a lack of
studies on data placement for edge computing environment. Most such research has
addressed the optimization of algorithms and different goals, without considering
the temporal and spatial characteristics of the data. This paper studies data place-
ment based on a temperature matrix and considering wide-area distribution in the
marginal environment. We propose temperature matrix-based data placement us-
ing an improved Hungarian algorithm (TEMPLIH), combining temperature, replica,
and cost matrices. While ensuring user latency, we can reduce storage costs as much
as possible while balancing loads.

3 SYSTEM MODEL AND PROBLEM FORMULATION

3.1 System Framework

Three tasks need to be solved in this framework:

1. modeling and calculation of data temperature;

2. determination of data replica placement strategy;

3. reasonable data placement based on regional servers and corresponding data,

so as to reduce the cost while satisfying conditions of latency and load balance.
We define a dataset D = {d1, d2, d3, . . . , dM} to represent user’s requests for

data. The user area, R = {r1, r2, r3, . . . , rN}, is the access area related to the
user set, which can be used for latency calculation. The set of edge servers, S =
{s1, s2, s3, . . . , sK}, includes a number of edge servers in each area, which provide
storage service for data blocks. Each edge server is associated with a set of attributes
⟨P s

e , P
b
e , P

o
e , le⟩, where P s

e is the storage price, P b
e is the bandwidth price, P o

e is the
Get operation price, and le is the storage capacity.

The relationships among edge server, user area and data are shown in Figure 1.
The access latency of data blocks D can be calculated when it is placed in different



1470 P. Wang, Y. Zhao, H. Huang, Z. Zhang

Figure 1. Framework of data placement in edge environment

areas R. Different numbers of edge servers S exist in user access area based on
area division. We assume that the latency among the servers in the same area is
negligible.

3.2 Data Temperature and Calculation

Data has its own attributes, according to the degree of access to it in different re-
gions, the temperature of data access in different regions is different [9]. We propose
the concept of data temperature based on the spatial and temporal characteristics
of data. This degree of preference must consider the changes in data attributes and
spatial characteristics during a certain period of time. Spatiotemporal data refers to
geographic entities whose spatial elements or attributes change over time. Spatial in-
formation includes concepts, structures, and spatial relationships with other nearby
objects. Temporal information includes concepts, structures, dimensions, and den-
sity. For example, let the user’s video file collection be D = {d1, d2, d3, . . . , dm}.
Indicators from the video data include playback indicators, such as the number of
plays and playback quality, and interactive indicators, such as sharing, comments,
likes, and favorites. On this basis, we define that each data block contains a set
of attributes ⟨dc, dt, dd, df⟩, where dc is the number of clicks, dt is the number of
comments, dd is the number of downloads of the video, and df is a user-favorited
video. The importance xi of each data block di is evaluated and calculated by the
number of clicks and views, comments, downloads, and favorites, which is defined
as follows.

xi = 0.8(dc + dt + dd) + 0.2df . (1)
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The relative weight wi of data block di is determined by the ratio of the impor-
tance of xi to that of all other data,

wi =
xi∑m−1

i xi

. (2)

According to the relative importance of the data and the change characteristics
of the data temperature, H is the temperature value of the current data, w is
the relative importance, H0 is the initial temperature, and k is the attenuation
coefficient. According to the change characteristics of data temperature

H(t) = w ∗H0 ∗ e−kt.

The data temperature at a certain moment is reasonably quantified by its geo-
graphical location and the number of visits, focusing on the initial visit value of the
data, relative importance of visits, and number of visits by regional users. Based
on the data temperature calculation model, a data temperature matrix Tmn can be
defined to store the temperature values of data in different regions, i.e., the temper-
ature value hm,n of data m in area n.

Tmn =

h1,1 . . . h1,n
...

. . .
...

hm,1 . . . hm,n

 . (3)

For the convenience, we define a regional server matrix to record edge servers
by region.

Rnk =

1, Server k is in area n,

0, Server k is not in area n.
(4)

3.3 Network Latency

Only by meeting user latency requirements and ensuring user satisfaction and usage
can more users be attracted. By taking user access latency as a direct optimization
goal or constraint, the goal of satisfying user latency requirements can be achieved.
We take time latency as a constraint to ensure that users can access the data they
want within an acceptable time. We guarantee that the maximum response time
of each request is 200ms [27] because more than this will seriously affect the user
experience.

Define the set S(t) as a collection of data access server at time t. The data access
latency is the maximum value of data center in S(t). We use geographic distance
as a rough measure of network latency, which we express as a linear function of
distance. The correlation between latency and geographic distance can be obtained
through network latency data collection, and the round-trip time (RTT) [28, 29] is
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used to calculate the data access latency.

lm = max
d∈S(t)

{5 + 0.02D(d)} (5)

where D(d) is the distance between the user and the data center, D̂ is the maximum
acceptable time latency, and the average access latency is

a

(
m∑
i=1

li

)
≤ D̂. (6)

3.4 System Cost

The goals of cost and average latency may conflict with each other. Placing more
copies of data blocks on edge servers may reduce the average latency, but it will
increase the cost. We consider the three main parts of resource usage costs, i.e., the
costs of data calculation, bandwidth, and storage.

1. Storage Cost

At time t, the storage cost of data di is defined as follows.

Ps =
∑
e∈S(t)

ziP
s
e . (7)

The storage cost of data di is the sum of the costs of replicas stored on different
edge servers. zi represents the size of data di, and P s

e refers to the storage price
of edge server.

2. Network Cost

Due to the peaks and valleys of user access to video data, we use traffic ac-
counting. There is no restriction on bandwidth, but a fee is charged for passing
traffic. The network cost at time t is

Pn =
∑
e∈S(t)

ziP
b
e . (8)

P b
e is the out-bandwidth network price of edge server where data di is stored

and accessed.

3. Operation Cost

The cost of the get operation is

Pg =
∑
e∈S(t)

dcP
o
e . (9)

P o
e refers to the price for GET operations in related edge server, and dc represents

the number of operations.
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4. Total Cost

The total cost of a data placement scheme is the sum of the above three parts.

P̂C = Ps + Pn + Pg. (10)

3.5 Load Balancing

The load of a data placement scheme can be defined as follows.

L =

√√√√ 1

K

M∑
m=1

(Um − UK)2 (11)

where K is the total number of servers, M is the number of servers where data
is placed, Um is the server utilization, and UK is the total server utilization. The
smaller the value of L, the more balanced the load.

3.6 Problem Formulation

In this work, we aims to find optimal data placement scheme in edge computing
environment, so as to minimize the system cost and balance the load among edge
servers. Therefore, the optimization problem can be formulated as follows.

minC =

M,N,K∑
m=1,n=1,k=1

EmnkP̂C , (12)

minL =

√√√√1

k

M∑
m=1

(Um − UK)2, (13)

a

(
M∑
i=1

li

)
≤ D̂, (14)

M,N∑
m=1,n=1

Emnkzm < le. (15)

Emnk is a binary variable, which represents whether data block dm is placed on
edge server sk in user area rn. Formulas (14) and (15) respectively require that
the data placement scheme must satisfy the user’s latency constraint and the server
capacity limit. D̂ refers to the maximum acceptable time latency. zm is the size of
data dm, and le is the storage capacity of edge server sk.
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4 THE PROPOSED METHOD

The proposed TEMPLIH method consists of a data replica selection algorithm based
on temperature matrix (RSA-TM), and an improved Hungarian algorithm based on
replica matrix (IHA-RM).

According to the proposed data temperature calculation model, RSA-TM con-
siders the characteristics of data and obtains a data temperature matrix, which can
screen suitable data and reduce unnecessary resource consumption. According to
the temperature matrix, the areas with high data temperature can be selected to
calculate the data access latency for data placement. When the latency constraint
is met, placement is stopped and the data placement area is recorded. Otherwise,
we select areas to place data in descending order according to the data tempera-
ture matrix, and stop the process until the latency requirement is met. The time
complexity in calculating the temperature matrix is O(MN).

We then define a data replica matrix based on the temperature matrix. The
placement area where data m satisfies the latency in area n is recorded as 1, and
otherwise it is 0.

Lmn =

1, Data m is placed in area n,

0, Data m is not placed in area n.
(16)

In order to obtain a data placement scheme at the least cost while ensuring
load balance, we propose an improved Hungarian algorithm based on the replica
matrix (IHA-RM). According to the replica matrix Lmn obtained by RSA-TM and
the previously defined regional server matrix Rnk, the relationship between the data
and the regional server can be obtained. The data server placement matrix Dmk

expresses the placement relationship between data m and area server k,

Dmk =

1, Data m is placed in server k,

0, Data m is not placed in server k.
(17)

We combine the regional server matrix Rnk and data server placement matrix
Dmk to get the placement cost of the data on the server in each region according to
the cost calculation formula. The cost matrix PN = [p1, p2, p3, . . . , pN ] represents the
placement cost of the data block on the server in each region, i.e., the data placement
cost matrix P of data block m and server k under the N areas is collected, the cost
of the server storage data block is recorded as Ck,m, and

Pn =


C1,1 . . . C1,m

...
. . .

...

Ck,1 . . . Ck,M

 . (18)
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Algorithm 1 Data replica matrix selection algorithm based on temperature matrix
(RSA-TM)

Input: Data D; User area R; Server S; The capacity of data block stored by the
server Capm

Output: Data replica matrix Lmn

1: Lmn ← ϕ
2: for all data block dm ∈ D do
3: for all area rn ∈ R do
4: Tmn ← Calculate the temperature matrix by Formula (3)
5: M ← Regional temperature is sorted by Tmn

6: end for
7: for all area rn ∈M do
8: ave← Calculate the latency by Formula (6)
9: if ave ≤ 200 and Capm < le then

10: Rindex ← Storage area location
11: else
12: index ← Select the area according to temperature
13: end if
14: end for
15: end for
16: Return Lmn

The standard Hungarian algorithm is a one-to-one allocation of computing re-
sources and data, i.e., the number of tasks and computing resources must be equal.
In real-world scenario, the numbers of data and servers in each area are often not
equal. Therefore, we compare the numbers of data blocks and computing resources
in each area. If these are equal, the standard Hungarian algorithm can be used to
solve the problem. If they are unequal, we must determine the numbers of servers
and data blocks. If the number of servers exceeds the number of data blocks, we
add the number of virtual data blocks (add 0) to make it as many dimensions as
the number of servers, and then use the standard Hungarian algorithm. If there
are more data blocks than servers, according to the dimension of the number of
servers, the cost matrix is divided into a small matrix of the number of data blocks
divided by the number of servers. If the number of data blocks in the last sub-
matrix is less than the number of servers, add the number of virtual data blocks
(add 0) to make it consistent with the number of servers. After completing the ma-
trix, we use the traditional Hungarian algorithm to determine the data placement
plan.

The time complexity of calculating the data server matrix and cost matrix is
O(NMK). The improved Hungarian algorithm (IHA-RM) is used to maintain a low-
cost data placement solution under reasonable load balancing conditions between
edge servers.



1476 P. Wang, Y. Zhao, H. Huang, Z. Zhang

Algorithm 2 Improved Hungarian algorithm based on replica matrix (IHA-RM)

Input: Data replica matrix Lmn; Regional server matrix Rnk; Number of regional
servers Rnumk

; Number of area data blocks Dnumk

Output: Data placement scheme Emnk, load L, cost C
1: Emnk ← ϕ, L← inf, C ← inf, Pn ← ϕ
2: for all area rn ∈ R do
3: Dmk ← Rnk Server dimension and Lmn data dimension
4: Pn ← Calculate the cost matrix by Formula (11)
5: for all cost matrix pn ∈ PN do
6: if Dnumk

= Rnumk
then

7: Sindex ← Use the Hungarian algorithm to select the lowest cost and record
the placement location

8: else if Dnumk
< Rnumk

then
9: pn ← add virtual data block 0 in Rnumk

dimension
10: Sindex ← Use the Hungarian algorithm to select the lowest cost and record

the placement location
11: else if Dnumk

> Rnumk
then

12: r = Dnumk
/Rnumk

13: R← Divide pn into the set of r matrices with Rnumk
as the dimension

14: for all matrix Ri ∈ R do
15: if Dnumk

< Rnumk
then

16: Ri ← add virtual data block 0 in Rnumk
dimension

17: else
18: Sindex ← Use the Hungarian algorithm to select the lowest cost and

record the placement location
19: end if
20: end for
21: end if
22: end for
23: end for
24: L← Calculate the load by Formula (12)
25: C ← Calculate the cost by Formula (11)
26: Return Emnk, L, C

We define the matrix Emnk to record the data placement plan under the area n,
where data m is stored on server k,

Emnk =

Rmk ∗ 1 = 1,m is placed in n,

Rmk ∗ 1 = 0,m is not placed in n.
(19)
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5 EXPERIMENTAL EVALUATION

5.1 Experiment Setup

The dataset is a YouTube popular video dataset with 40 726 items, including the
number of views, shares, comments, and likes. Through this dataset, we roughly
grasp the degree of user love for videos.

Regional edge server information was obtained from the websites of major edge
service providers, including storage price ($/GB), bandwidth price ($/GB), get op-
eration price ($/10k times), and latitude and longitude of the edge server.

The experiment was run on a computer with the Intel Core i7-7500U at 2.7GHz,
with 8GB memory and Windows 10. The program ran in the Anaconda 3 and
Python 3.7 environment.

5.2 Experimental Results and Analysis

We compared the cost and load rate of TEMPLIH with those of several other algo-
rithms for data placement.

Random: The distribution relationship between the data and server is obtained
from the replica matrix, and the data block is randomly placed on the regional
edge server.

Latency-based [30]: The data are placed on the regional edge server with the
lowest total network latency. We calculate the data placement considering cost
and load balancing.

Cost-based [10]: According to the replica matrix, we can get the distribution re-
lationship between the data and server. We place the data block on the edge
server with the lowest cost.

Load Balance [16]: After the data replica matrix that meets the latency require-
ment is known, the data blocks are sequentially placed in edge server. Its purpose
is to ensure the maximum load balance placement of data.

In the scenario of changing the number of data blocks, the algorithm performance
was evaluated by changing the number of data blocks from 6 000 to 13 000. The data
block size was fixed at 0.6GB, the number of servers was 425, and the server capacity
was 600GB. Figures 2 and 3 describe the load rate and cost, respectively, of the
data placement schemes obtained by the five algorithms. It can be seen that the
load rate of our algorithm is similar to that of the load balance algorithm, but its
total average cost is 18.9% less. As shown in Figure 3, our algorithm sacrifices
some cost compared with cost-based method, but has obvious advantages in load
balancing.

The data block size was changed to 1.2GB, with 10 000 fixed data blocks. The
number of servers and their capacities were consistent with the above experiment.
Figure 4 shows the cost changes of the placement schemes obtained by the five
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Figure 2. Comparison of load rate with changing of data blocks

Figure 3. Comparison of cost with changing of data blocks
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algorithms. It can be seen that the data block size was too large, the data resources
tended to be saturated, and the cost was reduced. Figure 5 compares the load
rates of the five algorithms. As the size of the data block increases, the distribution
of blocks becomes more dispersed, so the load rate decreases when the number of
servers and their capacities are unchanged. The load will be more balanced. Our
TEMPLIH algorithm is less effective in cost than the data solution obtained by the
cost-based algorithm. However, it can be seen from Figure 5 that the load rate of
the cost-based algorithm is 32.8 times that of our proposed algorithm in terms of
load conditions. It can be known that the load balancing of the algorithm based on
cost is much worse than the TEMPLIH algorithm.

Figure 4. Comparison of cost with changing data block size

Changing the range of server capacity from 400GB to 650GB, there were 10 000
data blocks of size 0.6GB, and the number of servers remained unchanged. Figures 6
and 7 show the changes in load rate and the cost of data placement, respectively,
for the five algorithms when the server capacity changed. It can be seen that the
load rate increases with the server capacity. This is because the increase in server
capacity enables better placement options for data blocks when resources are rela-
tively abundant. With the increase of server capacity, it can be seen from Figure 7
that our proposed TEMPLIH is better than the load balancing algorithm in cost,
and our algorithm saves 16.8% in total average cost.
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Figure 5. Comparison of load rate with changing data block size

Figure 6. Comparison of load rate with changing server capacity
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Figure 7. Comparison of cost with changing server capacity

6 DISCUSSION AND IMPROVEMENT

In today’s era of big data, cloud-edge computing and AI, a large amount of data
increasingly presents many attributes and characteristics related to time and space,
and evolve with them, such as the temporal and spatial attributes of data itself, the
popularity, access model, value and importance of data. These characteristics have
great impact on the scheduling and optimization problem in cloud-edge collaborative
environment. The key to solve this is to synchronously connect the characteristics
and variability of data in both temporal and spatial dimensions. However, as we
have analyzed earlier, this has been largely ignored by the existing methods.

To this end, we present the concept of data temperature to consider such tempo-
ral and spatial characteristics jointly, and then propose a temperature matrix-based
data placement method using an improved Hungarian algorithm TEMPLIH in this
work. However, this is still a “single point” optimization method, since the proposed
temperature matrix can only reflect the temperature of a data block in a single area.
Whether a data block can be placed and deployed in a certain area, in addition to
the attributes of the data block itself and its temperature in this area, we should
also consider the influence of neighboring and other relevant areas, so as to obtain
a more comprehensive evaluating criterion for data placement.

We take the scenario of online video for example. The demand of hundreds
of millions of users around the world for video resources is huge and diverse. The
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massive video data shows an obvious relevance and variability in two dimensions of
space and time. The same video has different popularity and click-to-play times in
different regions, and the trend over time is also different. In fact, due to the different
nationalities, cultures and preferences of users, there are often significant differences
in video requests in different regions. Figure 8 shows an example of video data from
YouTube, which has different temperatures in different regions, and distinguished
by color. It can be seen that there are obvious regional differences. For example,
the data temperature in North Carolina, Virginia and West Virginia is significantly
higher than that in surrounding regions.

Figure 8. An example of data with different temperatures in different regions

According to the proposed method in this work, compared with Virginia, this
video data is more suitable to be placed on edge servers in North Carolina because
its temperature value is higher. However, from an overall perspective, placing this
video data in Virginia may cover a wider range of user needs, thereby resulting in
greater benefits, although the data temperature in this region is lower than that
in North Carolina. The placement of a data blocks should not only consider its
temperature value in a single region, but also depends on the distribution and ad-
jacency of all regions, as well as the temperature values of this data in relevant
regions.

Therefore, considering the correlations among all regions, and also the temper-
ature values of this data in different regions, we can simulate and calculate a value
distribution reflecting this aspect (as shown in Figure 9), which can be named as
“regional value” of this data in different regions. From the figure, we can find that
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the regional value of this data in Virginia is higher than that in North Carolina,
which coincides with the above observation and discussions.

Therefore, it is necessary to further study the regional distribution and correla-
tion characteristics combined with data temperature, which can bring more accurate
value orientation to the data placement strategy in edge and cloud computing envi-
ronment.

Based on the above-mentioned discussions, we present a preliminary study about
the idea of regional value in this section. The calculation of regional value of a data
block in different regions mainly considers two aspects:

1. the temperature of this data in different regions;

2. the distance between the target region and other relevant regions.

Therefore, the temperature values of this data in relevant areas (including itself)
and the distance to the target region together determine the “regional value” of
this data block. The higher the temperature value, the greater the contribution to
the regional value, and the farther the distance, the smaller the contribution to the
regional value.

The idea discussed above coincides with that of PageRank. PageRank’s core idea
includes quantity hypothesis and quality hypothesis. That is, the more important
it is when a web page is linked by more pages, and the more important it is when
high-quality pages linking to this page. Inspired by PageRank’s idea, we give two
principles for regional value.

1. The higher the temperature of the data itself, the greater the value generated,
and also the greater the contribution of this region to other regions.

2. The farther the region is from the target region, the smaller the value it will
contribute.

Therefore, we can define and calculate the regional value of a data block by
a simple model, which is the cumulative sum of the ratio of the temperature value of
this data object in a region to the distance between this region and the target region,
and add the ratio of temperature value in target region to the average distance among
all regions.

In addition, we perform some experiments to verify the above ideas and mod-
els. The experimental setup is the same as that in Section 5.1. Figure 10 shows
the cost comparison of solutions based on data temperature and regional value
when changing data blocks. We can find that the placement scheme resulting
from the regional value is lower in cost than that generated only by data tem-
perature.

Figure 11 shows the cost of data placement schemes when the number of data
blocks is fixed at 40 000, and the server capacity is set to 50, 100, 150, 200, 250, and
300. It can be seen that the cost obtained by regional value is obviously better than
the data placement schemes resulting from data temperature.
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Figure 10. Comparison of cost between two different strategies

Figure 11. Comparison of load rate between two different strategies with changing server
capacity
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7 CONCLUSION

The demand for network latency cannot be ignored in the current environment.
At present, we cannot any longer meet the needs of users by relying only on the
multi-cloud market for data storage. In the edge environment, edge server can
take advantage of its own lightweight, real-time computing capabilities and closer
proximity to users to place data reasonably, which can effectively improve user
experience. However, how to use the characteristics of the data itself and quickly
weigh the relationship between various indicators is a problem that remains to be
solved in data placement. Our proposed TEMPLIH can optimize the cost and load
balance of data in the edge environment under the premise of meeting the latency
requirements. Specifically, the RSA-TM and the IHA-RM are adopted. Experiments
have proved that in terms of optimization effects, the TEMPLIH strategy that
considers the data temperature matrix is better than the traditional multi-cloud
data storage strategy. A new idea of regional value based on data temperature is
proposed and analyzed, which will be further studied in future work.
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