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Abstract. Alzheimer’s dementia (AD) is characterized by memory loss, which is
one of the earliest symptoms to develop. In this study, we investigated audio tran-
script data of patients with Alzheimer’s dementia. The study involved the use of
three intelligent computational approaches: conventional machine learning (Support
Vector Machine, Random Forest, Decision Tree), sequential deep learning (LSTM,
bidirectional LSTM, CNN-LSTM), and transfer learning (BERT, XLNet) models
for automatic detection of linguistic indicators for early diagnosis of Alzheimer’s
dementia. These models were trained on the DementiaBank clinical transcript
dataset. The grid search tuning approach is used for tuning the values of the hyper-
parameters. Text vectorization is done using the Term Frequency-Inverse Document
Frequency (TF-IDF) information retrieval approach. TF-IDF is based on the Bag
of Words (BoW) paradigm, which deals with the less and more relevant words in
a transcript. Results were evaluated and compared using several performance met-
rics. The state-of-the-art techniques implemented on DementiaBank dataset in our
methodology achieved better performance in terms of accuracy. Transfer learning
models showed better classification results in comparison to sequential deep learn-
ing models. However, sequential deep learning models outperformed traditional
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machine learning models. Overall, in terms of accuracy, BERT and XLNet were
the most accurate, with accuracy of 93% and 92%, respectively.

Keywords: Dementia, memory loss, transcript data, deep learning, convolutional
neural network, Bi-LSTM

1 INTRODUCTION

The most prevalent form of dementia is AD. Around 50 million people worldwide
have AD, and other forms of dementia are anticipated to triple in prevalence within
30 years because of the ageing population [1]. AD accounts for 60% to 70% of all
dementia cases, affecting 1 in every 14 people over the age of 65 and one in every
6 people over the age of 80 [2]. AD is incurable and cannot be healed or reversed.
However, a medicine may be used to delay or stop the progression [3]. Cognitive
impairment, which may include difficulties with word retrieval and impaired reason-
ing or decision-making, is one of the initial symptoms associated with Alzheimer’s
disease. Memory loss is one of the initial symptoms, followed by problems with lan-
guage use, and everyday tasks, and, in more advanced stages, struggles with simple
bodily functions such as walking. Neurons in other areas of the brain are affected
and killed as the disease progresses [4]. Once an essential part of an individual’s
daily life, those activities that may be out of reach, such as organizing family gath-
erings or engaging in sports, is now out of the question. The functional areas of
the brain eventually degenerate. Finally, the patient loses full control and becomes
dependent on the continuous attention of a caregiver [5].

1.1 Speech Difficulties in Alzheimer’s Disease Patients

Cognitive impairment is a direct and inevitable result of language difficulties, mak-
ing it one of the most recognisable symptoms of AD. During patient-neurologist
interactions, language and communication deficiencies are visible, and interactional
remarks can be employed to distinguish between cognitive difficulties produced by
neurodegenerative disorders and cognitive difficulties caused by functional memory
disorders [6]. Prior research has identified that AD has a major effect on the speech
signal, and numerous methods for detecting AD using only speech or spoken text
information have been published. Typical AD memory disorder causes all of these
problems [7]. For example, it is possible that the initial indicators of AD will be word
retrieval issues, which can present themselves in changes in a variety of language
elements such as verbal naming, density and amount of words, correct meaning com-
munication, pauses, and speaking pace. Word recovery is assessed frequently with
the help of image description tasks, in which participants are guided to explain what
they see. These tasks enable the evaluation of the lexical and syntactic complex-
ity, which is also declining in dementia, in addition to word retrieval [8]. Memory



Alzheimer’s Prediction Using Audio Transcript 1591

deficiency also leads to repetitive terms and concepts, leading to communication
mistakes, less consistency, and density of knowledge [9].

1.2 Motivation

Alzheimer’s speech processing using machine learning (ML) and natural language
processing (NLP) motivates this study. There is no cure for AD, but the progres-
sion can be delayed and, in some cases, halted by treatment if diagnosed early. The
pathology of AD most likely starts several years, if not decades, before symptoms
appear. As a result, there is a chance for prevention if potential developments can
diagnose the disease using linguistic biomarkers before symptoms appear. Narra-
tives are analysed to compare the language abilities of persons with and without
Alzheimer’s disease. This results in investigating the link between cognitive and
language abilities, and to establish an early predictor. Through the use of a mo-
bile application, people with limited access to medical care will be able to screen
for early indicators of dementia. While these innovations will be useful, they are
still in progress and are not yet available to the public. The motivation of this
work is to implement the state-of-the-art techniques for automatic speech analysis
to monitor Alzheimer’s disease patients and to provide light on prospective future
research issues. In the proposed study, a comprehensive analysis has been done to
test and validate the efficiency of conventional machine learning models (SVM, De-
cision Tree and Random Forest), sequential deep learning models (LSTM, Bi-LSTM
and CNN-LSTM) and with pre-trained transfer learning models (BERT and XLNet)
for Alzheimer’s prediction.

1.3 Contributions

In automatic detection of Alzheimer’s dementia with computational intelligence
models and NLP, promising results were achieved. Potentially, automated language
processing could lead to an efficient and non-intrusive way of detecting clinical prob-
lems and the accessibility and affordability of dementia testing. The following is
a brief description of the article’s main contributions:

• This study evaluated the comparative performance of three computational in-
telligence approaches for the classification of AD and non-AD by identifying
linguistic patterns.

• First, we investigated the role of conventional ML models: Decision Tree, Ran-
dom Forest, and Support Vector Machine for the early detection of linguistic
characteristics of Alzheimer’s patients.

• Furthermore, we investigated the performance of sequential DL models: LSTM,
Bi-LSTM, and a hybrid of CNN-LSTM for automatic detection of linguistic
indicators of cognitive memory loss in AD.

• Additionally, we explored the significance of two TL models: XLNet and BERT
for predicting AD.
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• Two embedding techniques like TF-IDF and pre-trained embedding are used.
The objective is to test the efficiency and robustness of the models used in the
study with a corpus of training, test and validation data.

• Also, the efficiency and accuracy of the models used in this study were compared
with state-of-the-art existing models to show that our approach has better and
more robust performance in comparison to the earlier models.

• Further, the performance of the models in the study was tested with statistical
validation technique (cross-validation) and has shown that the performance of
the models was consistent over all folds of training and test sets.

2 VOICE PROCESSING AND ALZHEIMER’S DEMENTIA

Language evaluation has seen an increase in the usage of automated speech signal
processing techniques in recent years, particularly in diagnosing cognitive patholo-
gies [10, 11]. Such techniques can be used to identify signal features that are essential
for diagnosing certain disorders. Subsequently, using intelligent computational tech-
niques, the process of sample classification is carried out in accordance with the prior
findings achieved. The most often deployed and traditional aspects of AD detec-
tion from audio transcripts are linear, as they are the most simply interpretable
clinically. Other recent and innovative methods, on the other hand, have included
non-linear characteristics. Both of these characteristics are significant markers of the
language’s expressive architecture and are dependent on the activities accomplished.
Intelligent computational techniques are used in this work to classify speech features
in addition to the feature extraction procedure, which uses statistical analysis, and
mathematical models. Several of these are conventional machine learning (ML) [12],
sequential deep learning (DL) [13] and transfer learning (TL) [14, 15, 16] models,
each of which has distinct architecture and operating features.

2.1 NLP in Computer-Aided Diagnosis

The outbreak of disease diagnostic has called attention to the enhancement of remote
diagnosis systems and early detection of diseases, and the discovery of new antidotes
and drugs. Today, the healthcare industry is expanding at a speed never seen before.
In this scenario, the role of NLP becomes extremely prominent in utilizing digital
data (e.g., Electronic Health Records (EHR) [17], Weibo User Depression Detection
Data Set [18], etc.) to detect serious diseases at the earliest. These data are primarily
unstructured and are time-consuming to determine the stage of disease. An NLP
model can help to remove irrelevant text and highlight the medical keywords along
with their numeric values, if any, to provide a quick summary of the diagnostic
report. This will save time in identifying the stage of a patient from a pile of
text. NLP in computer-aided diagnosis has high susceptibility for enhanced medical
decision-making [19].
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3 RELATED WORK

Earlier work on language-based AD detection focused primarily on hand-crafted
features extracted from transcripts, with some acoustic data included. In König
et al. study, data was collected when participants completed a series of brief cogni-
tive vocal tasks [11]. Detecting initial vocal cues (such as short answers, repeated
requests for clarification about the past, and starting with interjections) was accom-
plished using the speech processing methods. In addition, the vocal markers were
examined for their “ability” to discriminate between patients with healthy control
(HC), mild cognitive impairment (MCI), and AD. Second, the vocal indicators were
tested for their “ability” to differentiate between HC, MCI, and AD. Automated
audio analysis was able to distinguish between HC and MCI by 79%± 5% and HC
with AD by 87%± 3%. Orimaye et al. used the DementiaBank language transcript
clinical dataset, which included 99 patients with suspected AD and 99 HC, to con-
struct machine learning models [20]. The models discovered a variety of syntactic,
lexical, and n-gram linguistic biomarkers that could be used to differentiate the
likely AD group from the healthy group. They found that people who might have
AD used a lot less syntactic parts of their language and a lot more lexical parts of
their language. Fraser and his team used the recordings of 264 people who talked
about the Cookie Theft picture from the DementiaBank corpus. To find out how
accurate the automation classification from healthy to AD was, machine learning
techniques were used. In this case, the standard accuracy of 81% was achieved [21].
Clark et al. studied the data of 107 people with MCI and 51 HC for the study. The
tests were transcribed, and linguistic characteristics were extracted, comprising raw
word count, intrusions, repeats, groups, and shifts, mean word frequency, average
sentence frequency, and algebraic connection. The study combined linguistic dimen-
sions with data from MRIs, allowing for the creation of novel results by achieving an
accuracy of 83.20%. In the analysis, the classifiers trained (Novel + Brain) in new
ratings outperformed those trained in rough rating [22]. Karlekar et al. [23] LSTM-
RNNs, and their combinations were employed in three neural models based on CNNs
and LSTM-RNNs to distinguish between AD and control patient language samples.
The accuracy of the CNN, LSTM, and CNN-LSTM models was 82.8%, 83.7%, and
84.9%, respectively. Verbal fluency (VF), spontaneous speech (SS), and other tasks
are the three main types of language tests used to determine many health issues as-
sociated with AD [24]. Meghanani et al. [25] experimented with fastText, and CNN
models with a single convolutional layer were used to extract n-grams from the
input phrase while initializing word embeddings with GloVe vectors. CNN and fast-
Text text models reach 79.16 and 83.33% accuracy for predicting AD. JabaSheela
et al. evaluated AD patients’ language using DL. AD and CN transcripts were used
to train neural networks. CNN and CNN+bidirectional LSTM were compared where
CNN + bidirectional LSTM obtained 72% accuracy in experiments [26]. Sarawgi
et al. [27] evaluated ADReSS dataset using multimodal inductive transfer learning
with temporal features to detect AD and its severity. 83.3% accuracy was recorded
in their study, which was further evaluated on the Pitt database with an accuracy of
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88%. Balagopalan et al. studied the usefulness of speech transcript representations
derived from more clinically applicable language feature-based approaches and TL
models (e.g., BERT). Feature-based techniques and fine-tuned BERT models worked
well with a small set of linguistic variables, indicating the necessity of comprehen-
sive linguistic information for identifying AD cognitive deficits. Fine-tuned BERT
models detected AD with 85.14% accuracy [28]. A typical method of attempting
SS is to ask participants to explain an image or to engage in conversation with the
participants. Also, it could be employed to recall a movie, a day, a case, or a dream.
These activities can be used to examine various linguistic features, including word
retrieval ability, syntactic and semantic difficulties, and communication errors.

Linguistic Tests/Tasks for Data
Collection

Spontaneous Speech 
(SS)

Verbal Fluency  
(VF)

Other Task 
(OT)

Picture Description 
looking / from memory

Interview / Conversation

Day Discription

Event Description

Recalling a dream

Animals  
n = 10

Fruits  
n = 10

Other creatures

Sentence Repetition

Reading Recordings

Countdowns

Denomination

Story Writing

Vegetable 
n = 10 

Figure 1. Categories of language exams for AD prediction

In VF, one minute is allotted for participants to come up with a list of terms
beginning with the letter F. Typically, success in fluency exams has been determined
by an estimate of the number of right words generated in one minute. A wide range
of measurements falls outside the boundaries of either the short-term or long-term
memory tests. Using these tasks, researchers can study many aspects of cognition,
semantic processing, and linguistic and auditory processes. Datasets related to
Alzheimer’s dementia contain audio or video recordings of these tasks that were
transcribed and used in the literature. A list of the methods and tasks that are
used to acquire language and speech data is shown in Figure 1. In Figure 1, “n”
represents the number of words participants are asked to name in fluency tasks



Alzheimer’s Prediction Using Audio Transcript 1595

within 1 minute that are either from the same semantic category or begin with the
same letter. The linguistic data of all these tests were recorded on video or audio
and then converted into transcription.

4 METHODOLOGY

In this section, the methodology for the prediction of AD is discussed. The outline
of the framework proposed in this study is shown in Figure 2. The abbreviations
used in Figure 2 are listed in Table 1.

DL and TL Models

, Acc, F1_Score

Figure 2. Proposed methodology framework

S. No. Abbreviation Full Form

1. TF-IDF Term Frequency-Inverse Document Frequency

2. SVM Support Vector Machine

3. LSTM Long short-term memory

4. Bi-LSTM Bidirectional Long short-term memory

5. CNN-LSTM Convolutional Neural Network – Long short-term memory

6. BERT Bidirectional Encoder Representations from Transformers

7. AUC Area Under the Curve
8. Acc Accuracy

Table 1. Description of abbreviations used in Figure 2
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4.1 Dataset Description

DementiaBank is a research corpus that collects speech and language samples of
Alzheimer’s dementia and other dementia-related disorders. The dataset contains
transcripts of interviews with Alzheimer’s patients.

The Pitt Corpus, a dataset containing records of 264 participants explaining the
image of Cookie Theft attainable on DementiaBank Corpus. Cookie Theft picture
is a popular test for language and cognitive impairment evaluation and was used for
all experiments performed in this research. Numerous exercises are documented and
transcribed in the DementiaBank dataset. We used transcriptions from a descriptive
assignment for both the language model and the bag of words classification. Cookie
Theft was an image that participants were asked to interpret, a speech-based med-
ical examination for neurological diseases. The linguistic data were collected either
on audio or video in all of these tests and subsequently transcribed. The linguistic
features that are identified in the dataset are listed in Table 2 which are further
converted into vectors using the vectorization approach. Based on these linguis-
tic features identified, the data is labelled as 0 and 1, representing control normal
(CN) and Alzheimer’s dementia (AD). Further, the set of data was partitioned into
training, testing, and validation data, and several classifiers were used to evaluate
the effectiveness of the automatic identification between CN and AD category. The
dataset consists of a total of 3272 sample sentences of normal and Alzheimer’s pa-
tients. Out of these figures, 1676 are from class 0, and 1596 are from class 1. Here,
0 signifies control normal patient (AD−) and 1 signifies Alzheimer’s patient (AD+),
as shown in Figure 3.

S. No. Categories of Lin-
guistic features

Clusters of Linguistic Features

1. Short Answers and
Bursts of Speech

Short responses clustered by speech pauses.
i.e., “uh”, “okay”, “s”, “um”, “hm”, “xxx”, “oh”,
“shh”.

2. Repeated Requests
for Clarification

The cluster includes clarification inquiries and confu-
sion about the task, specifically in the past tense.
i.e., “did I tell?”, “Whether that’s more than what I
said?”, “will he hit the bottom ?”, “uh everything
that’s going to happen, huh ?”, “does that have
enough ?”, “I?”.

3. Starting with Inter-
jections

Clusters include utterances that begin with interjec-
tions.
i.e., “oh”, “well”, “and”, “but”, “may be”. { “maybe
that was an apron and um maybe this was the um”,
“oh there’s a girl & uh reaching(g) for a cookie”, . . . }

Table 2. Categories of linguistic features identified in dataset
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Figure 3. Samples of AD and non-AD linguistic transcript after pre-processing and class
labelling

4.2 Data Pre-Processing

The dataset created initially is labeled as a .tsv file. Each entry of the patient was
used as an input. Patients with possible AD were marked as 1, and the entries of
control patients were marked as 0. Since the dataset has an approximately equal
sample count (both AD+ and AD−), the need for data balancing is insignificant.
Apart from this, medical data is very sensitive (patients’ personal information) and
needs to be processed with domain expertise. In non-medical NLP problems, we
usually reduce words to their respective present tenses or stem the words in order
to get the original root word.

However, in the case of medical data, the use of such techniques would not be
a good idea. It is possible that an Alzheimer’s patient may incur grammatical or
linguistic mistakes and repeat that pattern in the subsequent sentences. Therefore,
the data pre-processing is done using the following steps:

• Removing punctuations,

• Removing left out spaces,

• Removing stop words,

• Removing non-ascii characters,

• Keeping only alphabet characters by removing all the symbols,

• Converting the whole sentence into lower case for uniformity.
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4.3 Vectorization Method: Term Frequency –
Inverse Document Frequency (TF-IDF)

This approach is employed by the concept that a AD+ and AD− individual would
utilise a specific set of words in the phrases. TF-IDF captures those specific set
of words and generates vectors putting high weights on those words. TF IDF is
a statistical method that is widely used in information retrieval from a collection of
documents.

This will represent the frequency of a term (word) in a particular document
such that whether it appears multiple times or it is a rare term. The inverse term
frequency will tell how dominant a term is in the whole collection of documents [29].
This approach captures the semantic relevance of words by identifying which words
are irrelevant and which are important. Each word in the collection will have its TF
and IDF value [30]. Common words like “is”, “the” will have very high TF but will
be penalized by the IDF as this will appear in most of the document.

TF-IDF captures those specific set of words and generates vectors putting high
weights on those words. The TF-IDF have several relevant parameters that we may
send to the algorithm which will handle the preprocessing. Following are some of
the important parameters:

• Stop words: A list of strings can be passed to the algorithm so that these strings
will be dropped from actual collections of documents. Typical stop words from
English are: “is”, “an”, “this”, “the” etc.

• n-gram range: By defining the boundary of minimum and maximum correspond-
ing n-grams can be extracted.

• Maximum and minimum document frequency: We can set the upper and lower
cut-off for the most and least occurring words. Like Maximum document fre-
quency of 80 will ignore all the words that are present in more than 80% of the
document collection.

• Lower-casing: We can opt for all the characters into lowercase only.

• Maximum features: This will allow to select only top maximum features accord-
ing to the term frequency score.

• TF-IDF parameters: Vector dimensions = 316, max df = 0.9, min df = 5.

The step-wise sequence of generating word embeddings for a sentence is demon-
strated in Figure 4.

Using the word embeddings approach, we calculated numerical vectors for each
pre-processed data point. First, we generated word indexes by converting all of the
sample text into sequences. The Keras text tokenizer is utilised to extract these
indices. We have assured that the tokenizer does not issue a zero index to any
term (because of padding), and we have also adjusted the vocabulary length corre-
spondingly. Following that, each distinct word in the dataset is allocated a unique
index, which is utilised to build numeric vectors of all text samples. The vector,
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and it he's uh in bad shape because uh the this

Original sentence from dataset

Tokenization

and it he's uh in bad shape because uh the this

Vectorization

20 9 18 70 24 46 700 104 155 40 208

Padding

101 1998 1996 10447 2453 2131 2991 2098 2058 2065 1005 0 0 0.....

Text Embedding

o.11 0.14 0.87 0.87 0.94 0.12 0.91 0.74 0.58 0.65 0.10 0.2 0.3 0.8.....
0.91 0.7 0.21 0.78 0.18 0.27 0.85 0.63 0.73 0.22 0.24

0.74 0.34 0.78 0.91 0.25 0.16 0.74 0.33 0.19 0.77 0.31

.....

........
..

0.11 0.9 0.3

0.1 0.7 0.4

...
..

11 x 1 Numeric Vector

100

14751

11 words

Figure 4. word embedding for a single sentence

or embedding dim in our case, has a length of 186. By doing a search within the
vector space, each and every one of the top 14 751 unique words is transformed into
vectors. The supplied vector thus has 100-dimensional columns of features with
a vocabulary of 14 751, and each vector is filled as a row in the embedding ma-
trix. We built a 25× 128 output embedding vector for each tokenized vector using
a 128-element embedding layer on our DNNs. In order to reconstruct the linguistic
context of words, an EMBEDDING FILE is created. This creates a vector space
with typically several hundred dimensions, where each unique word in the corpus
has its own vector.

At last, the data is divided into three sets: Train, Validation, and Test. Train
set contains 70% of the data, and validation set contains 20%, and the test set has
the remaining 10% of the data. The vectors generated are fed to various models for
classification. Below are the statistics shown for three classification approaches.

5 METHODS: COMPUTATIONAL INTELLIGENCE TECHNIQUES

In this study, we implemented three intelligent computational approaches for the
classification of Alzheimer’s dementia and non-dementia by detecting linguistic in-
dicators of cognitive memory loss.
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5.1 First Approach: Machine Learning Models

5.1.1 Decision Tree (DT)

DT is a non-linear supervised and most prevalent algorithm that takes a set of
attributes and can map them into target class, value, and probability [31, 32].

The study used criterion = ‘gini’, min sample leaf = 1, min sample split = 2,
presort = ‘deprecated’. The training is done for every instance of the training set.
The algorithm also lacks robustness towards noisy data and usually overfits the
noise.

5.1.2 Random Forest (RF)

To have a more robust classifier than a decision tree, many ensemble techniques
because they are hard to overfit, give better accuracy, and can even estimate missing
data. RF [33] is one such model that constructs multiple decision trees, called base
models or weak learners in ensemble technique, simultaneously in the training phase,
and the majority of the decision class is chosen as the outcome.

In this methodology, various parameters of random forest, such as n estima-
tors = 100, min sample leaf = 1, min sample split = 2, criterion = gini, are used.
Of all the outcomes, either mean or median was taken depending upon the distri-
bution of the original database.

5.1.3 Support Vector Machine (SVM)

SVM [34] assigns a category to new record on the basis of its decision boundary
(Hyperplane) and works well for linearly separable data points, but for non-linear
datasets, it needs to transform the data into high-dimensional feature spaces, such
that the transformed data become linearly separable [35, 36]. To perform this,
SVM classifier uses a mathematical algorithm popularly known as kernel trick. It
is a function that eases to work with the given data points without the need to
find corresponding data points in the transformed feature space. Parameters set for
SVM are: degree = 3, Kernel = ‘rbf’ and pre dispatch = 2 ∗ n jobs.

5.2 Second Approach: Sequential Deep Learning Models

In this approach, we used sequence models and sequence + convolution models for
training our data. Sequential neural networks [37] are a variant of feed-forward
neural networks with a recurrent loop from the previous time step to the next time
step for capturing the sequential dependency in the data [38].

5.2.1 Long Short-Term Memory (LSTM)

For capturing the long-term dependencies in sequential data and solving the issue
of vanishing gradient problems in recurrent neural networks, LSTMs were intro-
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duced [39]. The underlying architecture of LSTM used in this methodology as
shown in Figure 5 represents the architecture consisting of input length = 100, out-
put dim = 100, we are using input dim = size of the vocab in the embedding layer,
one LSTM layer of 128 unit with 0.2 dropout rate and output dense layer with
1 unit. At each time step t = T , LSTM takes input of the cell state/memory state
and hidden state from the previous time step t = T − 1, and input of the current
state.

Figure 5. LSTM architecture for the classification of AD+ and AD−

The output gate filters out the information that should be passed to the next
LSTM cell in the sequence at time t = T + 1.

LSTM model is trained with loss = binary crossentropy, optimizer = Adam,
metrics = accuracy, epochs = 50, batch size = 256 and validation split = 0.1. One
of the major shortcomings of LSTM is that it only captures unidirectional context
in a sentence and therefore a more robust architecture like Bi-LSTM had to be
designed.

5.2.2 Bidirectional Long Short-Term Memory (Bi-LSTM)

Improving over the shortcomings of unidirectional LSTM, we experimented with
a bidirectional LSTM. Bi-LSTM is a powerful Recurrent Neural Network, able to
capture a word’s semantics in a sentence in both directions simultaneously [23].
Bidirectional LSTM architecture implemented in this is shown in Figure 6, where
we used input length = 100 and output dim = 100; input dim = the size of the
vocabulary in the embedding layer; one LSTM layer with 128 units and a 0.2 dropout
rate; and a dense output layer with 1 unit. Using the Bi-LSTM model, the loss
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was set to binary cross-entropy and used Adam as our optimizer; the metrics are
accuracy, epochs are 50, the batch size is 256, and validation split is 0.01.

Figure 6. Architecture of a bidirectional RNN with a single hidden layer

The complete text sequence [X0, X1, . . . , Xn] is passed as input with the first to-
ken of the sequence in forward LSTM’s first cell and the last token of the sequence
in backward LSTM’s first cell. The classification task is performed by concatenating
the output of the last LSTM cells of both the forward and backward LSTM layers
and then passing the values through an output layer. In the output layer, a sig-
moid function is used as an activation to make the probabilities of both classes of
events occurring. Bi-LSTM showed enhanced performance on transcript data than
unidirectional LSTM.

5.2.3 Hybrid of CNN-LSTM

Convolutional Neural Network (CNN) has already been proved to be a significant
neural network architecture for the extraction of meaningful features from the image
data. The CNN model is used for feature extraction from the sequential data and the
LSTM model for interpreting the features [40]. This model can be described as an
input layer followed by a CNN layer and an LSTM layer and then the dense output
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layer, as shown in Figure 7. Hybrid of CNN and LSTM is implemented for AD
classification using the embedding layer with input length = 100, output dim = 100,
input dim = size of the vocab and dropout rate = 0.1, a convolutional layer with
32 units with pool size = 4, one LSTM layer with 64 units and output dense layer
with 1 unit with sigmoid activation function. This hybrid model is trained with
loss = binary crossentropy, optimizer = Adam, metrics = accuracy, epochs = 50,
batch size = 256 and validation split = 0.1. The result is Max pooled and flattened
before passing it to through an LSTM layer for creating a context vector in the final
LSTM unit [41, 42]. The context vector passes through a fully connected sigmoid-
activated output layer for bi-class predictions.

Figure 7. CNN-LSTM hybrid model architecture for classification of AD+ and AD−

5.3 Third Approach: Transfer Learning Models

Transfer learning models have brought a breakthrough in the field of NLP and
are continuing to do so [43]. To train transcript data for AD classification, the
study employed Bidirectional Encoder Representations from Transformers (BERT)
and XLNet. BERT develops a language representation using concurrent Masked
Language Modeling (MLM) and together with Next Sentence Prediction (NSP).
MLM allows bidirectional training which was not possible in previous methods.

5.3.1 XLNet

XLNet is an autoregressive language model trained using Transformer-XL archi-
tecture. XLNet solves the existing shortcomings of BERT. Though BERT learns
a language model using MLM, the masked tokens never learn the context with each
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other and hence can result in irregular token predictions. We used embedding layers
and dropout with learning rate 2e−5.

Yang et al. introduced the XLNet model: Generalized Autoregressive Pretrain-
ing for Language Understanding [44]. For all input sequence factorization orders,
it uses an autoregressive approach to learn bidirectional contexts. This improves
bidirectional linguistic competence and word associations. The context word is used
to forecast the following word in an autoregressive model. As a result, the subse-
quent token is dependent on all preceding tokens. XLNet is generalised because it
utilises a method called permutation language modelling to capture bidirectional
context. It combines auto-regressive and bidirectional context modelling techniques
for the purposes of natural language inference, text analytics, and document evalua-
tion. XLNet learns the true bidirectional context using unsupervised representation
learning using autoregressive language modeling. Deep learning concepts like recur-
rence and attention are combined in the transformer architecture, which enables the
model to learn long-term dependencies.

5.3.2 BERT: Bidirectional Encoder Representations from Transformers

Building over the powerful transformer architecture, Bidirectional Encoder Repre-
sentation from Transformers (BERT) utilizes the encoder block of transformer to
learn language representation. It uses the transformer, a system that identifies
contextual relationships between words in a text, to accomplish this decoding and
encoders are both necessary parts of a transformer in order to make predictions
based on the input data. The fine-tuning of BERT is illustrated in Figure 8.

Figure 8. BERT training and fine-tuning shown in a single architecture
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Transformers architecture has two key components associated: Encoder and
Decoder. The encoder-decoder system leverages the attention mechanism to at-
tain state-of-the-art effectiveness on the majority of natural language-based activi-
ties [45].

• The Encoder: The encoder simultaneously processes the English words and
generates embeddings [BERT Base = 768 dimension]. These embeddings are
the vectors that encapsulate the meaning of the word. Also, these vectors are
not uniform and can change based on the context.

• The Decoder: The decoder uses the previously generated words and uses the
embeddings produced by the Encoder to generate the next word.

• Input Embeddings: The input embeddings of a transformer network is generated
by adding a positional encoding of each word i with a pre-trained embedding
vector, where positional encoder is a vector that defines the position of words in
a sentence typically using a sine and cosine vectors to generate a function.

• The final encoding will look like: Initial embedding (Word2vec) + positional
encoding = vectors with positional context information.

• Multi-Head Self-Attention: Attention mechanism provides a way to learn the
inherent relation between words within a single sentence or different related sen-
tences. Self-attention finds the relevance of the ith word in the input sentence
with other words in the same input sentence. For each word, self-attention cap-
tures the relation and context in which that word is related to other words.
To obtain more robust attention vectors for each word, we determine numer-
ous attention vectors for each word and compute the final attention vector per
word using a weighted average. To achieve multi-head self-attention we need V
(Value), K (Key), Q (Query) vectors to extract different components of an input
word. While using multi-head attention there will be multiple attention vectors
for each word and a weighted matrix is created to convert 8 vectors to a single
vector.

• Feed-Forward Layer: Feed-forward network is used in the encoder block to con-
vert the output of the attention network to be used as an input to the next
encoder/decoder blocks.

• Masked Multi-Head Self-Attention: On the decoder side, masked multi-head
attention is needed because while generating the attention vectors, we can only
use the previous words and not all the words, and therefore masking the future
words is important.

• Multi-Head Encoder-Decoder Attention works with self-attention vectors of the
masked multi-head self-attention and word’s attention vectors from the Encoder
block. This attention layer is responsible for establishing relationship between
tokens of encoder sentence and decoder sentence and generates an attention
vector for each word representing the relationship with words in other sentences.
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• ADD and NORM: Batch normalisation and layer normalisation are performed
after each layer to ensure that the weights do not become too high or low given
the values and also to increase the training speeds considerably. In this study,
we are using embedding layer, transformer and output layer with learning rate
2e−5, Adam optimizer and epsilon 1e−8, the attention vectors from the encoder
block of a transformer can be used with a sigmoid activation function on the
output layer to generate the results.

The concept of transfer learning gained a very strong foot with the advent of BERT.
Further we leveraged the pretrained models and did the fine-tuning of these models.

6 PERFORMANCE EVALUATION

Quantitative assessment of three approaches implemented in this study is reported
in this section. The evaluation quantitatively measures the performance of ML, DL
and TL models on audio transcript data from DementiaBank.

6.1 Grid Search Techniques for Parameter Optimization

In classification models and estimators, there are a few parameters (constants and
conditions) like learning rate, constraints, batch size, optimizers parameters etc.
which are not tuned during the training phase.

The parameters provided before training as arguments are known as hyper-
parameters, and the optimal value selection process is known as hyperparameters
tuning. To find out optimal hyperparameters for these models, we applied the Grid
search technique [46]. It is a primitive approach that exhaustively searches among
all the possible values of parameters and gives the best set. To perform the grid
search, an initial set of desired parameters is given, and an optimal set of hyperpa-
rameters that best reduces the cost function of the problem is selected for further
process. The process is sometimes repeated or cross-validated to gain a generalized
set of hyper-parameters. Optimized parameters for all three approaches are listed
in Table 3.

6.2 Performance Measures for Classification

Examine the number of instances in which the class was accurately predicted but not
assigned (true negatives) and the number of instances where the class was correctly
predicted but not assigned (false positives) (false negatives). These four numbers
form the confusion matrix in Table 4 for the binary classification.

The confusion matrices [47] are required to provide an analysis of the number of
samples that were correctly classified as either a True Positive (TP), a False Positive
(FP), or a True Negative (TN).

We investigated five performance indicators: Testing accuracy, validation ac-
curacy, F1 score, area under the ROC curve and confusion matrices for the three
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Conventional
ML Models

Hybrid Sequential
DL Models

Transfer Learning
Models

SVM [params: c = 1.0,
kernel=RBF,
gamma=scale]

LSTM
[Input length = 100,
LSTM layer
(128 hidden units),
recurrent dropout = 0.2,
Epochs = 50]

BERT
[epochs: 8,
tokenizer = BERT base,
max tokenizer length = 64,
batch size = 32,
Optimizer = Adam
(lr = 2e−5,
epsilon = 1e−8 )]

Random Forest
[params:
n estimators = 100,
min sample leaf = 1,
min sample split = 2,
criterion = gini]

Bidirectional LSTM
[Input length = 100,
BiLSTM layer
(128 hidden units),
recurrent dropout = 0.2,
Epochs = 50]

XLNET
[epochs: 12,
tokenizer = XLNet base
cased, max tokenizer
length = 128,
batch size = 32,
optimizer = Adam
(lr = 2e−5)]

Decision Tree
[params: criterion = ‘gini’,
min sample leaf = 1,
min sample split = 2 ]

CNN-LSTM
[Input length = 100,
Conv1D (128 hidden
units),
Max-Pooling layer (4 × 4
filter), LSTM layer (64
hidden units),
dropout = 0.1,
Epochs = 50]

Table 3. Optimized parameters of each model implemented in this study

Predicted Condition

Actual Condition
Total Population Positive Negative
Positive True Positive (TP) False Negative (FN)
Negative False Positive (FP) True Negative (TN)

Table 4. Confusion matrix for binary classification

approaches applied for classification tasks in this study [48]. Results obtained using
these five performance measures for binary class (AD+ and AD−) classification task
are given in the Results subsection.

6.3 Results

For NLP challenges, text classification has risen to the ML, DL, and TL applica-
tions in recent years. Classification outcomes evaluation is essential in healthcare
for determining the existence of pathology and ruling out disease in healthy peo-
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Model
Testing Validation

F1 Score
Accuracy (%) Accuracy (%)

First Approach: Conventional Machine Learning techniques

Random Forest 84.4 85 0.84
Decision Tree 84.5 85 0.85
Support Vector Machine 85 86 0.85

Second Approach: Sequential Deep Learning Models

LSTM 85.4 87 0.84
Bidirectional LSTM 85.3 87 0.85
CNN-LSTM 90 89 0.90

Third Approach: Transfer Learning Models

XLNet 92 90 0.92
BERT 93 95 0.93

Table 5. Performance of three approaches implemented on DementiaBank dataset for the
classification of AD+ and AD−

ple. Table 5 lists the classification results for three approaches: conventional ML,
sequential DL, and pre-trained TL architecture on the DementiaBank dataset for
comparison.

Using first approach, Decision Tree, Random Forest, and Support Vector Ma-
chine achieved an accuracy of 84.4%, 84.5% and 85%, respectively. SVM among
machine learning models showed better classification performance. Hybrid CNN-
LSTM, among our second approach, has shown significant classification performance
by achieving an accuracy of 90%. However, the third approach has outperformed
machine learning and deep learning models. XLNet and BERT model with op-
timized parameters have achieved the highest testing accuracy of 92% and 93%,
respectively. When fed the vectors generated by TF-IDF to classification models
using optimized parameters, the best-performing BERT model attained testing ac-
curacy of 93% and validation accuracy of 95%, setting a new milestone for this
challenge. For each layer, BERT uses the self-attention mechanism, and the result
is passed through a feed-forward network and then to the next encoder. More-
over, BERT develops word representations that are dynamically influenced by the
words surrounding them in order to capture various types of information, resulting
in more accurate feature representations in dementia prediction. Hence, BERT’s
word-preprocessing and word-embedding characteristics improve the models perfor-
mance, hence achieving a better performance.

The model’s loss and accuracy information is stored in the object history for each
epoch. Training and validation accuracy is plotted across the number of epochs in
the training process. This will be effective in interpreting important decisions in
the model’s performance. Training vs. testing accuracy plots for conventional ML
approaches (DT RF and SVM) are shown in Figure 9. The loss function is computed
over all data items throughout an epoch and is assured to yield the quantitative loss
measure at the given epoch. However, visualizing the curve over iterations provides



Alzheimer’s Prediction Using Audio Transcript 1609

(a) (b) (c)
a)

(a) (b) (c)
b)

information about the loss of a portion of the dataset. The training loss vs. validation
loss over epochs for XLNet and BERT models is depicted in the graphs shown in
Figure 10. BERT has shown higher validation accuracy and low validation loss
compared to XLNet. Each epoch terminates after all training data is sent once.
Whereas, data sent in batches, each epoch may contain numerous backpropagations
steps which improves performance. Each backpropagation step in BERT enhanced
the performance significantly while reduced validation loss. Further, the confusion
matrix for the above discussed models is shown in Figure 11.
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(a) (b) (c)
c)

Figure 9. Plots showing training vs. testing accuracy across the number of epochs using
ML models for AD+ and AD− classification task for a) Decision Tree, b) Random Forest,
and c) Support Vector Machine

(c) (d)

(a) (b)
a)

(c) (d)

(a) (b)
b)
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(c) (d)

(a) (b)

c)

(c) (d)

(a) (b)

d)

Figure 10. Plots showing a) training vs. validation loss for XLNet across the number of
epochs, b) validation accuracy vs. validation loss for XLNet across the number of epochs,
c) training vs. validation loss for BERT across the number of epochs, and (d) validation
accuracy vs. validation loss for BERT across the number of epochs for AD+ and AD−
classification task

A bar graph plotted to present the validation and testing accuracy for three
approaches applied in this study (ML vs. DL vs. TL) is shown in Figure 12. The plot
depicts that BERT has achieved the highest testing accuracy of 93% and validation
accuracy of 95% for AD+ and AD− classification task.

6.4 Performance Evaluation

Area Under the Curve (AUC) is a performance measure to select the best from
a set of different classification algorithms given a classification problem statement.
It is basically an area covered under the Receiver’s Operating Curve (ROC) [49].
Therefore AUC is the area under the ROC.

The classification performance of models is analyzed properly, distinguishing
between the classes, and this metric is suitable only for binary classification problem
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Figure 11. Confusion matrix showing accurately predicted and false predicted AD+ and
AD− for a) DT, b) RF, c) SVM, d) LSTM, e) Bi-LSTM, f) CNN-LSTM, g) XLNet,
h) BERT

statements. ROC is plotted for model performance with different threshold settings
considering true positive rate (TPR) and false positive rate (FPR) on the X and Y
axes, respectively. The plot of TPF (sensitivity) vs. FPF (1-specificity) for various
cut-off values produces a ROC curve in the unit square [50]. The AUC score of
algorithms is compared for a binary classification task, and the model with a higher
AUC score is preferred. The higher the AUC, the better the ability of the machine
learning algorithm to distinguish/classify the points in their correct classes. As
an illustration, the corresponding ROC curves for the ML, DL, and TL techniques
were drawn in Figure 13, 14, and 15, respectively. In most cases, derived indices
like the area under the whole curve are used to measure the diagnostic accuracy. As
diagnostic classification capability improves, the ROC curves associated with this
capability move closer to the upper left-hand corner of the ROC space. The ratio
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Figure 12. Graph plotting testing and validation accuracy for ML models (DT, RF, and
SVM), DL models (LSTM, Bi-LSTM, CNN-LSTM) and TL models (XLNet and BERT)

of the two density functions shows how many people have AD and how many do
not have AD. The slope at each point on the ROC curve is equal to this ratio. The
AUC values for XLNet and BERT are 0.97 and 0.97, respectively. BERT’s ROC
curve and associated AUC demonstrate a better predictor of Alzheimer’s dementia
than healthy individuals.

(a) (b) (c)
a)
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(a) (b) (c)
b)

(a) (b) (c)c)

Figure 13. AUC curve plots for AD+ and AD− classification task using ML approach:
a) Decision Tree, b) Random Forest and c) Support Vector Machine model

Cross-validation (CV), a statistical technique, is implemented in this work to
generalize the applicability of models in terms of performance. The CV approach ef-
fectively examines model performance scores. In this technique, the model is trained
on several train-test splits a certain number of times, giving a better indication of
how effectively the model would perform on unknown data. The procedure has a pa-
rameter named k that defines the number of groups into which a given data sample
should be split. As a result, the technique is known as k-fold cross-validation. In
this study, 10-fold cross-validation is performed (k = 10), where the data set is
divided into ten parts at random. Nine of them are used for training, and one-tenth
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(a) (c)(b) a)

(a) (c)(b) b)

are used for testing and repeated the process ten times with a fresh holdout set and
a new tenth to be tested. For k−1 training iterations, every data point is subjected
to an exact test. The variance of the estimate diminishes as k increases. Moreover,
CV has a higher potential of enabling the detection of over-fitting. Table 6 enlists
the performance of eight models tested in this work for k = 10 folds, and the mean
for each model is calculated over 10 folds.

The statistical mean following cross-validation illustrates the performance of
the model over ten subgroups of the entire sampling. On average, 89.32% of ma-
chine learning models, such as the DT, exhibit a strong comprehension and feature
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(a) (c)(b) c)

Figure 14. AUC curve plots for AD+ and AD− classification task using DL approach:
a) LSTM, b) Bi-LSTM and c) CNN-LSTM model

Fold DT RF SVM LSTM Bi-LSTM CNN LSTM XLNet BERT

1 fold 0.90909 0.90683 0.76442 0.83206 0.86641 0.91603 0.90992 0.95572

2 fold 0.89808 0.89490 0.71171 0.80916 0.85114 0.90458 0.90381 0.95572

3 fold 0.88535 0.86544 0.73333 0.81297 0.85114 0.91221 0.89923 0.95572

4 fold 0.88509 0.87009 0.71321 0.80534 0.83587 0.90458 0.90381 0.95572

5 fold 0.87087 0.87462 0.74407 0.82824 0.84351 0.90839 0.91297 0.95572

6 fold 0.89024 0.87425 0.73658 0.80534 0.83587 0.90458 0.90229 0.95572

7 fold 0.87341 0.86292 0.73157 0.83969 0.87404 0.91603 0.92366 0.95572

8 fold 0.92258 0.90909 0.76388 0.81297 0.84732 0.90458 0.91450 0.95572

9 fold 0.88165 0.87572 0.72972 0.83969 0.87022 0.92748 0.91145 0.95572

10 fold 0.91147 0.90189 0.72682 0.82442 0.86641 0.91603 0.91603 0.95572

Mean 0.89322 0.8917 0.66596 0.81626 0.850191 0.90801 0.90977 0.95572

Table 6. 10-fold cross-validation performance evaluation of models with optimized param-
eters

simulation. A larger distributed mean for BERT (95.52) than for XLNet (90.97)
and CNN-LSTM hybrid architecture (90.80) indicates the model’s better stabil-
ity.

Table 7 compares the benchmark performance achieved by the approaches used
in the current study with the accuracy achieved by previous studies using these three
approaches. Figure 16 shows a graphical representation of performance comparison
in terms of accuracy. From the graph, it is concluded that TL, hybrid DL, DL,
and most of the ML approaches used in the current study have shown a better
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(a) (b)a)

(a) (b)b)

Figure 15. AUC curve plots for AD+ and AD− classification task using TL approach:
a) XLNet and b) BERT Model

performance compared to state-of-the-art studies.

7 CONCLUSION AND FUTURE SCOPE

There is evidence that Alzheimer’s dementia warning signs can be found in audio
transcript data. We have attempted to provide an overview of existing state-of-
the-art techniques in applying NLP to health outcomes research, with a specific
emphasis on assessment methods. From the experimental analysis, it is concluded
that AD can be diagnosed more quickly and accurately if linguistic biomarkers are
analyzed through the verbal utterances of elderly persons. We implemented tradi-
tional ML, hybrid DL and TL approach to compare classification performance on
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Study Approach Accuracy (%)

Results Fraser et al. [21] Machine 81
of Previous Orimaye et al. [20] Learning 87
Studies König et al. [11] 87

Meghanani et al. [25] Deep Learning 83.33
JabaSheela et al. [26] Hybrid Deep Learning 72
Sarawgi et al. [27] Transfer Learning 88.0
Balagopalan et al. [28] 85.14

Results Decision Tree (DT) Machine Learning 84.4
of Current Random Forest (RF) 84.4
Study Support Vector Machine (SVM) 85

LSTM Deep Learning 85.4
Bi-LSTM 85.3
CNN-LSTM Hybrid Deep Learning 90
XLNet Transfer Learning 92
BERT 93

Table 7. Comparative performance evaluation of approaches used in the proposed work
with state-of-the-art studies and on benchmark dataset

linguistic data taken from DementiaBank. Statistical ML classifiers (such as SVM
or RF) treat the sentence as a bag of word models (each word is treated indepen-
dently, irrespective of its position in the sequence). Text data is temporal in nature,
where the sequence of words defines the exact meaning of a sentence. Bi-LSTM
or transformer-based architectures are aces in capturing the bidirectional seman-
tic context of words in each sentence. As indicated, state-of-the-art techniques for
assessing the early onset of Alzheimer’s disease are quite varied, either by analyz-
ing behavioural or language patterns in audio transcript data. An experimental
comparative analysis of conventional ML, sequential DL, and TL approaches was
carried out based on various performance evaluation metrics. Experimental results
showed that transformer-based architectures were well performing in predicting AD
with less validation loss and higher accuracy. The accuracy of fine-tuned BERT
model is significantly outperformed in comparison with other models. Furthermore,
the performance of predictive validation is estimated using k-fold cross-validation
(k = 10), which better demonstrates how well a model will generalize to the test
set. On the basis of these findings, future research will be conducted in order to
develop better detection and prediction models for AD. We shall explore different
advanced architectures, such as Embeddings from Language Model (ELMo), a deep
contextualized word representation. Various experimentations can be performed
using different tokenization, embedding, and encoding strategies for transcript rep-
resentations. In addition to this, the use of feature-fusion techniques might improve
the identification of dementia.
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Figure 16. Performance comparison of machine learning, deep learning, and transfer
learning approaches used in the current study with state-of-the-art studies
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