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Abstract. Generative Adversarial Networks have gained popularity mainly due to
their ability to create fake human faces. The remarkable detail with which such
images have been created in the past few years has exceeded the ability of humans
to differentiate between these fake images and real images. Such images have been
known to be capable of deceiving the face recognition systems with certain success as
well. Forensic systems being developed nowadays take into account adversarial at-
tacks in order to create a more comprehensive detection approaches. Different GAN
algorithms such as StackGAN, StyleGAN use different architectures to produce im-
ages. Since the underlying technique is different from one another it is difficult for
any single detection algorithm trained on one kind of GAN to detect fake images
generated from some other kind of GAN. In this research we use a siamese net-
work with triplet loss function to provide a generic solution for detection of GAN
generated images or deepfake images. Extensive experiments have been conducted
to analyze the effectiveness of the proposed approach. The results show that the
siamese triplet loss network performs significantly better than the contemporary
approaches with accuracy exceeding 90% in most experiments.
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1 INTRODUCTION

In the past few years we have seen a tremendous amount of growth in the field of
Artificial Intelligence and Deep Learning, notable among these are the Generative
Adversarial Networks. One truly remarkable outcome of GANs is the photo-realistic
synthetic media including images and videos [1]. GANs have found their applications
in diverse computer vision fields including conditional image translation [2], text-to-
image synthesis [3], style mixing [4], cross domain context matching [5] and domain
specific high quality image synthesis [6]. Creating falsified human faces in images
or videos is commonly referred to as deepfakes.

As it can be seen from Figure 1, the visual quality of synthesized media (or
deepfakes) produced by GANs is not discernible from real content without the aid
of any specialized tools. This has numerous useful applications in multimedia field
such as remaking old movies, creating realistic animations both of fictional charac-
ters and real people that are a part of history now. However, deepfakes are more
frequently used for malicious purposes with ill intent. This creates many challenges
that have widespread impact if left unchecked, for example – using deepfake images
to create fake identities, creating deepfake videos for the purpose of exploitation
and promoting false propaganda. Such applications create concerns in numerous
fields including security systems reliability, political deception and misconceptions
and legal data’s authenticity [7, 8, 9]. One factor that makes the problem of deep-
fakes more urgent and dangerous is the use of social media to spread such falsified
content – social media not only has a widespread effect but is also known for the
incredibly fast speed at which any information spreads using it.

a) b) c) d)

Figure 1. Visual comparison of images randomly taken from PGGAN dataset. a), c) are
artificial and b), d) are real. GAN synthesized images are realistic and high-quality posing
a unique challenge in their identification.

The magnitude of the threat posed by deepfakes makes it even more important
that a solution is devised for its timely and effective detection. Visual media in
most cases is considered irrefutable, and thus can have a much more lasting impact
than any information given through other media such as text. Research done in
order to detect these deepfake forgeries have enjoyed a degree of success [10, 11,
12, 13, 8, 9, 14], mostly owing to the fact that the deepfake content generation
algorithms are not fully mature yet. The current focus is in detecting deepfake
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image or video forgery using statistical and/or morphological properties of images.
These solutions, however, do not produce the same quality of results when tested on
in-the-wild deepfakes or even deepfakes generated from a different GAN algorithm.
Any effective solution will need to look to create a more sustainable solution by
ensuring that it is robust to unseen or in-the-wild deepfakes.

Our work focuses only on deepfake images and provides a generalized solution
compared to the state-of-the-art deepfake image detection solutions. This study
highlights the shortcoming of the current solutions and addresses those by making
use of a triplet loss based siamese network. Numerous experiments are conducted
and results have shown that use of a triplet loss helps make the detection solution
more robust and effective.

The paper is organized as follows. Section 2 discusses literature review related to
the problem, while problem formulation is discussed in Section 3. Data preprocessing
is described in Section 4. Experimental results and evaluation of the proposed
research are provided in Section 5. Finally, the conclusion and future direction are
stated in Section 6.

2 RELATED WORK

2.1 Generative Adversarial Networks (GANs)

GANs [1, 2, 15, 5, 6, 4, 16, 17, 3, 18, 19] have the ability to create photo-realistic
visual media such as images and videos.

Multiple applications are freely available to the public [20, 21, 22] that can be
used to generate the fabricated images, most of these images change or manipulate
a person’s identity or facial expressions. GANs were first introduced by Goodfellow
et al. in [1] where a generative architecture was presented with the capability to gen-
erate the data given some similar examples as training data. GANs have improved
tremendously since then.

Karras et al. in [6] and [4] have created GANs with high quality, condition-
ally styled, more consistent, and stable graphics with negligible artifacts. Choi
et al. [2] have designed a unified GAN model for the image to image translation.
Isola et al. [18] proposed a model that gives high-quality images that are translated
into other domains using GANs. Another improvement in the domain of image-to-
image translation is proposed by Zhu et al. [19], in which pair-to pair translation is
done by using a pair of data examples, one example X is used as input and the other
is used as Y or output image reference. In previous researches, some focused on
the resolution of reconstructed images by comparing with the original image resolu-
tion [23]. Li and Wand [24] improve the GAN generated images’ quality in real-time,
in which the model generates 512 × 512 images within 40ms. In [25] authors use
the unsupervised mechanism for generating the synthetic images using the joint dis-
tribution of input images of different domains. GAN models are converted into the
recurrent neural network by Im et al. [15], where a generator, and discriminator
both compete with each other in the training process. Zhao et al. emphasize on
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energy factor in adversarial networks to provide the minimal energy-based synthetic
images [16].

2.2 Fake Face Forensics

There are numerous studies on the detection of AI-generated fake photos or videos
using deep learning models, which can be categorized into two broad segments:
deepfake video forensics and deepfake image forensics.

2.2.1 Deepfake Video Detection

Deepfake videos have recently become an important discussion topic due to their
impact in causing discord and chaos in political and religious situations. They are
commonly used to disgrace politicians and celebrities. Video forensics [8, 26, 27,
28, 11, 29] has thus been an active area of research. Güera and Delp [8] present
a two-stage method that extracts the features from frames using a CNN. These
features are passed to a Recurrent Neural Network that differentiates the deepfake
videos from real ones based on image inconsistencies. The shortcoming of this
approach is that it fails to find the forgery artifacts in small regions. Li and Lyu [26]
gave another method that can detect the deepfake videos by utilizing the concept
of face wrapping artifacts, it performs well but these artifacts are not seen in all
deepfake videos so the solution is not generalizable In some of the investigations [27,
28], researchers consider the morphological feature of frames like eye-blinking, head
position, etc. for video forensics. Afchar et al. [11] demonstrate the failure of
forgery detection methods based on morphological features in the case of compressed
videos and presents the multi-layer solution based on CNN. Most of the forensics
techniques proposed in literature do not work in low-resolution deepfake videos.
Their effectiveness is also linked to the algorithm used for generation of deepfake
media, which limits their success to certain scenarios.

2.2.2 Deepfake Image Detection

Image forenscis has been used to identify manipulated photos, enhanced photos,
image-to-image translations and deepfake facial images [9], [12, 30, 31, 32]. Deepfake
images have been used recently to spoof security systems that work on facial identity.
These have also been employed to create fake identities on social media to spread
fake news and to promote false propaganda. Deepfake face image forgeries can be
created by either doing a faceswap or an expression swap. A faceswap replaces the
facial features of target person’s with those of source person, while expression swap
modified the facial features of target person based on those of source person. Quite
some work has been done to detect deepfakes [10, 14, 33, 13, 34]. Many of these
techniques employ machine learning and deep learning for image forensics based on
the pixel-based attributes.
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Rössler et al. [12] devised the method for detection of FaceSwap, Face2Face, and
deepfake manipulated images by using deep convolutional neural networks. Marra
et al. [35] identify the image-to-image translation visual forgery and claim that
fabricated, altered, tempered, or manipulative visual forgery is relatively easy to
detect rather than GANs. Li et al. [14] in 2019 proposed a model based on pixel
color dissimilarities like a flaw of color difference, distortion, and any other kind
of artifact. Co-occurrence metrics are used to measure these artifacts from images
which are classified using deep neural network. In [12], the authors focus on the
specific fabrication of media, e.g. face swap, whereas another study [13] deals with
the human crafted and GAN fake images forgery. In another research [10], the
author proposed the techniques based on the neural architecture that can detect the
specific type of forgery like FaceSwap, and emotion change.

Wang et al. [10] proposed a new method based on examining the neuron be-
havior. They tested their system on Style and PGAN fake images are identified in
the study. The proposed method observes the neuron behavior layer by layer, gives
a positive result for the fake image, and finally, fine-grained features are extracted
and input to SVM classifier that classify the input image. As GANs become more
powerful, we need more sophisticated detection methods as well. Xuan et al. [33]
work on the generalization of forensics methods by employing the noisy fake im-
ages just to remove the basic artifact and enforce the model to learn more and
more intrinsic feature that enhance the generalization of proposed model. Spectral
input rather than pixel-wise has been used in [36]. Their technique used GANs
artifacts created during the up-sampling of fake images as an indicator of deep-
fakes. There is limited literature that is specifically carried out for GANs forensics
which identifies the region of tampering as well. Dang et al. [37] identified the
GAN images by employing a CNN that works on the pre-processed dataset (only
tampered or GAN region of the image) to recognize the fake image. On the other
hand, Tariq et al. [13] devised the classifier for human created and Progressive
GAN images and have also devised the end-to-end framework for automatic detec-
tion [34].

2.3 Vulnerabilities of Visual Forensics

Stat-of-the-art face recognition systems have a lot of vulnerabilities in terms of their
robustness. Korshunov and Marcel [38] evaluate the vulnerabilities of current face
recognition systems regarding image morphologies in 2019. Performance has been
tested using two architectures: Facenet and VGG, with a False Acceptance Rate
of 95% and 85%, respectively. In the survey state-of-the-art forensics techniques
are also evaluated for deepfake video detection that are created using GANs. Re-
search demonstrates that GAN generated visual contents are more challenging for
face recognition systems, as well as existing detection system, and in the future,
advanced technologies for deepfake creation will make it even more difficult to dif-
ferentiate between a real image and a fake one [38]. Fake media content creates
serious community issues as it takes time to find the credibility of visual content.
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New tools and techniques are designed for the recognition of fake visual content but
the synthetic media generation algorithms are also evolving.

Numerous studies exist for deepfake video forensics while few are available for
image forensics. In limited research regarding image forensics, most methods do not
focus on detection of GAN generated visual contents. GANs forensics techniques are
designed with machine learning and deep neural networks. State-of-the-art methods
show high positive prediction with less false results but the catch is the training data.
All these models provide noteworthy results when the training and test dataset
contain images generated using the same GAN technique, but show a significant
drop in performance when the training and test dataset come from different (GAN)
algorithms. Therefore state-of-the-art deepfake forensics’ performance is yet to be
seen in the real-world environment.

The proposed study is aimed at providing a more generic solution – we use
training and test samples collected from different datasets and use a triplet loss to
find feature embeddings that are less effected by the generation algorithm and hence
perform better with unseen data.

2.4 Siamese Network

Siamese networks are deep networks that have two streams or more, where each
stream shares the same learning weights. These are often refered to as one-shot learn-
ing architectures due to their applications in domains with limited data. Siamese
networks use loss functions, such as contrastive loss or triplet loss, which ensure that
not only is each example transformed into an equivalent feature embedding but also
the feature embeddings of the same class examples lie closer together while feature
embeddings of different class examples are far apart. Intuition behind the one-shot
learning is to find the similarities between the same class and differences between the
different class examples. Moreover, siamese triplet loss network is an advanced form
of one-shot learning in which three samples are taken at one time and triplet loss
is measured in each iteration for learning rather than simple cost function [39]. We
have used siamese network because of this ability to create meaningful embeddings
which will allow for robustness towards unseen data.

3 PROPOSED METHODOLOGY

In this section, a detailed discussion is provided on the proposed methodology and
the architecture used in this study.

3.1 Data Preparation

Three datasets were used for the experiments carried out in this study, PGAN,
FFHQ, and StyleGAN. Figure 2 shows the data preparation methodology.
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Figure 2. Proposed methodology comprises three data samples that are pre-processed
with model training, evaluation, and generalization.

4 DATA PRE-PROCESSING

Since our main focus is on identification of fake faces from real ones, we pre-process
the images to extract the facial area as is given in Algorithm 1. Samples I are
selected, which are at the first step re-scaled to 128 × 128 sized images. Centering
and rescaling of images to extract face area improves the accuracy of the algorithm.
The resized images are normalized using the Z-score calculated as given by the
formula:

Zi =
xi − µ

σ
. (1)

In Equation (1), xi is the given sample, µ is the mean, and σ shows the standard
deviation of samples. Applying standard normalization, value of µ is set to 0, and σ
to 1. Normalization improves the overall efficiency of the algorithm. The categorical
labels are converted to numeric labels, where 0 represents the fake or GAN generated
image and 1 represents the real image.

4.1 Classification

A typical neural network learns the similarities between the input samples to classify
them in the given categories whereas a CNN learns the features and the similarities
for classification. These networks perform best when the training samples are similar
to the test samples. A set of experiments were conducted to support this argument,
as presented in Table 2 where we can see that the pretrained networks provide
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Input: I = Face Image
Parameter: rescale = 1.05, min n = 6
Output: F = Cropped Face
I = Browse Image
grey = Greyscale conversion
faces = detect multi scale(grey, rescale, min n)
if faces is then

while (x, y, h, w) in faces do
face = crop(I, (x, y, h, w))
F = resize(face, [128, 128])

end

else
go back to the image browse;

end
return F

Algorithm 1: Algorithm for face cropping and resizing

an accuracy of over 90% when the dataset used for training is similar to the one used
for testing. However, the problems in real world seldom have such a perfect balance.
A siamese network finds the distance between the similarities found between samples
of the same class and those of different classes, enabling us to work on smaller data
just as successfully as on larger data [39]. This is why it is often used for one-shot
learning or classification. A siamese network uses three inputs: anchor sample A,
the positive sample P and the negative sample N . A triplet loss is calculated that
minimizes the distance of the positive sample to the anchor, while maximizing the
distance of the negative sample to the anchor.

The siamese network in our study uses five convolutional layers followed by
a fully connected layer. Figure 3 represents the proposed siamese architecture. The
initial layers take as input an image of 128 × 128 × 3 dimension that is reduced
to 27 × 27 × 128 before being passed to the final classification layer. The net-
work consists of two blocks each comprising of two convolutional layers followed by
a single max pooling layer. Both layers in first block use 32 filters while in second
use 64 filters. The final convolutional layer uses 128 filters, followed by flattening
and classification layers. The network uses shared weights while creating embed-
ding for each image in the sample, values of which are later used for calculating
loss.

The network seeds with Xavier weights that gives normalized values for initial-
ization that are normally distributed with mean zero and the standard deviation
is 1

N
, where N is the number of input neurons. For activation of the hidden layer,

ReLU is used that gives max(x, 0) and no activation at the output layer as the pro-
posed solution finds the embedding vector rather than classification. Furthermore,
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Figure 3. 12-layer proposed architecture with input shape 128 × 128, and output 100-
dimensional embedding vector. Two conv2D preceding with max pooling, extract the
desired feature that are flatten, normalize, and concatenate to measure the cost for model
learning.
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lambda layer transforms the values into l2 norm form, given in Equation (2). For
input samples x = x1, x2, . . . , xd with dimension d, l2 norm will be:

||X|| =
√∑

x2
i =
√
xT · x. (2)

Input: Predicted Embedding vector
Output: loss= Calculated loss
1: anchor out ←− embeddingA
2: positive out ←− embeddingP
3: negative out ←− embeddingN
4: positive distance ←− Dist(anchor out , positive out),
5: negative distance ←− Dist(anchor out , negative out)
6: basic loss ←− Diff (positive distance, negative distance)
7: exponent loss ←− 1 + exp(basic loss)
8: loss ←− log(exponent loss)

return loss

Algorithm 2: Algorithm for triplet loss

The triplet loss function uses latent space vectors of A, P , N and labels of sam-
ples as input parameters. These vectors are assigned to the corresponding variables,
distances positive distance between A, P and negative distance between A, N are
calculated in steps 4, 5. Their difference basic loss is measured in step 6 that is
utilized for further steps. Exp is applied on basic loss in step 7 followed by log of
exponent loss which is the final loss. This loss loss is back propagated before the
next iteration. To decide the weightage of loss or learning rate that will be prop-
agated in each iteration, Adam optimizer is used. As compared to Adagrade and
RMSprop that consider only the average of the previous gradient, Adam calculates
first- and second-order derivatives of the moment of the gradient [40].

mt =
mt

1− βt
1

,

vt =
vt

1− βt
2

, (3)

θt+1 = θ1 −
µ

√
vt + ϵ

mt. (4)

Here, mt, vt show the first, and the second order of the moment calculated with
the help of gradient decent values. In equation mt, vt are initialized with zero, β1,
β2 are 0.999 close to one, ϵ is set as 10−8 and µ is learning rate. Equation (4) is
used for update of weights, θt, θt+1 show the previous and new weights consecu-
tively.
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4.1.1 System Requirements

The experiments were carried out on GTX 1080 Ti GPU with 32-bit, 25GB RAM,
550GB SSD, and (PSU) 1 000–1 500W (power supply). Python 3.7.0 with Tensor-
Flow and Keras were used.

5 RESULTS AND EVALUATION

In this section we first demonstrate the ability of pre-trained models such as ResNet
and VGG to detect fake images while they are trained and tested on the same
dataset. Later we evaluate them on different training and test datasets and introduce
our own model for comparison. Firstly, we discuss the dataset distributions and the
performance parameters.

5.1 Dataset Distributions

The experiments conducted are split into two cases:

Case I – where training and test sets come from the same dataset;

Case II – where training and test set come from different datasets.

For the first case, the real images are taken from FFHQ dataset, while fake sam-
ples are generated using StyleGAN. The distributions for training and test samples
are given in Table 1. In the second case, we train our system on FFHQ and StyleGan
while testing it using images generated by PGAN.

Dataset Training Testing Total

Case I

StyleGAN 30 k 10 k 40 k

FFHQ 30 k 10 k 40 k

80 k

Case II

StyleGAN 40 k 40 k

FFHQ 40 k 40 k

PGAN 40 k 40 k

120 k

Table 1. The number of samples for training and testing sets on each sample class

5.2 Performance Measures

For a thorough investigation, we have used multiple performance measures including
Accuracy, Precision, Recall, F1-score, Cohen Kappa, ROC, and PRC. Given ahead
are the mathematical formulations for each one of these.
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Accuracy is calculated as a ratio of true positives to the total samples we have,
as given in Equation (5).

Accuracy =
TP

TP + TN + FP + FN
(5)

where

• TP = True Positive (Set of examples that belongs to fake face class and pre-
dicted as fake),

• TN = True Negative (Set of examples that belongs to real face class and pre-
dicted as real),

• FP = False Positive (Set of examples that belongs to real face class and predicted
as fake),

• FN = False Negatives (Set of examples that belongs to fake face class and
predicted as real).

Precision (Equation (6)) and Recall (Equation (7)) are measures of True Pos-
itives compared to False Positives and False Negatives. While F1-Score (Equa-
tion (7)) is the ratio between Precision and Recall.

Precision =
TP

TP + FP
, (6)

Recall =
TP

TP + FN
, (7)

F1-Score =
2× (Recall × Precision)

Recall + Precision
. (8)

Cohen Kappa is given by:

κ =
P0 − Pe

1− Pe

(9)

where P0 is identical to accuracy, and Pe is the estimated probability calculated
using the observed values of each category separately and it can be given by:

Pe =
(TP + FP)× (TP + FN ) + (TN + FP)× (TN + FN )

(TPS )× (TNS )
. (10)

In Equation (10), TPS and TNS are the total positive and negative samples
respectively used for evaluation of the model.

The receiver operating curve (ROC) and precision recall curve (PRC) is also
used for the assessment of the proposed model. The model is considered as best as
its area under the curve (AUC) converges to 1.
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5.3 Proposed Model

A siamese network focuses not only on predicting a true label for given data but also
tries to pull together examples belonging to the same class while pulling apart the
examples from different classes as much as is possible. Contrastive loss and triplet
loss are used for this purpose. We have used triplet loss for the calculation of which
we need three inputs: a positive example, a negative example and an anchor. The
algorithm minimizes the distance between the positive example and the anchor and
maximizes the distance between the negative example and the anchor.

We created two variations of the siamese network. The first variation consists of
a 12-layered architecture consisting of convolution layer, pooling layers, normaliza-
tion layer and dense layers. The architecture has 3 streams corresponding to each
of the input images. Each input has the same dimension of 128× 128× 3 and each
stream uses the same number and size of filters. This allows for weight sharing to
be possible among all three streams as is an integral part of a siamese network.
Figure 3 provides a representation of this architecture.

In the second variation to our siamese network, we have used ResNet50 as
the base architecture. Each stream of the siamese network is one instance of the
ResNet50. However, we see that in Case I shallow network as base performs better
than ResNet50.

5.4 Case I Experiments

In Case I we extracted training and test samples from the same datasets. In order to
detect deepfake images, we first use the transfer learning technique. In this study we
use five pre-trained models: VGG16, VGG19, ResNet50, InceptionV3, and Xception
net.

5.4.1 Experimental Setup

VGG16 is 16-layer architecture with 13 convolutional and 3 dense layers while
VGG19 is a 19-layer in which 16 are convolutional and 3 dense layers. The net-
work uses pretrained imagenet weights with 128 × 128 × 3 input where we freeze
the initial layers and retrain the dense layers. Both models converge in less than 35
epochs, with early stopping criteria based upon validation loss, and take no more
than an hour of execution on the GPU.

InceptionV3 is 48-deep layer architecture with an 11-inception module and each
module contains the convolutional, pooling, and ReLU activation layers [41]. Xcep-
tion is another model that holds 36-convolutional layers which are arranged into
14 modules with the linear residual connection between them [42] and ResNet50 is
a 50-layer model incorporated with 49 convolutional, max-pooling, and average pool-
ing layers [43]. These models are also trained with imagenet weights, 128× 128× 3
input shape, where we retrain all the layers instead of freezing the top layers. Incep-
tionV3 achieves highest accuracy in 14 epochs with approximately 1 hour, Xception,
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ResNet50 converge in 18, 28 epochs with approximately 63 min., and 1 hour and
45 min., respectively.

The performance of each of these architectures is given in Table 2.

Model Accuracy Precision Recall F1- Kappa AUC
Score

VGG16 94.67% 95.84% 93.4% 94.6% 89.3% 98.7%

VGG19 94.98% 95.53% 94.4% 94.9% 89.9% 98.9%

ResNet50 98.93% 98.93% 98.9% 98.9% 97.9% 99.9%

InceptionV3 96.81% 99.70% 93.9% 96.7% 93.6% 97.2%

Xception 96.09% 97.01% 95.1% 96.0% 92.2% 98.8%

Proposed Model 94.8% 94.6% 94.9% 94.8% 96.9% 94.9%

Table 2. Comparison of pre-trained networks and proposed model on Case I where train-
ing and test samples are from the same dataset

5.4.2 Results

From experiments, it can be concluded that VGG16, VGG19 yield similar results,
while InceptionV3 and Xception performs better than VGG16, VGG19 with 96.81%,
96.09% accuracy, respectively. Moreover, ResNet50 gives significantly better results
in terms of performance metrics Accuracy, Precision, Recall, F1-score, Kappa, and
AUC. ResNet has a powerful feature of skip connection that stops the model deterio-
ration due to deep network. Our model also provides performance comparable to the
pre-trained models even though it is not the-highest performance. Since ResNet50
outperformed all other pre-trained networks, therefore, we provided a closer look
at its learning curves. Figure 4 gives the performance learning curve and Figure 5
shows the model optimization learning curve for ResNet50.

Figure 4 shows the 2-dimensional plotting of training and validation accuracies
during each epoch. After initial fluctuations, the model starts to converge after 15th

epoch. We see another performance degradation after epoch 28 where the model
tends to overfit.

Figure 5 shows the loss curve of the ResNet50 model with validation and training
loss. Much like model accuracy, the loss measure improves after the 15th epoch.

It can be seen that ResNet50 shows significant results with high number of
correct predictions. The true positive rate (TPR) and false-positive rate (FPR) for
ResNet50 are given below [44]:

TPR =
TP

TP + FN
=

9951

9 951 + 49
= 0.9951, (11)

FPR =
FP

FP + TN
=

119

119 + 9 881
= 0.0119. (12)
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Figure 4. Performance curve of ResNet50

5.5 Case II Experiments

In Case II we extracted training and test samples from different datasets to measure
the ability of the deepfake detection solutions to generalize.

Figure 5. Optimization curve of ResNet50
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5.5.1 Experimental Setup

We performed numerous experiments with changing size of triplet batch, dimensions
of input samples, base network and loss function. Here we report the best results
based on optimized parameters. The input size used is 128× 128× 3 and the triplet
batch size selected is 32. Higher batch sizes show a performance degradation. The
loss function has a significant impact on the quality of results. We elaborate that
in detail here:

Loss Functions. Three loss functions Loss1 (Equation (13)), Loss2 (Equa-
tion (14)), and Loss3 (Equation (15)) have been used for our experiments.

Loss1 = max

[
N∑
i=1

{{fa
i − fp

i }2 − {fa
i − fn

i }2}, 0

]
(13)

where i = 1, 2, 3, . . . , N , N is the number of dimension of features, a anchor, p pos-
itive, and n negative samples. fa, fp, fn show the extracted features of anchor,
positive, negative samples, respectively. Using Loss1 model achieves 61.6% accu-
racy. With Loss1 in case of negative value of

∑N
i=1{{fa

i − fp
i }2 − {fa

i − fn
i }2} term,

the model always returns zero failing to trigger any weight update or learning. Neg-
ative values occur when the distance between positive and anchor samples is large.
By adding a margin term we reduce the problem of information loss.

Margin based loss function Loss2 is described in following Equation (14):

Loss2 = max

[
N∑
i=1

{{fa
i − fp

i }2 − {fa
i − fn

i }2}+margin, 0

]
. (14)

Here, margin is a constant parameter and set as 0.4 in learning process of the model.
Loss2 yields 64.46% accuracy which is a minor improvement to Loss1. However,
both Loss1 and Loss2 suffer from the problem of vanishing gradient. To control
the vanishing gradient problem we introduce log loss function. Siamese triplet log
loss with exponents provides the highest accuracies. The loss function is given as in
Equation (15):

Loss3 = log

[
1 + exp

{
N∑
i=1

{|fa
i − fp

i | − |fa
i − fn

i |}

}]
. (15)

We can see a jump of over 30% in accuracy compared to margin-based loss while
using log loss. Loss3 is a non-linear function using logarithmic log(.) and exponent
exp(.); which are non-linear and monotonically increasing functions that returns the
increasing values in case of a negative term. This enhances the gradient preventing
the vanishing gradient problem of previous two loss functions. With the exponential
value in Loss3, the model learns even in case of negative values. The model thus
creates an embedding vector that minimizes the d(a, p) and maximizes the d(a, n).
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5.5.2 Results

While pre-trained models (as in Case I) do provide over 90% accuracy when trained
on similar test and training samples, they seem to show a significant degradation
in performance when the samples vary. This can be attributed to the fact that the
pre-trained models tend to learn the artifacts that are left behind by the deepfake
generation algorithm – sometimes termed as ’artificial fingerprints’ – and thus per-
form poorly when the algorithm changes. For better visualization we have provided
Figure 6 where the x-axis illustrates the model and the y-axis holds the respective
detection accuracies of PGAN deepfakes. The highest detection rate 17.81% of
VGG19.

Figure 6. Performance of all methods evaluates with Case II

With such significant performance drop, we shifted our focus to developing an
architecture that has the ability to better generalize by being less affected by the
choice of deepfake algorithm. In this scenario a siamese network with triplet loss
function creates optimal facial embeddings which show little to no connection with
the generation algorithm. The results can be seen in Table 3. A visual representation
of effect of siamese network on embedding vectors can be seen in figures.
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Model Case-I Case-II
(PGAN)

VGG16 94.70% 16.67%

VGG19 94.90% 17.81%

ResNet50 98.90% 4.27%

Inception V3 96.80% 2.45%

Xception 96.10% 5.81%

Proposed Method 94.80% 54.75%

Table 3. Comparison of accuracies of pre-trained networks and proposed model on Case II
where training and test samples are from different datasets

Figure 7. Siamese triplet loss embedding visualization

6 CONCLUSION

Deep learning generated images are often used for recreational purposes but their
malicious uses have the ability to cause a serious disruption in the society. The need
for a solution that has the ability to detect such deepfakes as-they-come is becoming
more and more important by the day. Most existing solutions rely on the knowledge
of the algorithms used to generate these images and thus show reduced performance
in case of unseen examples.

In the proposed study we have used a siamese network in order to create repre-
sentations of images that are independent on the generation algorithm. We provided
extensive experiments with pretrained networks and our siamese network and have
proved that the use of triplet loss at the time of feature extraction can make the fea-
tures more robust. Triplet loss enforces the feature representations or embeddings
have high similarity for related examples and vice-versa. We test multiple loss func-
tions and different models to verify our findings. When test set is generated from
a different dataset, our model provides a 54.75% accuracy which is 3 times higher
than its closest pre-trained model counterpart. This proves the claim that for better
generalization networks need to be trained with not only regular loss functions as
cross entropy or MSE but also with more suggestive loss functions as contrastive
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loss or triplet loss. This opens up a new dimension to how we have been training
our neural networks traditionally.

REFERENCES

[1] Goodfellow, I. J.—Abadie, J. P.—Mirza, M.—Xu, B.—Farley, D.W.—
Ozair, S.—Courville, A.C.—Bengio, Y.: Generative Adversarial Networks.
2014, doi: 10.48550/arXiv.1406.2661.

[2] Choi, Y.—Choi, M. J.—Kim, M.—Ha, J.W.—Kim, S.—Choo, J.: StarGAN:
Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Trans-
lation. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2018, pp. 8789–8797, doi: 10.1109/CVPR.2018.00916.

[3] Reed, S. E.—Akata, Z.—Yan, X.—Logeswaran, L.—Schiele, B.—Lee, H.:
Generative Adversarial Text to Image Synthesis. In: Balcan, M.F., Weinberger, K.Q.
(Eds.): Proceedings of the 33rd International Conference on Machine Learning. Pro-
ceedings of Machine Learning Research (PMLR), Vol. 48, 2016, pp. 1060–1069.

[4] Karras, T.—Laine, S.—Aila, T.: A Style-Based Generator Architecture for Gen-
erative Adversarial Networks. 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2019, pp. 4396–4405, doi: 10.1109/CVPR.2019.00453.

[5] Kim, T.—Cha, M.—Kim, H.—Lee, J.K.—Kim, J.: Learning to Discover Cross-
Domain Relations with Generative Adversarial Networks. In: Precup, D., Teh, Y.W.
(Eds.): Proceedings of the 34th International Conference on Machine Learning. Pro-
ceedings of Machine Learning Research (PMLR), Vol. 70, 2017, pp. 1857–1865.

[6] Karras, T.—Aila, T.—Laine, S.—Lehtinen, J.: Progressive Growing of GANs
for Improved Quality, Stability, and Variation. 6th International Conference on
Learning Representations (ICLR 2018), Conference Track Proceedings, 2018, doi:
10.48550/arXiv.1710.10196.

[7] Yu, N.—Davis, L.—Fritz, M.: Attributing Fake Images to GANs: Learning and
Analyzing GAN Fingerprints. 2019 IEEE/CVF International Conference on Com-
puter Vision (ICCV), 2019, pp. 7555–7565, doi: 10.1109/ICCV.2019.00765.
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