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Abstract. For the study of information dissemination in online social networks,
most existing information dissemination models include only positive relationships,
ignoring the existence and importance of negative relationships, and do not con-
sider the influence of inter-individual relationship polarity on dissemination. To
solve these problems, we propose a social network information dissemination model
incorporating negative relationships in this paper. Drawing on the state concept
of the SIR (Susceptible Infected Recovered) model, the three types of SIR states
are subdivided into five sub-states. Combining the advantages of the viewpoint
evolution model, the influence of relational polarity on node attitudes is added to
the modeling of the propagation process. The experiment proves that the method
proposed in this paper can show more specifically the changing trend in the number
of propagation nodes with different attitudes and portray the process of information
propagation in online social networks.
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1 INTRODUCTION

With the rapid development of Internet technology, online social networks are emerg-
ing and have become an important platform for information exchange in current so-
ciety. Information dissemination is the core function of online social network. Thus,
the research on information dissemination in online social networks has been one of
the most popular research hotspots at present.

Most of the existing social network information dissemination models consider
two levels, one is the user’s level and the other is the relationship’s level. From
user-level researches on information dissemination, the current researches have con-
sidered the influence of individual differences among network users, individual at-
titudes, and other factors on information dissemination [1, 2]. Zheng et al. [3]
considered the influence of the set of neighbors of a node on the propagation of
a single node and classified the states of information propagation into four specific
categories. Wang et al. [4] considered the existence of mutual influence between
nodes in the dissemination process in the modeling of information dissemination.
Xu et al. [5] developed a new propagation model based on the “field” principle
using the equilibrium field equation, and also considered the transfer probability
between nodes as a variable in the equation. Zhang et al. [6] considered the de-
cay of interest of disseminators. Although these studies consider the interactions
between node states to varying degrees, few studies consider the individualized dif-
ferences in how nodes treat other nodes. In addition, most of the current researches
consider attitudes (positive or negative) toward information from an individual per-
spective, and do not consider the influence of inter-individual relational polarity
on communication. From the overall research on information dissemination at the
relational level, most of the existing information dissemination models include only
positive relationships and ignore the existence and significance of negative relation-
ships. However, the formation of social networks depends on the interconnection
and influence of the members in the network. Therefore in the actual social net-
work information dissemination, the relationship between people and the polar-
ity of the relationship are very important factors affecting information dissemina-
tion [7].

Considering the above problems, we propose a new model of social network
information dissemination that incorporates negative relationships. The model is
constructed from three main parts. First, the effect of inter-node relationships
on node attitudes is modeled. Second, the node attitude update process is mod-
eled. Third, the three states of the SIR model are refined into five sub-states,
and the node state transition process is modeled according to the propagation
rules.



1512 M. Li, X. Li, Y. Zhang, J. Pan, R. Yang

The main contributions of this study are summarized as follows.

1. Considering the existence of negative relationships, we propose a model of social
network information dissemination incorporating negative relationships, focus-
ing on the influence of the existence of negative relationships among individuals
on information dissemination.

2. We combine the infectious disease model and the viewpoint evolution model.
The proposed model is able to predict the information dissemination process
and important communication features in the network.

2 RELATED WORK

2.1 Online Social Network Information Dissemination

In the field of online social network information dissemination, related scholars have
carried out a lot of research work, such as rumor propagation problems in social
networks [8, 9], propagation model research [10], information forwarding prediction
problems [11], and user influence problems [12, 13]. In research for propagation
models, many valuable results have been accumulated based on network structure
and group states.

A. Network structure-based propagation model

Independent cascade model (ICM) [14] and linear threshold model (LTM) [15]
are typical propagation models based on network structure. They are the two
main models that have been frequently used in previous research work on infor-
mation dissemination. Both take the perspective of the nodes and assume that
the nodes in the network are in two states: active and inactive. In the tradi-
tional independent cascade model and linear threshold model, the information
propagation probability (user influence weight) between nodes and the threshold
for nodes to change from inactive to active states are fixed. But in real social
networks, the influence of users on other users changes from moment to moment.
The traditional independent cascade model and the linear threshold model do
not approximate real social networks.

Therefore, researchers have proposed many improved independent cascade mod-
els and improved linear threshold models to better model social network infor-
mation diffusion. Feng et al. [16] modeled the influence probability based on
a linear threshold model considering user interaction intensity, structural sim-
ilarity and social entity similarity. Bozorgi et al. [17] proposed a competitive
linear threshold model in order to solve the problem of maximizing influence
in a competitive environment. Bao et al. [18] proposed an independent cascade
model based on component extensions. Qin et al. [19] proposed a three-step cas-
cade diffusion model to model the information diffusion process by considering
the propagation probability and time recession factors among users.
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However, both the independent cascade model and the linear threshold model
are essentially simulation models, not analytical models. They can find the
possibility of being in a certain state by averaging over multiple runs in the
simulation, but cannot account for the initial set of parameters that will produce
this result. In addition, both models assume that people are limited to two
states of believing positive or negative information. This is not sufficient to
represent the differences in social behavior in real social networks. Therefore,
the results obtained using these two models or some variants based on them
may be quite different from the actual propagation dynamics of online social
networks.

B. Group state-based propagation model

The group state-based propagation model mainly assumes that nodes are in
different states and uses propagation rules to predict the information propaga-
tion process. Propagation research (e.g., modeling and process analysis) is the
foundation of research in the field of information dissemination. Before examin-
ing methods of controlling information dissemination, it is important to provide
accurate analytical models. Therefore, in the early stage of information dissem-
ination dynamics research, researchers began to try to construct a real sense of
the analytical model of communication. Since the way information spreads on
the Internet is similar to the way infectious diseases spread in medicine, many
researchers have started to try to model the dynamics of information spread
based on the principles of infectious disease transmission [20]. In this process,
the classical model of communicable disease information dissemination gradually
took shape.

The SIR (Susceptible Infected Recovered) model is currently the most com-
prehensive and widely used model for the dissemination of information about
infectious diseases [21]. Other dissemination models based on infectious dis-
ease principles include the SI model [22], the SIS model [23], the SIER model
[24], the SHIR model [25], and the SIRS model [26]. The overall idea of these
models is similar to that of classical infectious disease models. They have
worked on the problem of delineating propagation status, and less work has
been done to explore and study the specific factors that lead to changes in
propagation rates or immunization rates. Thus, such models have major limita-
tions.

In addition, most of the existing models default all existing relational links to
positive relationships and ignore negative relationships. In fact, negative rela-
tionships are no less important than positive ones in social networks [27, 28].
The relationship between people in actual social network information dissemi-
nation is an important influencing factor for the occurrence of social behavior,
and the type of relationship also affects the dissemination status. Therefore, it
is very necessary to take negative relationships into account and propose a more
realistic model of information dissemination.
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2.2 Non-Bayesian Social Learning

Users of social networks have their own attitudes towards all types of messages, they
may hold positive or negative attitudes towards information dissemination. In the
process of information dissemination, users’ attitudes largely influence individual
behaviors and decisions. From social learning theory research, it is found that
individuals, when faced with newly released information, will subjectively evaluate
this new news based on their preferences such as a priori knowledge, interests, and
values [29]. The individual subconsciously generates an initial attitude towards the
message, but does not always keep this initial attitude value constant. Individuals
regulate their initial attitudes by obtaining other individuals’ perspectives based on
their interactions with other individuals at each moment.

Inter-individual relationships are the main factor influencing individual atti-
tudes. Most of an individual’s behaviors can be learned by observing other indi-
viduals around them. Bayesian social learning and non-Bayesian social learning
are the two mainstream social learning approaches at present [30]. In contrast to
Bayesian social learning, non-Bayesian learning uses a local updating mechanism for
individual perspectives. It is speculative through principles such as imitation, repli-
cation, and similarity of experience. The advantage is that the update of individual
attitudes or opinions can be done with a small amount of individual information.
Therefore, the non-Bayesian social learning approach is more suitable for complex
communication methods such as social networks. The application of non-Bayesian
learning methods in social networks is mainly based on empirical derivation of the
update approach. It is inferred through principles such as imitation, replication,
and similarity of experience. It uses a smaller amount of individual information
to accomplish the update of individual attitudes or opinions. In this paper, after
considering negative relationships, we use non-Bayesian social learning principles
to further explore the interactions between individual viewpoint attitudes on the
network and the evolutionary patterns.

3 THE PROPOSED MODEL

The propagation model proposed in this paper is described as follows. To understand
the time-series nature of the propagation model, we give a formal representation
of the model: Mdiffusion = < I,D, t,Ω, Ut, At, Ut+1, At+1 >. I denotes the set of
user nodes in the network. D denotes the initial attitude of the current study
node towards the propagation event. t denotes any moment in the information
propagation process. Ω denotes the set of neighbor relations of the current study
node. Ut denotes the attitude of the current study node at time t. At denotes the
specific propagation state of the current study node at time t. Ut+1 denotes the
updated value of the attitude of the current study node at time t, which is the
attitude value at the next moment. At+1 denotes the specific propagation state of
the current study node after the update at time t, which is the propagation state at
the next moment.
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The whole process of propagation is described as follows. The schematic diagram
is shown in Figure 1. Any node in the current set of network user nodes I has its
own initial attitude D towards the event in the initial phase of the specific event
propagation. With the continuous propagation of information, at any time t, the
node will consider whether to further update its propagation attitude based on its
current attitude Ut and current state At as well as its relationship and relationship
polarity with its neighbors in the set of neighboring nodes Ω, so as to obtain a new
attitude value Ut+1 at time t+ 1. Then the node further determines the state At+1

at time t+ 1 based on the attitude value Ut+1. The above steps are repeated over
and over again as the time step is updated.

Figure 1. Propagation process diagram

3.1 Model Framework

The model contains two main parts: modeling the influence of inter-node relation-
ships on node attitudes and modeling the information dissemination process that
incorporates negative relationships. The general modeling framework of the model
is shown in Figure 2.

First, we give eight combinations of interactions and four major types of interac-
tion process analysis based on common sense theory and the results of questionnaires
on the influence of interpersonal relationships on information dissemination. Based
on the fact that node states are influenced by inter-node relationships, we ana-
lytically derive the mathematical expression: the influence of a node j on node i
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at a moment t is a × uj
t . The modeling process of node state update starts from

modeling the influence of a single node, and then models the process of combined
influence by multiple nodes. The specific update formula and the derivation process
are described in the following section.

Second, we first model the node attitude update process, and then carry out
modeling of the node state transition process according to the dissemination rules.
Based on the SIR model, we divided the model into a base model and an optimization
model. The base model extends the three states of the SIR. The optimization model
subdivides the three states of the SIR into five sub-states. The conversion probability
is also refined. The specific derivations and calculations are described in the later
sections.

3.2 Modeling the Influence of Inter-Node Relationships
on Node Attitudes

To take into account the influence of interpersonal polarity on information dissemi-
nation more reasonably, we conducted a relevant questionnaire survey and analyzed
the collected data for reasonableness. The questionnaire mainly investigates the
propensity of information dissemination targets to disseminate information sources
with different relationship types and the specific propensity of communication tar-
gets to disseminate information sources with different relationship polarity. Thus
it can provide a basis for the next parameter setting of the relationship polarity to
information dissemination modeling and the parameter setting of non-autonomous
factors in the dissemination process.

The survey on the influence of interpersonal relationships on information dis-
semination behavior was sent through the questionnaire platform, and 426 valid
questionnaires were returned. The main questions in the questionnaire survey and
the specific survey data statistics of the questionnaire results are as Tables 1, 2
and 3.

Options Amount Proportion

People who are in positive relationships with themselves 345 80.99%
People who are in negative relationships with themselves 5 1.17%
Indifferent attitude 76 17.84%

Table 1. Source statistics of transmission tendency

Based on the statistical results of the above questionnaire data, we can make
the following preliminary analysis:

First, we found that more than 80% of the respondents said they usually prefer
to retweet messages from contacts with positive relationships, while less than 2%
said they usually prefer to retweet messages from contacts with negative relation-
ships. This can indicate that relationships have a strong influence on information
dissemination behavior, and more than half of people say they are not willing to
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Figure 2. Frame diagram of information transmission model modeling process integrating
negative relations
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Options Amount Proportion

Will not 34 7.98%
Will do (0 to 30% chance) 98 23%
Will do (30% to 50% chance) 75 17.61%
Will do (50% to 80% chance) 124 29.11%
Will do (80% to 100% chance) 72 16.9%
Be certain to do 23 5.4%

Table 2. Contact probability statistics for positive relationships

Options Amount Proportion

Will not 278 65.26%
Will do (0 to 30% chance) 106 24.88%
Will do (30% to 50% chance) 27 6.34%
Will do (50% to 80% chance) 9 2.1%
Will do (80% to 100% chance) 5 1.17%
Be certain to do 1 0.23%

Table 3. Contact probability statistics for negative relationships

disseminate information shared by contacts from negative relationships, while less
than one in ten say they are not willing to disseminate information shared by con-
tacts from positive relationships. Therefore, it can be further shown that negative
relationships may have some hindering influence on the dissemination behavior of
information itself.

Second, we found that Table 2 and 3 did not show opposite data distributions.
Among them, the survey data statistics on the dissemination of positive relationship
news are normally distributed, and the survey data statistics on the dissemination of
negative relationship news show a power-law distribution. The reasons are as follows:
There is no complete trust between people, and most friends still keep a certain
distance between them, which is also in line with the laws of social interaction in the
real world; The influence of negative relationships is relatively absolute, and people
often show very obvious resistance to negative relationships, which is also in line with
the laws of social interaction in reality. The above data suggest that the influence of
negative relationships on human behavioral performance is relatively easy to assess,
which makes our grasp of the assessment of the influence of negative relationships
in the modeling of information dissemination more accurate and convincing.

There are two prominent problems with the current research work on social net-
works: One is that most of them focus on traditional non-symbolic social networks,
and relatively little research has been done on symbolic social networks with rela-
tionship type labels; another is the relatively little analytical work on the influence
of nodal relationships on information dissemination. First, the relational polarity
between nodes in traditional studies usually defaults to positive, and while ignoring
the existence of negative relationships, it also ignores the influence of negative re-
lationships, especially the influence of the relational polarity of node pairs on node
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attitudes. The node attitude here refers to an individual’s viewpoint on a spe-
cific matter. For a specific information dissemination problem, the node attitude
is essentially a comprehensive assessment of the node’s intention and willingness to
disseminate. Second, most of the existing studies based on inter-node relationships
are based on two common sense-based assumptions proposed by Li et al. [31]:

1. Trusting relationships spread the same views;

2. Distrustful relationships can spread contrary views.

This assumption assumes that the influence of positive and negative relationships
in symbolic social networks are opposed to each other, which simply means that
positive relationships drive communication and negative relationships can hinder
communication. However, such an assumption is too absolute to model the subtle
influence of interpersonal relationships on changes in personal perspectives.

Therefore, to more specifically portray the influence of inter-node interactions
and relational polarity on attitudes, this paper analyzes and models the different
nodes holding positive or negative attitudes and the inter-node relationships based
on existing common sense assumptions and the findings of the questionnaire analysis.
It derived 8 combinations of interactions, as Figure 3 shows. This interaction can be
expressed as the influence of node j on node i at some t moment is the product of the
attitude of node j and the polarity of the relationship between the two nodes, that
is, a × uj

t , where a denotes the polarity of the relationship between nodes i and j.
The analysis of the eight specific interactions leads to four types of interaction
combinations, as follows.

1. For two nodes a and b holding positive attitudes, if the relationship between
a and b is positive, the presence of a will deepen the positive attitude of b.
Conversely, if the relationship between a and b is negative, the presence of a will
weaken the positive attitude of b;

2. For two nodes a and b holding negative attitudes, if the relationship between a
and b is positive, the presence of a deepens the negative attitude of b. Conversely,
if the relationship between a and b is negative, the presence of a weakens the
negative attitude of b;

3. For node a, which holds a positive attitude, and node b, which holds a negative
view, the presence of a diminishes the negative attitude of b if the relation-
ship between a and b is positive, and conversely, the presence of a deepens the
negative attitude of b if the relationship between a and b is negative;

4. For node a, which holds a negative attitude, and node b, which holds a positive
view, if the relationship between a and b is positive, the presence of a will
weaken the positive attitude of b. Conversely, if the relationship between a and
b is negative, the presence of a will deepen the positive attitude of b.

To better understand the above interaction process, the above modeling process
is explained here with a typical example diagram analysis, as shown in Figure 4.
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Figure 3. Analysis of the influence of node status between users on the relationship be-
tween nodes

Suppose that node u has two neighboring nodes v and w, where the relationship
between node u and v is positive and the relationship between node u and w is
negative. For a specific event, if the initial state of node u has a negative attitude,
nodes v and w both have positive initial attitudes. From the perspective of node u,
both neighboring nodes v and w may have an influence on the attitude of node u.
Due to the different polarity of the relationship, the influence produced will be
different. For node u, because it is friends with node v, the positive attitude of
node v may have an influence on it, thus attenuating the negative attitude of it.
Conversely, since node u and node w are in an adversarial relationship, for node u,
the positive attitude of node w may instead have a strengthening influence on the
negative attitude leading to it.

Figure 4. Example diagram of node state change process
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3.3 A Model of Information Dissemination Process
Incorporating Negative Relations

A. Node Attitude

The node attitude updating process in this paper is mainly based on non-
Bayesian social learning principles. For the attitude updating process, given
a symbolic social network G = (V,E, S), this paper constructs a specific ana-
lytical model of the interactions between nodes and the influence of relational
polarity on attitudes, as shown in Figure 3. On this basis, the existing non-
Bayesian social learning update method is further optimized to give the specific
definition of the single node attitude update method proposed in this paper.

Definition 1. Single node attitude update method: Suppose that node i and
node j in the network hold attitudes ui

t and uj
t at moment t, respectively, and

node j propagates a message to node i at the moment t+ 1, next moment, the
attitude of node i will complete the update, and the specific update process is
shown in Equation (1):

ui
t+1 = ui

t + aδ(i, j)ui
t (1)

where a denotes the polarity of the relationship, with a = +1 if the relationship
type is positive and a = −1 if the relationship type is negative, δ(i, j) denotes
the convergence parameter of the attitude of node i to node j, which is the rate
of change of the attitude of node i under the influence of the attitude of j.

This paper defines the rate of attitude change of node i more intuitively as the
inter-node influence function (convergence parameter), which is denoted by the
node influence weight δ(i, j). The specific definitions are as follows:

Definition 2. Inter-node influence function δ(i, j): Assuming that k(j) is the
number of neighbors of node i, τ(j) denotes the set of neighbors of node i, and
node j ∈ τ(i) is a neighbor of node i, the influence of j on i is calculated as
follows:

δ(i, j) =
k(j)∑

t∈τ(j) k(t)
. (2)∑

t∈τ(j) k(t) is the sum of the degrees of all neighbors of node i. Obviously, the

greater the degree k(j) of node j, the greater its influence δ(i, j) on node j.

If, at the moment t + 1, i has multiple neighbor nodes and m of them all
propagate to it the same information, then the update of the attitude of node i
has to consider the influence of these m neighbor nodes at the same time. And
the update of the attitude value of node i is calculated at this time as:

ui
t+1 = ui

t +
1

m

∑
m

a
k(j)∑

t∈τ(j) k(t)
ujm
t . (3)
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To represent the update process more specifically, a schematic diagram of the
attitude update of a single node in the network is given in this paper, as shown
in Figure 5. From the update process, the value of δ(i, j) determines the rate of

change of the attitude of the node. The larger the value calculated by k(j)∑
t∈τ(j) k(t)

,

the closer the attitude of node i is to the propagating node.

Figure 5. Schematic diagram of attitude update of a single node

B. Propagation rules description

As mentioned in the previous introduction, both information transmission and
virus transmission have similar premises and similar transmission patterns. The
classical social network information dissemination models based on the prin-
ciple of infectious diseases are mainly divided into Susceptible-Infected (SI)
model, Susceptible-Infected-Susceptible (SIS) model, Susceptible-Infected-Re-
covered (SIR) model, etc. These models assume that when the propagation
rate of information knowns to an unknown is greater than a certain thresh-
old, the information knowns will propagate information to the unknown until
the entire network of information knowns is in some stable state. In this pa-
per we improve the traditional SIR model and further describe the propagation
rules.

As a classical information dissemination model, the SIR model classifies the
nodes in the network into three main categories: the healthy S state, which
has never received a message; the I state, which has the ability to disseminate;
and the immune R state, in which no more dissemination behavior occurs. The
SIR model can be simply described as follows: a user publishes a message at
a point in time and becomes the initial infection source node. Next, neigh-
boring nodes infected with the source node will accept this message and may
complete the forwarding behavior with probability p1, the neighboring node
state is converted from S state to I state. The node with I state will end the
whole propagation process by switching from I state to R state with proba-
bility p2 after propagating the information. The state transition is shown in
Figure 6.
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Figure 6. Traditional SIR model propagation diagram

The traditional SIR model keeps both the infection probability p1 and immu-
nity probability p2 constant during the transmission process. In an actual
online social network, the attitude of nodes is constantly updated over time.
The update of node attitudes also leads to a consequent change in the trans-
fer probability between individual states. And the different polarities of the
nodes’ attitudes lead to a relatively positive and negative influence on the dis-
seminated information. Thus, based on the SIR model, this paper assumes
that the nodes in the network may be in one of the five states S, I+, I−, R+,
and R−. And the states of the nodes may change. The specific propagation
model state transitions are shown in Figure 7. Since state changes are directly
and closely related to the possibilities of transition between states, this paper
will assume that the probability of infection from the S state to the I+ state
is p1+ and from the S state to the I− state is p1−; the probability of immu-
nity from the I+ state to the R+ state is p2+ and from the I− state to the
R− state is p2−. Table 4 describes the states and parameters of this section in
detail.

Figure 7. Transformation diagram of information transmission model based on node at-
titude change

Based on the above analysis, this paper quantifies the node attitudes on and
redesigns the corresponding new propagation rules by combining the different
propagation influence caused by the different polarity of node attitudes, as de-
scribed below:

1. There are three major classes of states for nodes in the network, and the three
classes of states can be further subdivided into five specific states, which are
S state, I+ state, I− state, R+ state, and R− state. The I state can be
subdivided into I+ state and I− state, which represent the communication
states with positive and negative emotions towards the message, respectively.
The R state can be subdivided into the R+ state and the R− state, which



1524 M. Li, X. Li, Y. Zhang, J. Pan, R. Yang

Notation Description

S The health state that has never received a message
I The state with the ability to spread
I+ The state with a tendency to spread positive influences
I− The state with a tendency to spread negative influences
R The immune state with loss of transmission capacity
R+ The state of maintaining a positive influence but no longer disseminating
R− The state of maintaining a negative influence but no longer disseminating
p1 The probability of infection from S state to I state
p1+ The probability of infection from S state to I+ state
p1− The probability of infection from S state to I− state
p2 The probability of immunization from I state to R state
p2+ The probability of immunization from I state to R+ state
p2− The probability of immunization from I state to R− state

Table 4. Description of node state and transformation probability

indicate the immune state with positive and negative emotions towards the
message, respectively.

2. If a node in S state receives the influence of the propagated information
from the propagating node, then the attitude value of the current state node
will also complete further update operations according to the attitude up-
date principle. A node in S state may switch with probability p1+ to the
propagation I+ state with positive attitude tendencies, or switch with prob-
ability p1− to the propagation I− state with negative attitude tendencies,
p1 = p1+ + p1−.

3. Once a node becomes immune to the R state, it will not be affected by the
propagation node or propagation behavior, but will remain in the R+ or R−

state until the end of propagation.

4. During propagation, a propagation node in the I+ state may switch with
probability p2+ to the immune R+ state with positive attitude tendency, or
a propagation node in the I− state may switch with probability p2− to the
immune R− state with negative attitude tendency, p2 = p2++p2−. It is also
stipulated that nodes in propagation states cannot be transformed between
specific propagation I+ state and I− state.

C. Node state transition

The propagation dynamics of the classical SIR information propagation model
are:

dS(t)

dt
= −p1S(t)I(t), (4)

dI(t)

dt
= p1S(t)I(t)− p2I(t), (5)
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dR(t)

dt
= p2I(t) (6)

where the network size is the total number of nodes as N and S(t) denotes
the total number of nodes in the network in S state at moment t, I(t) de-
notes the total number of nodes in the network that are in I state at time t,
R(t) denotes the total number of nodes in the network that are in R state
at moment t, and satisfies S(t) + I(t) + R(t) = N . The parameter p1 de-
notes the probability that an S state node makes contact with an I state node
and becomes a new I state node. The parameter p2 indicates the probabil-
ity that a node in I state becomes a node in R state during the propagation
process.

In this paper, we model the node attitude updating process of inter-node rela-
tionships based on non-Bayesian social learning principles, and consider negative
relations to define new variable transfer probability calculation methods. The
relevant parameters and descriptions are shown in Table 5.

Notation Description

pSSi The probability that node i remains in S state
pSIi The probability of node i changing from S state to I state
pIIi The probability that node i remains in I state
pIRi The probability of node i changing from I state to R state
β Non-autonomous factors of node transition from S state to I state
γ Non-autonomous factors of node transition from I state to R state
ΓI
m(i) The set of I−state nodes that deliver information to node i in state S

p1j
I
1 The infection probability of node i under the influence of propagating

node j

p1j
I
m The infection probability of node i under the influence of m propagating

nodes

Table 5. Description of transformation parameters and symbols

1. At moment t, the attitude value of healthy node i in S state is assumed to
be ui

t, and at moment t + 1, the probability of node i maintaining healthy
S state is assumed to be P SS

i , while the probability of node i moving from
healthy S state to propagation I state is P SI

i , and P SS
i + P SI

i = 1. The
transition is schematically shown in Figure 8.

Figure 8. Schematic diagram of S state transition

If at moment t + 1, healthy node i in S state receives information propa-
gation from a single propagation node j in I state. A single propagation
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node j can be denoted jI1 . The infection probability p1j
I
1 can be expressed

as:
p1j

I
1 = u

jI1
t+1 +

(
1− u

jI1
t+1

)
× β (7)

where u
jI1
t+1 represents the updated attitude value of node i at moment t+ 1

after being subjected to a message transfer from a single node jI1 in I state.
β represents the non-autonomous factors of the node’s transition from S
state to I state, such as the nature of the message, the self-attraction of the

message, etc.; (1−u
jI1
t+1)×β represents the proportion of the non-autonomous

factors in the transfer probability.

At this point, the probability that node i remains healthy under the influence

of a single propagating node jI1 is then 1−p1j
I
1 = 1−

[
u
jI1
t+1 +

(
1− u

jI1
t+1

)
× β

]
.

If there exist m propagating nodes propagating messages to healthy node i
at moment t + 1, then node i will be under the joint influence of these m
propagating nodes, and the probability of maintaining S state despite this
joint influence can be expressed as:

pSSi =
(
1− p1j

I
1

)(
1− p1j

I
2

)
. . .

(
1− p1j

I
m

)
=

∏
jIm∈ΓI

m(i)

1− p1j
I
m

=
∏

jIm∈ΓI
m(i)

{
1−

[
u
jIm
t+1 +

(
1− u

jIm
t+1

)
× β

]}
=

∏
jIm∈ΓI

m(i)

{
1−

[
ui
t + αu

jIm
t δ

(
i, jIm

)
× (1− β) + β

]}
.

(8)

where ΓI
m(i) =

{
jI1 , j

I
2 , . . . , j

I
m

}
denotes the set of I-state nodes that deliver

information to node i of S state.

Therefore, the probability pSIi of a healthy node i changing from the original
S state to the I state under the joint influence of m propagating nodes can
be expressed as follows:

pSIi = 1− pSSi

= 1−
∏

jIm∈ΓI
m(i)

{
1−

[
ui
t + αu

jIm
t δ

(
i, jIm

)
× (1− β) + β

]}
.

(9)

In this paper, we quantify the node i attitude value ui
t at a certain t moment

on the scale of [−1, 1]. If the node attitude ui
t is between [−1, 0] for negative

state. And the node attitude ui
t is between [0, 1] for positive state, which

means node i has the intention of propagation behavior and both the prop-
agation node in the positive state. The propagation node in the negative
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state has the same ability to influence the behavior state of other nodes. In
calculating the probability when node transfer probability, according to the
definition given before, the probability of a node transforming from a healthy
state to a propagated state p1 is:

p1 = 1−
∏

jIm∈ΓI
m(i)

{
1−

[∣∣∣ui
t + αu

jIm
t δ

(
i, jIm

)∣∣∣× (1− β) + β
]}

. (10)

The probability of transitioning from the S state to the I+ state to become
a positively propagating node is p1+. When the node attitude is positive,
that is, when the node attitude value is greater than zero, p1+ is calculated
as follows:

p1+ = pSIi = 1− pSSi

= 1−
∏

jIm∈ΓI
m(i)

{
1−

[
ui
t + αu

jIm
t δ

(
i, jIm

)
× (1− β) + β

]}
.

(11)

Based on the derivation of Equations (9) and (10), the probability p1− of
transitioning from the S state to the I− state to become a negatively prop-
agated node is obtained. The calculations are as follows:

p1− =p1− p1+

=

1−
∏

jIm∈ΓI
m(i)

{
1−

[∣∣∣ui
t + αu

jIm
t δ

(
i, jIm

)∣∣∣× (1− β) + β
]}

−

1−
∏

jIm∈ΓI
m(i)

{
1−

[
ui
t + αu

jIm
t δ

(
i, jIm

)
× (1− β) + β

]} .

(12)

2. At the moment t + 1, the probability that the propagation node i origi-
nally in I state maintains the propagation state is assumed to be pIIi , and
the probability of node i moving from propagation I state to immune R
state is pIRi , and pIIi + pIRi = 1. The conversion schematic is shown in Fig-
ure 9.

Figure 9. I Schematic diagram of state transition

At the moment t + 1, if node i in I state is subjected to the influence of
propagating node jI1 , the probability that node i transforms from I state to
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R state at this time is:

pIRi|jI1
=

(
1− u

jI1
t+1

)
+ u

jI1
t+1 × γ (13)

where γ denotes the non-autonomous factors of node transfer from the I

state to the R state, such as encountering immune nodes, etc. u
jI1
t+1 × γ

represents the proportion of non-autonomous factors in the probability of
transfer.

If there exist m propagating nodes propagating messages to node i at time
t+ 1, the probability of node i moving from I state to R state is:

pIRi =
m∏

m=1

pIRi|JI
m
=

m∏
m=1

(
1− u

jIm
t+1

)
+ u

jIm
t+1 × γ. (14)

The transformation of a node from a propagation state to an immune state
can also be divided into two specific cases:

(a) Transitioning from the I+ state to the R+ state becomes an immune state
node that maintains a positive view with probability p2+.

(b) The probability of switching from an I− state to an R− state and becom-
ing an immune state node that maintains a negative view is p2−.

In addition, considering the property of non-negative probability, this paper
takes the absolute value of negative attitudes and uses the absolute value
as its propagation probability. In summary, the probability p2 of a node
transforming from the I state to the R state is:

p2 =
m∏

m=1

(
1−

∣∣∣ujIm
t+1

∣∣∣)+
∣∣∣ujIm

t+1

∣∣∣× γ. (15)

The probability of switching from the I+ state to the R+ state to become
an immune state node that maintains a positive view is p2+, when the node
attitude is greater than zero:

p2+ =
m∏

m=1

(
1− u

jIm
t+1

)
+ u

jIm
t+1 × γ. (16)

The probability of switching from an I− state to an R− state to become an
immune state node that maintains a positive view is p2−:
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p2− =p2− p2+

=

{
m∏

m=1

(
1−

∣∣∣ujIm
t+1

∣∣∣)+
∣∣∣ujIm

t+1

∣∣∣× γ

}

−

{
m∏

m=1

(
1− u

jIm
t+1

)
+ u

jIm
t+1 × γ

}
.

(17)

The specific propagation rules of the propagation model constructed in this
paper and the way of transition between states are described in detail above,
which can reflect the update of node attitudes at each time step and its
influence on the transfer probability of each state, as well as the dynamic
changes in the state transfer process.

4 EXPERIMENT AND ANALYSIS

We use a subset of the symbolic social network dataset Bitcoin-Alpha as a test
dataset. The Bitcoin-Alpha dataset [31] comes from a Bitcoin trading site where
users are anonymous and therefore need to establish an online trust network to
ensure their security. Bitcoin-Alpha members set other members’ ratings to range
from −10 (not at all trustworthy) to +10 (fully trustworthy), which helps prevent
fraudulent transactions from occurring. In this paper, scores greater than 0 are
considered positive and other scores are considered negative. The nodes in the
network represent the users in the site, and the connected edges and labels between
users represent whether the relationship between them is positive or negative. The
total number of nodes in this dataset is 3 183, the number of edges is 14 124, the
average degree is 7.3090, and the average aggregation coefficient is 0.1775. Next, this
paper will conduct specific experiments on the proposed information dissemination
model incorporating negative relations from the following aspects:

1. We analyze the overall process of propagation, focusing on the five types of
node state change trends proposed in this paper, and then further analyze the
influence of inter-node relationships in the network on propagation.

2. We compare the model proposed in this paper with the classical SIR model
with the same parameters and two more mature propagation models based on
the IC model and LT model, SC-B model and TG-T-B model, respectively,
which are applicable to symbolic networks, to demonstrate the effectiveness of
our proposed model in predicting the information propagation process and its
applicability in symbolic social networks.

4.1 Analysis of Information Dissemination Process

At the beginning of the information dissemination process, an arbitrary “seed node”
is selected as the dissemination state in the initial state, and all other nodes are
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temporarily in the easy-to-propagate state. The propagating node can dissemi-
nate information to its neighbors in a propagation-prone state, and may also be
influenced by other nodes. After a period of time, the propagation nodes will lose
their propagation interest and stop disseminating information, transforming into an
immune state. Propagation nodes maintain their views even after switching to im-
mune nodes. Based on the model proposed in this paper, the trend of the number
of nodes in the network with time change for the three major categories of nodes is
first analyzed, and the results are shown in Figure 10.

Figure 10. Node information transmission trend of the three categories

By observing the trend of the number of nodes in the three types of states in the
figure, we can see that the number of immunity is zero in the initial condition, and
after the seed nodes start to propagate, the number of nodes in the easy propagation
state rapidly decreases and become nodes in the new propagation state, leading to
a rapid increase in the number of propagation nodes. With the extension of time,
some of the nodes in the propagation state lose their propagation interest due to
a combination of factors, and thus make the number of nodes in the immune state
increase. When the number of nodes in the propagation state reaches its peak,
the nodes in the propagation state are still transformed into nodes in the immune
state with a certain probability as time changes, that is, the number of nodes in
the propagation state gradually decreases and the number of nodes in the immune
state gradually increases until the nodes in the propagation state disappear and
the number of nodes in the immune state stabilizes, and the propagation process
ends. In summary, the propagation process is consistent with the characteristics of
real propagation in which the number of propagation nodes rises sharply and then
ends slowly, which can reflect the process of creation, development and extinction of
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information propagation in the network. Therefore, the information dissemination
model incorporating negative relationships proposed in this paper is able to better
reflect the information dissemination law in online social networks.

In addition, in order to more clearly and intuitively reflect the node state change
trend in the model proposed in this paper, we further analyze the five possible states
of S, I+, I−, R+, and R− of the nodes in the network on the basis of the above
three types of node state analysis. The trend of the number of nodes in the network
with time for five specific node categories is shown in Figure 11.

Figure 11. Information transmission trend diagram after node status is specified

We arbitrarily select the nodes in the I+ state as seed nodes in the initial stage
of propagation. If the conventional model is extrapolated, there will be only I+

state propagation nodes during the propagation process, and after some time the
I+ state nodes slowly become R+ state nodes. In fact, this inference is not reason-
able. This is also demonstrated in our experiments, as shown in Figure 11. Since
people are social in nature, each individual has his or her own attitude or view-
point towards different information or specific events. And people will demonstrate
positive or negative communication behaviors depending on the social environment
and the influence of people around them. Therefore, the existence of positive at-
titudes in the communication process will inevitably lead to the opposite negative
attitudes.

In addition, since there is no specific classification of the type of information
or event itself in this paper, the information or event in this paper is neutral by
default. As for neutral events, theoretically, there should not be a significant differ-
ence in the number of propagation state nodes for the two different attitudes. The
specific state in which the number of propagating nodes is dominant may be related
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to the state of the first propagating seed nodes and the overall propagation prefer-
ences of the node community. This is also consistent with the results presented in
Figure 11.

Therefore, the experimental results and analysis prove that the information dis-
semination model incorporating negative relations proposed in this paper can rea-
sonably reflect the information dissemination law in online social networks, and also
can more specifically show the change trend in the number of nodes with different
attitudes of dissemination status. Our research can provide more specific direc-
tions for the government and other relevant public opinion monitoring departments
to consider regarding the adjustment of the overall direction of public opinion to
maintain social stability.

4.2 Comparison and Analysis with Other Models

Next, we simulate the proposed information propagation model incorporating neg-
ative relations with the classical SIR model and the more mature IC-based propa-
gation models SC-B model and TG-T-B model for symbolic networks in the same
environment and with the same symbolic network data set.

Since the classical SIR model is still mainly applied to the information propaga-
tion prediction of unsigned networks at this stage, here we set the initial parameters
of the model as follows: First, we use the SIR model to select an arbitrary “seed
node” at the initial stage of the information dissemination process, and set the state
of the seed node to the propagation state, and all other nodes are temporarily in the
easy propagation state. At the same time, in order to consider the special charac-
teristics of symbolic networks, we set the strength of any link randomly between the
interval (−1, 1) while considering the polarity of edges. In the process of propaga-
tion, based on the strength of linked edges, the propagating nodes may spread the
information to their neighbors in the easy propagation state with a certain proba-
bility, or they may be transformed into immune nodes with a certain probability.
Next, we compare the trend of the number of nodes in the SIR model with the
number of nodes over time with the model proposed in this paper, as shown in
Figure 12.

By observing and comparing Figure 12 a) and 12 b), we can find that the prop-
agation process using the SIR model is consistent with the sharp increase in the
number of propagation nodes in real propagation compared with using the model
proposed in this paper, while the propagation process using the SIR model does not
conform to the characteristics of real propagation in which the number of nodes in
the propagation state reaches a peak and then ends slowly. The number of prop-
agation nodes in Figure 12 a) eventually tends not to zero, but a constant, while
in real life, the information dissemination process cannot always be in a state of
intense propagation continuously. Therefore, the traditional SIR model does not re-
flect the extinction process of information dissemination in symbolic social networks.
The proposed model reflects the process of creation, development and extinction of
information dissemination in symbolic social networks. It also proves the applica-
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a) Evolution data graph of classical SIR model on symbolic network data set

b) The evolution data graph of the proposed model on symbolic network dataset

Figure 12. Comparison diagram of the propagation trend of the classic SIR model in the
same environment
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a) SC-B model evolution data graph on symbolic network dataset

b) Evolution data graph of TG-T-B model on symbolic network dataset
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c) Model evolution data graph presented in this paper on symbolic network dataset

Figure 13. Comparison diagram of propagation trend with SC-B model and TG-T-B
model designed based on symbolic network in the same environment

bility of the information dissemination model incorporating negative relationships
proposed in this paper in compliance with social networks.

We simulate the SC-B model and the TG-T-B model, which are improved prop-
agation models based on the IC model and the LT model applicable to symbolic
networks, with the models proposed in this paper in the same environment and
with the same symbolic network data set. And the trend of the number of nodes in
the three models with the time change is shown in Figure 13.

By comparing and observing Figure 13 a), 13 b), and 13 c), we can see that us-
ing the SC-B model and the TG-T-B model remain basically the same as using the
model proposed in this paper in terms of the time to reach the peak of propaga-
tion, i.e., all three models can evaluate the practice and the maximum propagation
range of the propagation nodes in the network to reach the peak. However, the
SC-B model and TG-T-B model cannot portray the propagation extinction time
and extinction process, and have limitations in propagation prediction. The model
proposed in this paper can well portray the process of communication extinction and
give prediction of the time of communication extinction, which can better reflect the
complete process of information communication and predict important communica-
tion characteristics.

In summary, we can see that the model proposed in this paper can better es-
timate the maximum possible coverage of propagation events, predict the earliest
possible time to reach the peak of propagation and the total duration of the disap-
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pearance of propagation nodes. These are important for monitoring the development
of public opinion and making corresponding preventive and emergency measures in
time.

5 CONCLUSIONS

In this paper, we study the information dissemination model based on the attitude
change of nodes from the relationship perspective, and propose a social network
information dissemination model incorporating negative relationships. The conclu-
sions of our study can be drawn as follows.

1. We analyze the influence of negative relationships on communication in the
context of social research. The modeling of nodal attitudes is more reasonable.

2. We give a mathematical description and characterization of node attitudes and
their changes, so as to construct an information dissemination model applicable
to symbolic social network analysis.

3. The experiments prove that the model proposed in this paper can reflect the
trend of nodes in the propagation process in terms of quantity and predict the
important propagation characteristics.

Since the relationship evaluation mechanism in this paper does not specifically
quantify the relationship strength and size, in the future, we will work on refining the
evaluation mechanism of relationship polarity and relationship strength to further
optimize the model to improve its performance in practice.
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