
Computing and Informatics, Vol. 42, 2023, 157–190, doi: 10.31577/cai 2023 1 157

ADDING RLL PROPERTIES
TO FOUR CCSDS LDPC CODES
WITHOUT INCREASING THEIR REDUNDANCY

Peter Farkaš

Institute of Multimedia ICT, FEI STU
Ilkovičova 3
812 19 Bratislava, Slovakia
&
Institute of Applied Informatics
Faculty of Informatics, Pan-European University
Temat́ınska 10, 851 05 Bratislava, Slovakia
e-mail: p.farkas@ieee.org

Martin Rakús

Institute of Multimedia ICT, FEI STU
Ilkovičova 3
812 19 Bratislava, Slovakia
e-mail: martin.rakus@stuba.sk

Abstract. This paper presents the construction of Run Length Limited (RLL)
Error Control Codes (ECCs) from four Low Density Parity Check (LDPC) Codes
specified by Consultative Committee for Space Data Systems (CCSDS). The ob-
tained RLL-ECCs present a practical alternative to the CCSDS codes with pseudo-
randomizers. Their advantage is that the maximal runlengths of equal symbols
in their codeword sequences are guaranteed, which is not the case if the common
approach with pseudo-randomizers is used. The other advantages are that no ad-
ditional redundancy is introduced into encoded codewords and that the encoding
and decoding procedures of the original error control CCSDS codes do not have to
be modified in the following cases. In the first case if hard decoding is used and the
transmission channel can be modeled as a Binary Symmetric Channel (BSC) or in
the second case if soft decoding and coherent Binary Phase Shift Keying (BPSK)

https://doi.org/10.31577/cai_2023_1_157

158 P. Farkaš, M. Rakús

modulation is used and the appropriate transmission channel model is an Additive
White Gaussian Noise (AWGN) channel.

Keywords: ECC codes, CCSDS codes, LDPC codes, RLL codes, modifier, reorder-
ing, redundancy, hard decoding, soft decision decoding, BSC, AWGN

Mathematics Subject Classification 2010: 94B05, 93-04, 94B10

1 INTRODUCTION

By introducing redundancy the purpose of ECCs is to protect transmitted or stored
information against errors. The introduction of redundancy by line codes (LCs)
on the other hand has the purpose to meet constraints or practical requirements of
transmission channels or storage medium (therefore they are also named Constrained
codes).

The construction methods of the ECCs [1, 2, 3, 4] and LCs [5, 6, 7, 8, 9, 10,
11, 12, 13, 14] is, in most cases, treated in literature separately. This tradition also
continues nowadays. Examples of recent advances in constructing ECCs are found
in [15, 16, 17, 18, 19, 20], while the up to date progress examples in constructing
LCs are found in [21, 22, 23, 24, 25].

However, there is a fundamental problem how to order the Constrained codes
and ECC in cascade. The question is which code should be the inner code and which
the outer. It stems from the fact that Constrained codes are not suitable for error
prone channels. In theory it is supposed that the constrained channels for which
they are used are error free. In practice this assumption is not true and therefore
ECCs are often used as inner codes. In this case the black box containing them and
the real channel could be approximated in some cases as errorless. But the ECCs
are not constructed with the goal to fulfill the constraints of the channels. From
this point of view it seems that the last encoder and the first decoder connected to
the real channel with constraints (the inner code) should be the Constrained code
and not the ECC.

Under certain conditions a combined code that has error control capabilities
as well as constraints can be obtained, which overcomes this problem. There are
many methods how to construct such combined codes. Selected examples are [26,
27, 28, 29, 30, 31, 32, 33, 34]. One of the approaches to the construction of such
combined codes is based on coset codes of linear ECCs. Because this paper follows
this particular direction, in the following section the state of the art of this branch
of development is given. The combined codes are named Transcontrol codes in [35].

Adding RLL Properties to Four CCSDS LDPC Codes 159

2 STATE OF THE ART OF TRANSCONTROL CODES
CONSTRUCTIONS BASED ON COSET CODES

The idea to use a coset code of a linear ECCs is not new. In [36] Lee and Hee-
gard demonstrated that it is possible to limit the run length of zeros by adding
a periodic fixed binary sequence to each convolutional code’s codeword. The pur-
pose was to improve clock synchronization. Calderbank et al. in [37] used this idea
for the same purpose in order to construct codes for the partial response channel
with transfer function (1 − DN)/2. Ferreira et al. and Deng and Herro presented
in [38, 39] DC-free coset codes with and without error correcting capabilities for
fiber-based optical links. The codes were derived by partitioning linear block codes.
The encoder and decoder structures remained the same as those of linear block
codes with only slight modifications. A special class of DC-free coset codes were
derived from BCH codes with specified bounds on minimum distance, disparity, and
run length. The running disparity at the end of the actual codeword was used for
controlling the selection of the next codeword in encoding and decoding procedures.
Some detailed statements made in [38, 39] relating to disparity and runlength have
been corrected and/or refined in [40]. Poplewell et al. in [41] exploited disparity
to control whether the whole following codeword will be inverted or not in order
to decrease the DC component in the multilevel transmitted sequence. In this pa-
per an improved procedure exploiting disparity was also proposed which decreases
low frequency spectral components in such sequences. In both procedures addi-
tional redundancy was introduced into the resulting transmitted sequence. In [42]
two techniques for constructing DC-free codes with minimum distance 4 were pre-
sented. These constructions resulted in very low complexity implementation and
allowed both hard and soft decision decoding to be applied. Construction 1 was
based on adapting an algorithm developed for constructing a class of low complex-
ity RLL-ECCs having a maximum runlength constraint of 6 and minimum dis-
tance 4. Construction 2 was based on utilizing simple array codes based on two
parity check codes and mapping balanced words onto each row of the array (the
same mapping was applied to every row) in place of the even parity word. In [35]
it was proven that if the generator matrix of a linear binary block code exhibits
certain properties then RLL coset codes of the corresponding ECCs could be ob-
tained by the addition of a specific vector denoted as a modifier. The main dif-
ference when compared with previous results was that not only zero runs could
be limited by this approach but also the runs of ones. A related property useful
for construction of RLL-ECCs was identified later in [43], also in the parity check
matrix.

Note 1. The Properties described in [35, 43] are closely related to the approaches
used in this paper, therefore for convenience of the reader they will be completely
repeated in Section 4.

Later different approaches were developed based on these properties and applied
to numerous different ECCs [43, 44, 45, 46, 47, 48, 49, 50, 51, 52]. Recently it was

160 P. Farkaš, M. Rakús

shown that related techniques could also be applied on standardized LDPC codes
for 5G mobile networks [53]. Therefore a natural question arises as to whether there
are also other standardized LDPC codes for which it could lead to obtaining RLLL
ECCs.

In this paper it is shown that at least for the following four CCSDS codes the
answer is positive:

• Three LDPC codes specified by CCSDS for the Telecommand (TC) Space Data
Link Protocol in [54].

• One LDPC code specified by CCSDS for the Telemetry (TM) Space Data Link
Protocol in [55].

However, the known methods presented in [35, 43, 44, 45, 46, 47, 48, 49, 50, 51,
52, 53] could not be applied without modifications to the standard CCSDS codes.
Therefore, the purpose of this paper is to present a way how some of the mentioned
techniques could be adapted to get RLL-ECCs from these codes.

The obtained RLL-ECCs could be of interest for practical applications in space
exploration, and the approaches could be useful also for constructing RLL-ECCs for
data storage systems.

The paper is organized as follows. In Section 3 theoretical background together
with an overview of relevant CCSDS codes is given. In Section 4 the introduction to
the method for obtaining RLL-ECCs and some comments on their advantages are
presented. In Section 5 approaches for obtaining RLL-ECCs from four CCSDS codes
are described in detail. In Section 6 the experimental results are given in a compact
form. In Conclusions, some comments are made about the achieved results in this
paper, and which results could be expected if further research is devoted to this
area. In appendices the data necessary for constructing RLL-ECCs for particular
CCSDS codes are given and also two examples of how the symbols could be ordered
in RLL-ECCs obtained from two LDPC codes specified by CCSDS.

3 THEORETICAL BACKGROUND

In this section a rudimentary introduction to relevant ECC theory is given for the
convenience of a broader readership. Only the families of codes related to the CCSDS
codes for which the construction of RLL-ECCs was successful will be mentioned.

Linear block codes.

A linear block code C is defined as a k-dimensional subspace of an n-dimensional
vector space over finite field GF (q). It is denoted as an (n, k)-code. In this paper
only binary block codes will be considered.

The subspace is spanned by k linearly independent vectors, which are usually
given by rows of the so-called generator matrix G. Each codeword c from C is

Adding RLL Properties to Four CCSDS LDPC Codes 161

a linear combination of these rows. Therefore the encoding is simply a multipli-
cation of the information vector i by G:

c = i.G. (1)

The Hamming weight of a vector is the number of nonzero coordinates in the
vector.

Another matrix by which the code is often given is the parity check matrix H
for which

G.HT = 0. (2)

From its rows it is possible to deduce which symbols are participating in the cor-
responding check equations. For each codeword from the corresponding code C

c.HT = 0. (3)

Hmatrix is also often exploited in hard decoding of received vectors, for example
if the so-called syndrome method is used [16]. In cases where the soft decoding
is used the bipartite Tanner graph is useful, which in principle contains the same
information as the H matrix [18].

i1 i4 p3

i2 i5 p4

i3 i6 p5

p1 p2

c10 c7 c2

c9 c6 c1

c8 c5 c0

c4 c3

a) b)

a)

i1 i4 p3

i2 i5 p4

i3 i6 p5

p1 p2

c10 c7 c2

c9 c6 c1

c8 c5 c0

c4 c3

a) b)

b)

Figure 1. Example of binary (11, 6) Product code obtained from single parity check codes
a) symbols denoted from the point of view of parity check equations involving information
and parity symbols, b) symbols denoted from the point of view of the resulting codeword
symbols

From the practical point of view n is also interpreted as codeword length and k
as the number of information symbols in codeword. In practice the coderate of
the code is also very important:

Rc =
k

n
. (4)

For example, the binary (11, 6) Product code is illustrated in Figure 1. In it
a single parity check is applied to each row and each column. It has the following

162 P. Farkaš, M. Rakús

G matrix

G =


1 0 0 0 0 0 1 0 1 0 0
0 1 0 0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 1 1 0 0
0 0 0 0 1 0 0 1 0 1 0
0 0 0 0 0 1 0 1 0 0 1

 (5)

and the following H matrix.

H =


1 1 1 0 0 0 1 0 0 0 0
0 0 0 1 1 1 0 1 0 0 0
1 0 0 1 0 0 0 0 1 0 0
0 1 0 0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0 0 0 1

 . (6)

Observing Figure 1 a) the following parity equations are valid:

p1 = i1 + i2 + i3, (7)

p2 = i4 + i5 + i6, (8)

p3 = i1 + i4, (9)

p4 = i2 + i5, (10)

p5 = i3 + i6, (11)

where pi and ii are parity and information symbols, respectively.

Observing Figure 1 b) the following check equations are valid:

c10 + c9 + c8 + c4 = 0, (12)

c7 + c6 + c5 + c3 = 0, (13)

c10 + c7 + c2 = 0, (14)

c9 + c6 + c1 = 0, (15)

c8 + c5 + c0 = 0, (16)

where ci are codeword symbols. The codeword is denoted as a vector.

c = (c10, c9, c8, c7, c6, c5, c4, c3, c2, c1, c0). (17)

The code in this example is a 6-dimensional subspace of the 11-dimensional
vector space over GF (2).

The LDPC codes discovered by Gallagher [56] are linear block codes defined
by parity check matrices with a low density of nonzero elements, in binary case

Adding RLL Properties to Four CCSDS LDPC Codes 163

ones. They belong to most practical ECC nowadays, not only because they have
excellent error correcting capabilities but also because soft decoding methods are
known for them with complexity which is not prohibitive for their application.
For example, the belief propagation algorithm is often used for their decoding,
which preferably operates with log likelihood ratios (LLR) [18]. Therefore it is
not surprising that some of these codes are standardized by CCSDS.

LDPC codes recommended by CCSDS 131.0-B-4.

The LDPC CCSDS codes for the Telecommand (TC) Space Data Link Protocol
specified in [54] are (n, k)-codes with the following basic parameters: (128, 64),
(256, 128), (512, 256). The codes are specified using the following parity check
matrices:

H64×128 =
IM ⊕Φ7 Φ2 Φ14 Φ6 0M Φ0 Φ13 IM

Φ6 IM ⊕Φ15 Φ0 Φ1 IM 0M Φ0 Φ7

Φ4 Φ1 IM ⊕Φ15 Φ14 Φ11 IM 0M Φ3

Φ0 Φ1 Φ9 IM ⊕Φ13 Φ14 Φ1 IM 0M

, (18)

H128×256 =
IM ⊕Φ31 Φ15 Φ25 Φ0 0M Φ20 Φ12 IM

Φ28 IM ⊕Φ30 Φ29 Φ24 IM 0M Φ1 Φ20

Φ8 Φ0 IM ⊕Φ28 Φ1 Φ29 IM 0M Φ21

Φ18 Φ30 Φ0 IM ⊕Φ30 Φ25 Φ26 IM 0M

, (19)
H256×512 =
IM ⊕Φ63 Φ30 Φ50 Φ25 0M Φ43 Φ62 IM

Φ56 IM ⊕Φ61 Φ50 Φ23 IM 0M Φ37 Φ20

Φ16 Φ0 IM ⊕Φ55 Φ27 Φ56 IM 0M Φ43

Φ35 Φ56 Φ62 IM ⊕Φ11 Φ58 Φ3 IM 0M

, (20)
where IM , 0M , Φε are M ×M identity, all zero and εth right circular shifts of
the identity matrix respectively and M = n/8. The operator ⊕ denotes modulo
two additions.

The LDPC codes could be encoded using the generator matrices in systematic
form:

G =

[
I4M

... W

]
. (21)

The submatrix W could be obtained as follows [54]:

W =

[
P−1... Q

]
, (22)

164 P. Farkaš, M. Rakús

where P and Q are submatrices composed from the last and first 4M columns
of corresponding parity check matrices given by (18), (19), (20), respectively.

LDPC codes recommended by CCSDS 131.0-B-3.

The LDPC CCSDS code for the Telemetry (TM) Space Data Link Protocol spec-
ified in [55] could be obtained from the parity check matrix of the (8 176, 7 154)
base code. The resulting LDPC code consists of two macro-rows, of 16 circulants
(511× 511 submatrices) each:

H1 022×8 176 =

[
A1,1 A1,2 . . . A1,16

A2,1 A2,2 . . . A2,16

]
, (23)

where the circulants are defined via 1’s positions in the first row in Table 1.

Positions of 1’s in 1st Row
Circulants in Each Circulant in H (“Absolute”)

A1,1 0, 176 0, 176

A1,2 12, 239 523, 750

A1,3 0, 352 1 022, 1 374

A1,4 24, 431 1 557, 1 964

A1,5 0, 392 2 044, 2 436

A1,6 151, 409 2 706, 2 964

A1,7 0, 351 3 066, 3 417

A1,8 9, 359 3 586, 3 936

A1,9 0, 307 4 088, 4 395

A1,10 53, 329 4 652, 4 928

A1,11 0, 207 5 110, 5 317

A1,12 18, 281 5 639, 5 902

A1,13 0, 399 6 132, 6 531

A1,14 202, 457 6 845, 7 100

A1,15 0, 247 7 154, 7 401

A1,16 36, 261 7 701, 7 926

Table 1. The position of ones in circulants

unshortened codeword

0 1 17 8173
0 0

2 fill bits

shortened codeword
with 2 fill bits

18 virtual zeros
(encoded but not sent)

Figure 2. Relationship between the original codeword of the LDPC (8 176, 7 154) base
code and the shortened 8 160 bit long codeword

Adding RLL Properties to Four CCSDS LDPC Codes 165

In actual applications the subcode (8 176, 7 154) of the base code shall be used
after shortening, and the extension as illustrated in Figure 2. The payload shall
consist of 7 136 symbols which are prefixed by 18 zeros in order to get 7 154
bits. This message should be encoded via a generator matrix belonging to the
(8 176, 7 154) code. In the encoded codeword the first 18 symbols equal to zeros
shall be deleted and two zeros shall be appended to the codeword. After this
manipulation, the resulting message will have 8 160 bits.

4 INTRODUCTION TO THE METHOD FOR OBTAINING RLL-ECCS
AND SOME COMMENTS ON ITS ADVANTAGES

The method for obtaining an RLL-ECC from a binary ECC is illustrated in Figure 3
for hard decoding and for transmission via BSC. The payload information is first
encoded via the standard ECC into a sequence of codewords. Then the codeword
symbols are reordered. In the following step some symbols are inverted by adding
modulo two (mod 2) by a so-called modifier. The modifier is a binary vector with
identical length to the codeword of the underlying ECC.

encoder
(standard)

reordering

modifier
generator

Trans-control encoder

in

BSC

modifier
generator

de-reordering
decoder

(standard)

Trans-control decoder

out

Figure 3. The principle of how a binary ECC can be modified in order to get RLL prop-
erties without additional redundancy and without the need to change its encoding and
decoding algorithms in BSC. At the transmitter side the reordering (interleaving) and
modifier addition are made. Their influence is eliminated by the addition of modifier and
de-reordering (de-interleaving) on the receiving side.

On the receiving side, before the received symbols are input into the decoder,

166 P. Farkaš, M. Rakús

the modifier adds mod 2 to them in order to eliminate its influence on decoding.
Before standard decoding the order of the symbol also is restored. As a consequence,
the modifications, namely two additions of modifiers and two reordering of symbols,
are not visible from the point of view of the encoder and decoder.

Note 2. Further in this paper only the modifications on the side of transmitter will
be described which could be interpreted as construction of RLL ECC codes from
CCSDS LDPC codes. However, for the transmission it will be still supposed that
the restoring modifications in the receiver will take place in real applications.

The main problem which has to be solved before the method could be applied in
practice is to find a modifier and corresponding reordering of the codeword symbols,
which will decrease the otherwise infinite run lengths in the codeword sequence of
the original ECC.

There are different known approaches how to find a modifier and appropriate
reordering connected with it [35, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53] based on
the structural properties of the original ECCs.

For the reader’s convenience only two from these will be mentioned here which
are closely related to the methods used later in this paper. They are also most helpful
for understanding the following explanation of how RLL-ECCs could be obtained
from ECCs specified by CCSDS.

In [35] the following properties of matrix G were presented which allows obtain-
ing RLL-ECCs from some ECCs using the modifiers obtained by approaches based
on it.

Property 1. If the Hamming weight of all rows of generator matrix G of a linear
binary block code C are even, then all codewords of C have even Hamming weights.

Proof. Let w(ḡi) and w(ḡj) be the Hamming weights of two rows ḡi and ḡj and let
be m the number of coordinates in which both rows ḡi and ḡj have ones. Further, let
us define ḡk = ḡi + ḡj. Then: w(ḡk) = w(ḡi)−m+w(ḡj)−m = w(ḡi)+w(ḡj)− 2m.
Since we have assumed w(ḡi) and w(ḡj) as even any linear combination of rows of
this matrix and, therefore, all codewords will have even weight. 2

Property 2. If all codewords of a binary linear block code C with an even length
n have an even Hamming weight, then the inversion of an odd number of symbols
in the all codewords of C creates a new code C ′ in which no codeword has symbols
which are all equal to zero or equal to one. (C ′ is a coset code of C).

Proof. Suppose that the ECC codeword vector c̄ in C is transformed into c̄ ′ in C ′

in which all bits are the same. Let w be the even weight of c̄. To obtain c̄ ′ from
c̄ either the w 1’s or the n − w 0’s must be inverted. But since both w and n are
even, this transformation would require an even number of inversions. 2

This property could be sometimes applied also to submatrices of G. In this case
it is necessary to find disjoint subsets G1, G2, . . . , Gx of columns from G and form

Adding RLL Properties to Four CCSDS LDPC Codes 167

the submatrices corresponding to these subsets G1, G2, . . . , Gx each containing an
even number of columns from G such that the corresponding submatrices have all
rows with an even Hamming weight and:

G1 ∪G2 ∪ · · · ∪Gx ∪Gr = G, (24)

where G is the set of all columns of G and Gr is the set of all columns not included
in any of the submatrices G1, G2, . . . , Gx.

For each submatrix Gi ∈ {G1,G2, . . . ,Gx} the Property 2 is fulfilled and there-
fore by inverting an odd number of corresponding coordinates, or in other words,
using a modifier, which has an odd number of ones in the coordinates covering Gi

we can eliminate all zeros or all ones in the resulting codeword in positions corre-
sponding to Gi.

Later, in [43] a related property was also observed in parity check matrix H of
linear block codes, which could be useful for obtaining RLL-ECCs from some ECCs
using modifiers obtained by approaches based on it.

Property 3. If the check equation of a linear binary block code C contains a set E
with an even number of symbols, then inverting an odd number of symbols from E
in all the codewords of C creates a new code C ′ in which no codeword has symbols
which are all equal to zero or all equal to one in E. (C ′ is a coset code of C).

Proof. The proof is similar to the proof of Property 2. Suppose that the codeword c̄
from C is transformed by inverting some symbols from E (which we will denote c̄E)
to a codeword c̄ ′ from C ′ in such a way that all symbols corresponding to E in c̄E

′

are the same. Let w be the even weight and nE be the even length of c̄E and also of
c̄E

′, respectively. To obtain c̄E
′ from c̄E either the w 1’s or the (nE−w) 0’s must be

inverted. But since both w and nE are even, this transformation would require an
even number of inversions. It is obvious that in cases where w(c̄E) = 0 the inversion
of an uneven number of bits in c̄E will clearly cause not all symbols in c̄E

′ to be the
same. 2

If multiple disjoint sets in a generator or parity check matrix fulfill one of the
mentioned properties, then it is possible to invert the odd number symbols corre-
sponding to each such subset and minimize the lengths of intervals of other symbols
filling gaps between them. Please see Figure 4.

In Figure 4 there are three subsets of codeword symbols concatenated in three
continuous intervals. The first interval from the left with length L1 symbols and the
last interval with length L3 symbols correspond to sets in which the inversion of an
odd number of symbols leads to not all symbols in each of these intervals being the
same. The interval in the middle corresponds to any other symbols which are not
members of any subsets allowing inversion of an odd number of symbols. Let the
length of this interval between these subsests be L2 symbols long. After application
of the inversions the resulting codeword in the corresponding interval with overall
length L = L1 + L2 + L3 will have RLL properties and the worst case runlength or

168 P. Farkaš, M. Rakús

L1 L2
L3

Figure 4. Illustration supporting explanation of how the upper bound (worst case) run
length RLMAX of equal symbols can be determined if two sets of symbols fulfilling Prop-
erty 2 or Property 3 with one set of other symbols are concatenated in an alternating
manner. Shadowed rectangles represent symbols fulfilling one of the properties, rectangles
with no fill represent the other symbols.

the upper bound on it will be

RLMAX = L1 − 1 + L2 + L3 − 1. (25)

The strategy of how to exploit the described properties from a high-level point
of view, for example for matrix H is as follows. In the first step it is necessary to
find as many disjoint subsets of symbols in different control equations as possible.
As a rule, a brute force computerized search is necessary for this step, because the
number of subsets could be very large. In the second step a redistribution of column
positions in parity check matrix H is used with the goal to minimize the run lengths
taking into account (25).

In the next example it is shown how the mentioned properties could be applied
to the (11, 6) Product code from Section 2.

The G matrix (5), could be reordered so that we get the following matrix:

G′ =


1 0 0 1 0 0 0 0 1 0 0
0 1 0 1 0 0 0 0 0 1 0
0 0 1 1 0 0 0 0 0 0 1
0 0 0 0 1 0 0 1 1 0 0
0 0 0 0 0 1 0 1 0 1 0
0 0 0 0 0 0 1 1 0 0 1

 . (26)

(26) can be reordered further to (27). In (27) it is more clearly visible that
the submatrix containing the first four columns from the left and the submatrix
containing the next four columns respectively are both fulfilling Property 2. In order
to minimize the run length after addition of the modifier, the following resulting form
of the reordered G matrix could be used.

G′′ =


1 0 0 1 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 1 0
0 0 1 1 0 0 0 0 0 0 1
0 0 0 0 1 1 0 0 1 0 0
0 0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 1 1 0 1

 . (27)

Adding RLL Properties to Four CCSDS LDPC Codes 169

Observing (27) and taking into account Property 2, it is obvious that it is pos-
sible to invert an uneven number of codeword symbols in positions corresponding
to the subset of the first four columns from the left. As a result, not all symbols
in the first four positions of the codeword will be the same. The same is also valid
for the set of symbols starting in the 6th position from the left and ending in the
9th position if an uneven number of ones is in the modifier in these positions. For
example the modifier could have the following form

m = [1,0,0,0, 0,1,0,0,0, 0, 0]. (28)

In modifier (28) the intervals of bold symbols correspond to the subsets which
fulfill Property 2.

The sequence of codewords from the code used in this example will, after mod 2
addition of the modifier, contain runs no longer than 8 (please consult Figure 4,
which illustrates the following explanation). This is because the gap between the
locations of the two sets in which an uneven number of inversions could be applied
has maximal length 2. Therefore, in two consecutive codewords there is an interval
containing 10 symbols. In it the first four and the last four symbols are not identical.
Therefore, in the worst case the first symbol is different from the next 3 symbols
and the last symbol from the 10 is different from the previous 3 symbols. If the two
triples and the gap contain identical symbols then it is obvious that the run length
cannot be longer than 8.

Similar results could be obtained by exploiting Property 3. For example, in
the first row from the top of the H matrix (6) there are four ones and also in the
second row from the top there are four ones in different positions. Therefore, after
reordering we can bring the H matrix to the following form

H′ =


1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 0
1 0 0 0 1 0 1 0 1 0 0
0 1 0 0 0 1 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0 1

 . (29)

Thus, one of the possible modifiers to limit the maximal run length to 8 could be
the following

m = [1,0,0,0, 0, 0,0,1,1,1, 0]. (30)

In modifier (30) the intervals of bold symbols correspond to the subsets which
fulfill Property 3.

The method illustrated in Figure 3 has the following advantages:

• The problem with ordering ECC and Translation codes mentioned in Section 1
of this manuscript is overcome;

• No additional redundancy is introduced;

• Practical implementation has low complexity;

170 P. Farkaš, M. Rakús

• The encoding and decoding of the original ECC does not have to be modified
in cases where some round conditions are valid;

• The RLMAX is guaranteed, which is not the case if scramblers are used.

The first three advantages are obvious. The last two deserve some more detailed
explanation. Especially in connection with the fourth one an important question
arises if and under which round conditions the 4th advantage will remain valid if soft
decoding is also used. Some answers were given recently in [57]. A short extract
from [57] will be presented in the next text.

The argument why the 4th advantage is supported by the method when hard
decoding is used is straightforward. It is obvious that in such cases the two mod 2
additions from the point of view of the encoder and decoder are transparent (not
visible) if they are made in a synchronous manner.

“Synchronous” – for linear block codes means that block synchronization is
present between the transmitter and receiver so that the mod 2 additions could be
made for the same symbols in the transmitted and received blocks corresponding to
codewords. The transparency of the additions is illustrated in Figure 5.

mm

 BSC

ECC

Decoder
(hard)

îECC

Encoder

c
i

BSC

RLL-ECC

Encoder
RLL-ECC

Decoder

Figure 5. Illustration which shows why the encoding and hard decision decoding does
not have to be modified if the modifiers are used. It is evident that the two modulo 2
additions of modifiers and BSC could be included in one box, which is essentially the
same BSC because the two modulo 2 additions will cancel if applied in synchroniza-
tion.

If soft decoding is used the 4th advantage is also valid if coherent BPSK modu-
lation is used and the channel can be modeled as an AWGN channel. However, in
this case the mod 2 addition on the receiving side has to be substituted by negation
of the L(z/s) values corresponding to symbols inverted on the transmitting side by
ones of the modifier. A detailed explanation can be found in [57]. Here we only
illustrate how the method is used in Figure 6 if soft decoding is applied for the
ECC.

It has to be mentioned that the round conditions, namely exploitation of co-
herent BPSK modulation and modelling of the transmission channel as an AWGN
channel, are favorable for many standardized CCSDS systems. In most standardized
CCSDS systems coherent BPSK modulation is used and the AWGN channel model
is appropriate for deep space communications [58].

Adding RLL Properties to Four CCSDS LDPC Codes 171

()n t

Matched
Filter

BPSK
Modulator

Inverter
 if

m

Decoder
(soft)

î

m

Encoder

ci (/)L z s
Σ

1im 

(1) 

a)

()n t

Matched
Filter

BPSK
Modulator

Decoder
(soft)

î
Encoder

ci (/)L z s
Σ

b)

a)

()n t

Matched
Filter

BPSK
Modulator

Inverter
 if

m

Decoder
(soft)

î

m

Encoder

ci (/)L z s
Σ

1im 

(1) 

a)

()n t

Matched
Filter

BPSK
Modulator

Decoder
(soft)

î
Encoder

ci (/)L z s
Σ

b)

b)

Figure 6. a) Illustration of how our method could be applied if soft decoding and coherent
BPSK modulation are used in the AWGN channel. b) Shows that the addition of the
modifier and multiplication of inverter cancel its influence and the encoder and decoder
do not see these operations. Consequently, the encoding and decoding of the original
ECC does not have to be modified. A detailed explanation of why the inversion of LLR
is applied can be found in [57]. The L(z/s) denotes the specific LLR obtained from the
channel.

Concerning the 5th advantage it is worth mentioning that in [54] the following
note is present.

Note 3. LDPC coding, by itself, cannot guarantee sufficient bit transitions to keep
receiver symbol synchronizers in lock. In order to have more bit transitions standard
Pseudo-Randomizers (Scramblers) are used.

In general, the disadvantage of scramblers is that, as a rule, they cannot guar-
antee any RLL properties. They only increase the number of changes in a signal
with high probability. By contrast the methods described in this paper guarantee
the RLL properties of the constructed codes.

5 APPROACHES FOR OBTAINING RLL-ECCS
FROM FOUR CCSDS CODES

In this section it will be explained how the method illustrated in Figure 3 can be
applied to some CCSDS codes in order to construct RLL-ECCs. For simplicity
the explanation will be done with the assumption that hard decoding is used and
the transmission channel can be modelled as a BSC. However, the obtained RLL-
ECCs could also be used if soft decoding is implemented in the decoder and the
transmission is over the AWGN channel with coherent BPSK modulation. The
only necessary change in this case is to use an inversion of L(z/s) as illustrated
in Figure 6 a) instead of a mod 2 addition. Again it has to be emphasized that
only the modifications on the side of transmitter will be described which could be

172 P. Farkaš, M. Rakús

interpreted as construction of RLL ECC codes from CCSDS LDPC codes. However,
for the transmission it will be still supposed that the restoring modifications in the
receiver will take place in real applications.

Approach for obtaining RLL-ECC from LDPC codes recommended by
CCSDS 131.0-B-2.

In this subsection an approach is described how the RLL-ECCs could be obtained
from standard LDPC codes specified in [54] by CCSDS and defined by the parity
check matrices given in (18), (19), (20). The possibility to use the approach is
based on the hypothesis that Property 3 can be exploited. In other words it
is necessary to find as many disjoint rows with even Hamming weight in each
of the parity check matrices as possible in order to minimize the RLL of the
corresponding codes.

Because the matrix H64×128 (18) is the simplest and has similar properties to the
other two defined by (19) and (20), it will be used in the following explanation.
Observing (18) one can see that there are 4 submatrices 16×128 each composed
of 8 submatrices 16× 16 which we will denote as macro-rows. The scatter chart
of the first macro-row from the top in (18) is illustrated in Figure 7.

128

7

M I Φ
2

Φ
14

Φ
6

Φ M0 0
Φ

13
Φ MI

16

Figure 7. Scatter chart of the first macro-row from the top in the H64×128 matrix

In this macro-row all the submatrices except the 1st and 5th from left have only
one 1 in each row and each column because they are identity matrices or right
shifts of the identity matrix. Therefore in this subset of six submatrices each row
has a Hamming weight 6. The fifth submatrix has all elements 0. On the other
hand the 1st submatrix has two ones in each row. Consequently each row of it
can contribute to the overall Hamming weight 8 of the analyzed macro-row with
Hamming weight 2. However, we cannot select all its rows in order to exploit
Property 3 because the corresponding sets in these rows will not be all disjoint.
(In other words there would be two ones in each column of the 1st submatrix.)
To overcome this difficulty it is possible to choose only the rows with indexes 0,
2, 4, 6, 8, 10, 12, 14. The result is illustrated in Figure 8. The corresponding
set of rows will be denoted as P64×128.

Note 4. The mathematical reason why there are no two ones in any column
corresponding to positions of ones in rows with indexes from P64×128 is the
following. The sequence of column indexes 0, 2, 4, . . . , 14, corresponding to

Adding RLL Properties to Four CCSDS LDPC Codes 173

0 15 7
0

10

15

8

14

Figure 8. First submatrix from left in first macro-row from top in H64×128 matrix with
highlighted ones in the 8 selected rows with indexes 0, 2, 4, . . . , 14. It is obvious that the
Hamming weight of each of these selected rows is 2 and that each column corresponding
to the selected rows has Hamming weight 1.

every second one from a circulant starting in the first row in position 0 (shadow
squares in Figure 8) contains only even numbers. On the other hand the sequence
7, 9, . . . , 13, 19mod(16), 19mod(16), 21mod(16) corresponding to every second
one in the circulant starting in the first row in position 7 (black squares in
Figure 8) contains only odd numbers. Therefore, there is no overlap in these
two sets of column indexes.

The corresponding set of rows will be denoted as P64×128. This selection of rows
will contribute with Hamming weight 2 to the overall Hamming weight 8 in each
selected row in the 1st macro-row of H64×128.

The number of the selected rows in P64×128 (in which the Property 3 can be
exploited) is 8. The found column indexes in which there are ones in the rows
with indexes from P64×128 in 1st macro-row are listed in Appendix I (8.1), where
the indexes from the remaining symbols are also presented. (The number of
the remaining columns in the 1st macro-row of H64×128 is 128 − (8 × 8) =
64).

It is possible to reorder the columns in the transmitter in such a way that there
will be 8 symbols participating in each check equation corresponding to the rows,
in continuous intervals with length 8 interleaved with continuous intervals with
the other symbols with length 8 as illustrated in Figure 9.

Taking into account (25) and observing Figure 6 it is obvious that after using
an appropriate modifier, (such as will invert an uneven number of columns in
each interval of codeword symbols corresponding to the bold intervals in Fig-
ure 9), the maximal RLL of the resulting coset code will be equal to 22.

174 P. Farkaš, M. Rakús

0

16

0 127

Figure 9. The scatter chart of the first macro-row from H64×128 after the reordering of
columns inH64×128: bold lines are interval of 8 ones in which Property 3 could be exploited
and shadow lines are intervals corresponding to the remaining columns

Note 5. After transmission of each codeword from the RLL ECC (coset code
of the original ECC) obtained in this way the influence of the modifier addition
and column reordering will be eliminated in the receiver so that the standard
decoding of LDPC codes could be used in case the underlying channel could be
modeled as a BSC or an AWGN with coherent BPSK modulation. Please see
Section 4 or [57] for more details.

Similar analysis was performed for the H128×256 parity check matrix defined
by (20). The first submatrix of the first macro-row of it is illustrated in Fig-

ure 10. With the highlighted ones in the set P
(3)
128×256 = {0, 2, . . . , 30}.

The mathematical reasoning in Note 4 is valid again for P128×256 with slight
modification, namely that instead of modulo 16 counting modulo 32 counting
is used for the sequences of every second column index for circulant starting in
the first row in 0 (even) and 31 (odd) positions respectively.

Property 3 could be exploited in intervals of ones in rows corresponding to all
indexes in P128×256 in the first macro-row of H128×256. There will be 16 such
rows with Hamming weight 8 each, therefore the number of remaining posi-
tions in which the Property 3 cannot be used will be 256 − (16 × 8) = 128.
Consequently, a similar approach as before used for H64×128 will also lead to
a coset code with RLLMAX = 22 in this case. It is because the 16 intervals
with positions in which Property 3 can be exploited each containing 8 sym-
bols will be interspersed with 16 intervals each containing 8 symbols in which
it cannot be exploited after the appropriate reordering of columns similar to
that illustrated in Figure 9. These sets are listed in Appendix II (8.2) (in this
appendix the numbers correspond to columns in the H64×128 matrix in order
from left to right starting with 0 as a column index of the first column on the
left).

Similar analysis was performed for the H256×512 parity check matrix defined
by (21). The first submatrix of the first macro-row of it is illustrated in Fig-
ure 10. With the highlighted ones in the set P256×512 = {0, 2, . . . , 62}.

Adding RLL Properties to Four CCSDS LDPC Codes 175

0

0

30
31

2

31

Figure 10. First submatrix from left in 1st macro-row scatter chart of H128×256 matrix

0

63

Figure 11. First submatrix from left in 1st macro-row scatter chart of H256×512 matrix

176 P. Farkaš, M. Rakús

The mathematical reasoning in Note 2 is valid again for P256×512 with slight
modification, namely that instead of modulo 16 counting modulo 64 counting is
used for the sequences of every second index for circulants starting in the first
row in 0 (even) and 63 (odd) positions respectively.

After reordering, the first macro-row in matrix H256×512 will contain 32 inter-
vals with 8 symbols each in which Property 3 can be used interspersed with 32
intervals with 8 symbols each in which Property 3 cannot be exploited. These
sets are listed in Appendix III (8.3). (In the appendix the numbers correspond
to columns in the H256×512 matrix in order from left to right starting with 0 as
a column index of the first column on the left.)

Therefore, the number of remaining positions in which Property 3 cannot be
used will be 512 − (32 × 8) = 256. Consequently a similar approach as used
before for H256×512 will also lead to a coset code with RLLMAX = 22 in this
case.

Note 6. The obtained results allow us to choose one of many possible reorder-
ing’s of symbols in a codeword which will minimize the run lengths of equal
symbols for each of the analyzed parity check matrices.

In Appendix IV (8.4) there is one example for the H128×256 matrix in which the
ordering of codeword symbols is given. In this sequence the numbers correspond
to columns in the H128×256 matrix in order from left to right starting with 0 as
a column index of the first column on the left. Each continuous interval with
bold numbers represents one set of symbols in which the inversion of an odd
number of symbols can take place. In other words this corresponds to indexes of
columns in which there are ones in the particular control equation in the parity
check matrix (19). Observing the sequence and taking into account (25) it is
obvious that after applying the odd number of inversions in each set represented
by bold numbers in the sequence the maximal run-length of equal symbols will
be RLMAX = 22.

Approach for obtaining RLL-ECC from LDPC codes recommended by
CCSDS 131.0-B-3.

In this section it will be presented how the RLL-ECC coset code can be ob-
tained from the (8 166, 7 156) LDPC code recommended by CCSDS in [55].
The construction of the original LDPC code starts with the H matrix (23).
The analyses of the macro-rows in it revealed that it is not possible to use
the same approach as it was used in the previous subsection for selection of
rows in which the requirements, allowing exploiting Property 3 for inverting
an uneven number of symbols in the corresponding subsets of symbols, are ful-
filled. More specifically, it is not possible to select all rows with even indexes.
It is because the submatrices in the macro-rows are 511 × 511 and its circu-
lants start in the first row in pairs of indexes where each component can be
even or uneven. In other words the mathematical reasons in Note 4 cannot

Adding RLL Properties to Four CCSDS LDPC Codes 177

be applied. Please see Table 1. Therefore another approach has to be used
for selection of the rows, which will exhibit the properties required in Prop-
erty 3.

After visually analyzing the first macro-row of 511 × 511 submatrices in the
H matrix (23)

R511×8 176 =
[
A1,1 A1,2 . . . A1,16

]
, (31)

its scatter chart is sketched in Figure 12, the following observations could be
made.

Figure 12. Scatter chart of the first macro-row of R511×8 176 from (23)

Because each circulant in R511×8 176 contains two ones in each row it is evident
that each row in it contains 32 ones. Observing only one 511 × 511 circulant,
Ai,j it is possible to concentrate on finding the maximal possible number of rows
containing two ones in disjoint columns (each corresponding column will contain
only one 1). In other words it is desirable to find a submatrix formed by a max-
imal number of rows selected from Ai,j in such way that the column Hamming
weight will be only 1 (this is a consequence of the requirement of Property 3
that each such set of corresponding symbols have to be disjoint from others and
each has even Hamming weight).

Further it can be argued that in submatrices in which the main diagonal con-
tains ones, for example in A1,1, one simple approach is to start the selec-
tion of rows from the first row from the top and stop just before the require-
ment that the column Hamming weight must be equal to one for the result-
ing submatrix is broken. The number of rows which is possible to obtain in
this way is dependent on the difference between the integers in Table 1 mod-
ulo 511.

Note 7. One can imagine that the scatter chart of each circulant is drawn on
graph paper, which is then folded to form a cylinder. The smaller distance
between ones in the first line will determine how many rows with the desired
properties could be selected without violating the rule that in each column must
be only one 1.

However, starting the selection from the first row would also give sets, which
will contain the first 18 bits (column indexes) which are not transmitted. Please
see Figure 2. This would result in no guarantee that the not transmitted symbol
is the only one which is different from all others in its set. Consequently, it will
not be possible to use 18 sets with these 18 symbols. Therefore it is necessary

178 P. Farkaš, M. Rakús

to search for rows containing sets which fulfill Property 3, starting from rows
with indexes higher than 17 in CCDSD notation.

In the other circulants the number of rows which can be obtained in this way
is also dependent on the difference between the integers in Table 1 modulo 511.
Please see Note 7. Circulant A1,4 has the smallest difference (distance) between
ones in the first row. It is equal to 104. Therefore it contains a submatrix com-
posed from rows of (31) with indexes from a set SL = {18, 19, . . . , 121} has all
rows with Hamming weight equal to 2 and all columns with Hamming weight
equal to one. It is illustrated in Figure 13. The set SL corresponds to the shaded
area in this figure.

In all submatrices in the other circulants from the macro-row R511×8 176 con-
taining rows with indexes from the set the same conditions hold for each row
and each column Hamming weight. As a consequence, the overall Hamming
weight in a submatrix with dimension 104× 8 176 formed by rows with indexes
SL from R511×8 176 is 32. In other words, the conclusion can be made that 104
rows fulfil Property 3 each having hamming weight equal to 32. They are listed
in Appendix V (8.5).

Taking into account how the 8 160-bit long codewords are obtained in the stan-
dard [55] (illustrated in Figure 2) we can get one more set which fulfills Prop-
erty 3. Namely the two zeros bits which are filled in the last two positions
of the shortened codeword. They could very simply contribute to improving
RLL properties. The modifier can invert one of these symbols and the two
transmitted symbols will not be the same. Based on this selection of 105 sets
which fulfill Property 3, it is possible to use any reordering which will bring
the symbols in these sets together (in 32 consecutive positions) with 46-bit long
gaps between them. In the gaps the other symbols not contained in the sets
can be positioned. This follows from the following simple calculations. The
105 sets of symbols which fulfill Property 3 will consume 104 × 32 + 2 = 3 330
symbols. There are 8 160 − 3 330 = 4 830 other symbols. These can be di-
vided into 105 sets each containing 46 symbols. This allows concatenating
the sets which fulfill Property 3 with the others in an alternating pattern.
Consequently, in the worst case the maximal length of run of equal symbols
RLMAX = 108 (please see (23)). The resulting order of the indexes from
the base code in the transmitted codeword after reordering could be, for ex-
ample, as given in the Appendix VI (8.6). (Index there are in base code
CCSDS.)

6 EXPERIMENTAL RESULTS

In this section we will, in compact form, present the experimental results obtained by
our approaches together with an overview of the appendices which could be helpful
for someone interested in implementing the system with the obtained RLL-CCSDS
codes in practice.

Adding RLL Properties to Four CCSDS LDPC Codes 179

18

23

487

430

486

79

431 24

80

121

Figure 13. Scatter chart of the 4th macro-row of R511×8 176 from (23)

For the LDPC codes for the TC Space Data Link Protocol specified by CCSDS
in [54] with parameters: (128, 64), (256, 128), (512, 128) the results are presented
in Table 1 in the first 3 rows. For the (8 176, 7 154) LDPC code [55] the result is
presented in fourth row in Table 2.

CCSDS LDPC Ref. RLMAX Data Needed for RLL-ECC
Code (n, k) and Modifier Construction

(128, 64) [54] 22 Appendix I (8.1)

(256, 128) [54] 22 Appendix II (8.2), IV (8.4)

(512, 256) [54] 22 Appendix III (8.3)

(8 176, 7 154) [55] 108 Appendix V (8.5), VI (8.6)

Table 2. Obtained results for the selected LDPC codes specified by CCSDS

In Table 2 the information is also present as to which Appendix provides the
data needed for examples of possible constructions of the particular RLL-ECC codes
and corresponding modifiers.

7 CONCLUSIONS

In this paper it was shown that RLL-ECC codes could be obtained from four se-
lected LDPC codes specified by CCSDS using the method with modifiers depicted
in Figure 3. The main advantages of these codes are that the run lengths of equal

180 P. Farkaš, M. Rakús

symbols are restricted to corresponding values with the guarantee that no additional
redundancy has to be introduced in encoding, and that the encoding and decoding of
the original error control codes specified by CCSDS do not have not to be modified.

Further future research can reveal that it is possible that other RLL-ECC codes
could be constructed from the standard CCSDS codes by the approach used in this
paper.

For example in [59] the author proposed one related approach how to obtain
RLL-ECCs from Reed Solomon (RS) using modifiers. However, its application to
RS codes specified by CCSDS did not bring a significant decrease of RLMAX . It
remains for future research to find some other approach for CCSDS RS codes.

It is also possible that future research can bring new results with lower values of
RLMAX even for some of the 4 codes presented in this paper. The reason is that, for
example, for H1 022×8 176 it was not possible to make a complete search which would
reveal the optimal composition of row indexes subsets fulfilling Property 3.

This paper gave a positive answer to the question of whether the approach using
modifiers can be used in order to obtain RLL-ECCs from some standard CCSDS
codes.

Acknowledgment

This work was supported by the Slovak Research and Development Agency under
the Contract No. APVV-19-0436 and it was also supported by the Scientific Grant
Agency of the Ministry of Education of the Slovak Republic, and the Slovak Academy
of Sciences (grant VEGA 1/0477/18).

8 APPENDICES

8.1 Appendix I

Indexes of subsets in which the modifier can invert an uneven number of symbols in
a codeword of the CCSDS LDPC code defined by (18):

S1 = {0,7,18,46,54,80,109,112},

S2 = {2,9,20,32,56,82,111,114},

S3 = {4,11,22,34,58,84,97,116},

S4 = {6,13,24,36,60,86,99,118},

S5 = {8,15,26,38,62,88,101,120},

S6 = {1,10,28,40,48,90,103,122},

S7 = {3,12,30,42,50,92,105,124},

S8 = {5,14,16,44,52,94,107,126}.

Adding RLL Properties to Four CCSDS LDPC Codes 181

The set of the remaining column indexes H64×128 is the following:

SR = {17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59,
61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 83, 85, 87,

89, 91, 93, 95, 96, 98, 100, 102, 104, 106, 108, 110, 113, 115, 117, 119, 121, 123,

125, 127}.

8.2 Appendix II

Indexes of subsets in which the modifier can invert an uneven number of symbols in
a codeword of the CCSDS LDPC code defined by (19):

S1 = {0,31,47,89,96,180,205,224},

S2 = {1,2,49,91,98,182,207,226},

S3 = {3,4,51,93,100,184,209,228},

S4 = {5,6,53,95,102,186,211,230},

S5 = {7,8,55,65,104,188,213,232},

S6 = {9,10,57,67,106,190,215,234},

S7 = {11,12,59,69,108,160,217,236},

S8 = {13,14,61,71,110,162,219,238},

S9 = {15,16,63,73,112,164,221,240},

S10 = {17,18,33,75,114,166,223,242},

S11 = {19,20,35,77,116,168,193,244},

S12 = {21,22,37,79,118,170,195,246},

S13 = {23,24,39,81,120,172,197,248},

S14 = {25,26,41,83,122,174,199,250},

S15 = {27,28,43,85,124,176,201,252},

S16 = {29,30,45,87,126,178,203,254}.

The set of the remaining column indexes in H128×256 is the following:

SR = {32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74,
76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115,

117, 119, 121, 123, 125, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138,

139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155,

182 P. Farkaš, M. Rakús

156, 157, 158, 159, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, 181, 183, 185,

187, 189, 191, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218,

220, 222, 225, 227, 229, 231, 233, 235, 237, 239, 241, 243, 245, 247, 249, 251, 253,

255}.

8.3 Appendix III

Indexes of subsets in which the modifier can invert an uneven number of symbols in
a codeword of the CCSDS LDPC code defined by (20):

S1 = {0,63,94,178,217,363,446,448},

S2 = {1,2,96,180,219,365,384,450},

S3 = {3,4,98,182,221,367,386,452},

S4 = {5,6,100,184,223,369,388,454},

S5 = {7,8,102,186,225,371,390,456},

S6 = {9,10,104,188,227,373,392,458},

S7 = {11,12,106,190,229,375,394,460},

S8 = {13,14,108,128,231,377,396,462},

S9 = {15,16,110,130,233,379,398,464},

S10 = {17,18,112,132,235,381,400,466},

S11 = {19,20,114,134,237,383,402,468},

S12 = {21,22,116,136,239,321,404,470},

S13 = {23,24,118,138,241,323,406,472},

S14 = {25,26,120,140,243,325,408,474},

S15 = {27,28,122,142,245,327,410,476},

S16 = {29,30,124,144,247,329,412,478},

S17 = {31,32,126,146,249,331,414,480},

S18 = {33,34,64,148,251,333,416,482},

S19 = {35,36,66,150,253,335,418,484},

S20 = {37,38,68,152,255,337,420,486},

S21 = {39,40,70,154,193,339,422,488},

Adding RLL Properties to Four CCSDS LDPC Codes 183

S22 = {41,42,72,156,195,341,424,490},

S23 = {43,44,74,158,197,343,426,492},

S24 = {45,46,76,160,199,345,428,494},

S25 = {47,48,78,162,201,347,430,496},

S26 = {49,50,80,164,203,349,432,498},

S27 = {51,52,82,166,205,351,434,500},

S28 = {53,54,84,168,207,353,436,502},

S29 = {55,56,86,170,209,355,438,504},

S30 = {57,58,88,172,211,357,440,506},

S31 = {59,60,90,174,213,359,442,508},

S32 = {61,62,92,176,215,361,444,510}.

The set of the remaining column indexes in H256×512 is the following:

SR = {65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103,
105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135,

137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167,

169, 171, 173, 175, 177, 179, 181, 183, 185, 187, 189, 191, 192, 194, 196, 198,

200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 222, 224, 226, 228, 230,

232, 234, 236, 238, 240, 242, 244, 246, 248, 250, 252, 254, 256, 257, 258, 259,

260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275,

276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291,

292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307,

308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 322, 324, 326,

328, 330, 332, 334, 336, 338, 340, 342, 344, 346, 348, 350, 352, 354, 356, 358,

360, 362, 364, 366, 368, 370, 372, 374, 376, 378, 380, 382, 385, 387, 389, 391,

393, 395, 397, 399, 401, 403, 405, 407, 409, 411, 413, 415, 417, 419, 421, 423,

425, 427, 429, 431, 433, 435, 437, 439, 441, 443, 445, 447, 449, 451, 453, 455,

457, 459, 461, 463, 465, 467, 469, 471, 473, 475, 477, 479, 481, 483, 485, 487,

489, 491, 493, 495, 497, 499, 501, 503, 505, 507, 509, 511}.

8.4 Appendix IV

Example for possible order of symbols in the RLL ECC obtained from the CCSDS
LDPC code defined by matrix (19):

184 P. Farkaš, M. Rakús

0,31,47,89,96,180,205,224, 32, 34, 36, 38, 40, 42, 44, 46,1,2,49,91,98,

182,207,226, 48, 50, 52, 54, 56, 58, 60, 62,3,4,51,93,100,184,209,228,

64, 66, 68, 70, 72, 74, 76, 78,5,6,53,95,102,186,211,230, 80, 82, 84, 86, 88,

90, 92, 94,7,8,55,65,104,188,213,232, 97, 99, 101, 103, 105, 107, 109, 111,

9,10,57,67,106,190,215,234, 113, 115, 117, 119, 121, 123, 125, 127,11,

12,59,69,108,160,217,236, 128, 129, 130, 131, 132, 133, 134, 135,13,14,

61,71,110,162,219,238, 136, 137, 138, 139, 140, 141, 142, 143,15,16,63,

73,112,164,221,240, 144, 145, 146, 147, 148, 149, 150, 151,17,18,33,75,

114,166,223,242, 152, 153, 154, 155, 156, 157, 158, 159,19,20,35,77,116,

168,193,244, 161, 163, 165, 167, 169, 171, 173, 175,21,22,37,79,118,170,

195,246, 177, 179, 181, 183, 185, 187, 189, 191,23,24,39,81,120,172,197,

248, 192, 194, 196, 198, 200, 202, 204, 206,25,26,41,83,122,174,199,250,

208, 210, 212, 214, 216, 218, 220, 222,27,28,43,85,124,176,201,252, 225,

227, 229, 231, 233, 235, 237, 239,29,30,45,87,126,178,203,254, 241, 243,

245, 247, 249, 251, 253, 255.

The modifier in the above example could be, for example, the following: m =
(0, 1, 3, 5, 9, . . . , 29). The indexes denote positions of ones in the modifier.

8.5 Appendix V

Indexes of subsets in which the modifier can invert an uneven number of symbols in
a codeword of the CCSDS LDPC code defined by (23):

S80 = {80,256,603,830,1102,1454,1533,1637,2124,2516,2786,3044
3146,3497,3666,4016,4168,4475,4732,5008,5190,5397,5719

5982,6212,6611,6669,6925,7234,7481,7781,8006}

S81 = {81,257,604,831,1103,1455,1534,1638,2125,2517,2787,3045
3147,3498,3667,4017,4169,4476,4733,5009,5191,5398,5720

5983,6213,6612,6670,6926,7235,7482,7782,8007}
...

S183 = {183,359,706,933,1046,1205,1636,1740,2108,2227,2636,2889
3089,3249,3608,3769,4169,4271,4578,4600,4835,5293,5500

5822,6085,6203,6772,7028,7337,7584,7884,8109}.

The other sets between those explicitly given could be obtained by simply increasing
each number in the previous set by 1. In case that one would like to use indexing

Adding RLL Properties to Four CCSDS LDPC Codes 185

beginning with 0 and starting from left in the final word it is necessary to subtract
18 from all numbers listed in Appendix VI (8.6).

8.6 Appendix VI

Example of possible order of symbols in the RLL ECC obtained from the CCSDS
LDPC code defined by matrix (23):

18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,

41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62,

80,256,603,830,1102,1454,1533,1637,2124,2516,2786,3044,3146,

3497,3666,4016,4168,4271,4475,4732,5008,5190,5397,5719,5982,

6212,6669,6925,7234,7481,7781,8006,

63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 184, 185, 186, 187, 188,

189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202,

81,257,643,831,1103,1455,1534,1638,2125,2517,2787,3045,3147,

3498,3667,4017,4169,4272,4476,4733,5009,5191,5398,5720,5983,

6213,6670,6926,7235,7482,7782,8007,

203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220,

221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 200, 201, 202,

236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248,

...

7 978, 7 979, 7 980, 7 981, 7 982, 7 983, 7 984, 7 985, 7 986, 7 987, 7 988, 7 989, 7 990, 7 991,

7 992, 7 993, 7 994, 7 995, 7 996, 7 997, 7 998, 7 999, 8 000, 8 001, 8 002, 8 003, 8 004, 8 005,

8 110, 8 111, 8 112, 8 113, 8 114, 8 115, 8 116, 8 117, 8 118, 8 119, 8 120, 8 121, 8 122, 8 123,

8 124, 8 125, 8 126, 8 127,

183,359,706,933,1046,1205,1534,1636,1740,2108,2227,2636,2889,

3089,3249,3608,3769,4271,4578,4600,4835,5293,5500,5822,6085,

6203,6315,6772,7028,7337,7584,7884,8109,

8 128, 8 129, 8 130, 8 131, 8 132, 8 133, 8 134, 8 135, 8 136, 8 137, 8 138, 8 139, 8 140, 8 141,

8 142, 8 143, 8 144, 8 145, 8 146, 8 147, 8 148, 8 149, 8 150, 8 151, 8 152, 8 153, 8 154, 8 155,

8 156, 8 157, 8 158, 8 159, 8 160, 8 161, 8 162, 8 163, 8 164, 8 165, 8 166, 8 167, 8 168, 8 169,

8 170, 8 171, 8 172, 8 173,

8174,8175

186 P. Farkaš, M. Rakús

The modifier in the base code indexing could be the following in this example m =
(80, 81, . . . , 183, 8 174). The indexes denote positions of ones in the modifier. In case
that one would like to use indexing beginning with 0 and starting from the left in
the final word it is necessary to subtract 18 from all numbers listed in Appendix VI
(8.6).

REFERENCES

[1] MacWilliams, F. J.—Sloane, N. J.A.: The Theory of Error-Correcting Codes.
North-Holland Publishing Co., 1977.

[2] Rao, T.R.N.—Fujiwara, E.: Error-Control Coding for Computer Systems.
Prentice-Hall, Inc., 1989.

[3] Pless, V.—Brualdi, R.A.—Huffman, W.C.: Handbook of Coding Theory. El-
sevier Science Inc., 1998.

[4] Tomlinson, M.—Tjhai, C. J.—Ambroze, M.A.—Ahmed, M.—Jibril, M.:
Error-Correction Coding and Decoding: Bounds, Codes, Decoders, Analysis and Ap-
plications. Springer, 2017, doi: 10.1007/978-3-319-51103-0.

[5] Myers, O.: Codes and Translations. Electrical Engineering, Vol. 68, 1949, No. 11,
pp. 950–950, doi: 10.1109/EE.1949.6443215.

[6] Freiman, C.V.—Wyner, A.D.: Optimum Block Codes for Noiseless Input Re-
stricted Channels. Information and Control, Vol. 7, 1964, No. 3, pp. 398–415, doi:
10.1016/S0019-9958(64)90486-3.

[7] Kautz, W.: Fibonacci Codes for Synchronization Control. IEEE Transactions on In-
formation Theory, Vol. 11, 1965, No. 2, pp. 284–292, doi: 10.1109/TIT.1965.1053772.

[8] Gabor, A.: Adaptive Coding for Self-Clocking Recording. IEEE Transac-
tions on Electronic Computers, Vol. EC-16, 1967, No. 6, pp. 866–868, doi:
10.1109/PGEC.1967.264753.

[9] Franaszek, P.A.: Sequence-State Coding for Digital Transmission. The Bell Sys-
tem Technical Journal, Vol. 47, 1968, No. 1, pp. 143–157, doi: 10.1002/j.1538-
7305.1968.tb00034.x.

[10] Franaszek, P.A.: Efficient Code for Digital Magnetic Recording. IBM Technical
Disclosure Bulletin, Vol. 23, 1981, No. 9, pp. 4375–4378.

[11] Patel, A.M.: Improved Encoder and Decoder for a Byte-Oriented Rate 8/9 (0, 3)
Code. IBM Technical Disclosure Bulletin, Vol. 28, 1985, pp. 1938–1940.

[12] Siegel, P.: Recording Codes for Digital Magnetic Storage. IEEE Transactions on
Magnetics, Vol. 21, 1985, No. 5, pp. 1344–1349, doi: 10.1109/TMAG.1985.1063972.

[13] Blahut, R. E.: Digital Transmission of Information. Addison-Wesley, 1990.

[14] Schouhamer-Immink, K.A.: Coding Techniques for Digital Recorders. Prentice
Hall, 1991.

[15] Süral, A.—Sezer, E.G.—Ertuğrul, Y.—Arikan, O.—Arikan, E.: Terabits-
per-Second Throughput for Polar Codes. 2019 IEEE 30th International Symposium
on Personal, Indoor and Mobile Radio Communications (PIMRC Workshops), 2019,
pp. 1–7, doi: 10.1109/PIMRCW.2019.8880815.

https://doi.org/10.1007/978-3-319-51103-0
https://doi.org/10.1109/EE.1949.6443215
https://doi.org/10.1016/S0019-9958(64)90486-3
https://doi.org/10.1109/TIT.1965.1053772
https://doi.org/10.1109/PGEC.1967.264753
https://doi.org/10.1002/j.1538-7305.1968.tb00034.x
https://doi.org/10.1002/j.1538-7305.1968.tb00034.x
https://doi.org/10.1109/TMAG.1985.1063972
https://doi.org/10.1109/PIMRCW.2019.8880815

Adding RLL Properties to Four CCSDS LDPC Codes 187

[16] Sanvicente, E.: Understanding Error Control Coding. Springer, 2019, doi:
10.1007/978-3-030-05840-1.

[17] Rakús, M.—Farkaš, P.—Páleńık, T.—Danǐs, A.: Five Times Extended Reed-
Solomon Codes Applicable in Memory Storage Systems. IEEE Letters of the Com-
puter Society, Vol. 2, 2019, No. 2, pp. 9–11, doi: 10.1109/LOCS.2019.2911517.

[18] Moon, T.K.: Error Correction Coding: Mathematical Methods and Algorithms.
John Wiley & Sons, 2020.

[19] An, W.—Médard, M.—Duffy, K.R.: CRC Codes as Error Correction Codes.
ICC 2021 – IEEE International Conference on Communications, 2021, pp. 1–6, doi:
10.1109/ICC42927.2021.9500279.

[20] Liu, W.—Chen, L.—Liu, X.: A Weighted Sum Based Construction of PAC
Codes. IEEE Communications Letters, Vol. 27, 2023, No. 1, pp. 28–31, doi:
10.1109/LCOMM.2022.3209082.

[21] Kovačević, M.—Vukobratović, D.: Asymptotic Behavior and Typicality Prop-
erties of Runlength-Limited Sequences. IEEE Transactions on Information Theory,
Vol. 68, 2022, No. 3, pp. 1638–1650, doi: 10.1109/TIT.2021.3134871.

[22] Mambou, E.N.—Tonnellier, T.—Gross, W. J.: Improved DC-Free Run-
Length Limited 4B6B Codes for Concatenated Schemes. IEEE Access, Vol. 10, 2022,
pp. 21847–21852, doi: 10.1109/ACCESS.2022.3152553.

[23] Park, S. J.—Lee, Y.—No, J. S.: Iterative Coding Scheme Satisfying GC Balance
and Run-Length Constraints for DNA Storage with Robustness to Error Propagation.
Journal of Communications and Networks, Vol. 24, 2022, No. 3, pp. 283–291, doi:
10.23919/JCN.2022.000008.

[24] Zhong, X.—Cai, K.—Song, G.—Wang, W.—Zhu, Y.: Constrained Coding and
Deep Learning Aided Threshold Detection for Resistive Memories. IEEE Communica-
tions Letters, Vol. 26, 2022, No. 4, pp. 803–807, doi: 10.1109/LCOMM.2022.3148292.

[25] Immink, K.A. S.: Innovation in Constrained Codes. IEEE Communications Maga-
zine, Vol. 60, 2022, No. 10, pp. 20–24, doi: 10.1109/MCOM.002.2200249.

[26] Herro, M.A.—Deng, R.H.: Error-Correcting DC-Free Binary Transmission
Codes for Fiber Optic Digital Communications. Proceedings of the Conference on
Information Sciences and Systems (CISS 1987), 1987, pp. 559–564.

[27] O’Reilly, J. J.—Popplewell, A.: Design and Spectral Characterisation of Error
Correcting Line Codes. 1988 IEEE International Symposium on Information Theory
(ISIT 1988), 1988.

[28] Popplewell, A.—O’Reilly, J. J.: Performance Aspects of Error Correcting
Line Codes. Second IEE National Conference on Telecommunications 1989, 1989,
pp. 47–52.

[29] Ferreira, H.C.—Hope, J. F.—Nel, A. L.: Binary Rate Four Eighths, Run-
length Constrained, Error Correcting Magnetic Recording Modulation Code.
IEEE Transactions on Magnetics, Vol. 22, 1986, No. 5, pp. 1197–1199, doi:
10.1109/TMAG.1986.1064518.

[30] Lee, P.—Wolf, J.K.: Combined Error Correction/Modulation Codes. IEEE
Transactions on Magnetics, Vol. 23, 1987, No. 5, pp. 3681–3683, doi:
10.1109/TMAG.1987.1065193.

https://doi.org/10.1007/978-3-030-05840-1
https://doi.org/10.1109/LOCS.2019.2911517
https://doi.org/10.1109/ICC42927.2021.9500279
https://doi.org/10.1109/LCOMM.2022.3209082
https://doi.org/10.1109/TIT.2021.3134871
https://doi.org/10.1109/ACCESS.2022.3152553
https://doi.org/10.23919/JCN.2022.000008
https://doi.org/10.1109/LCOMM.2022.3148292
https://doi.org/10.1109/MCOM.002.2200249
https://doi.org/10.1109/TMAG.1986.1064518
https://doi.org/10.1109/TMAG.1987.1065193

188 P. Farkaš, M. Rakús

[31] Lin, Y.—Wolf, J.K.: Combined ECC/RLL Codes. IEEE Transactions on Mag-
netics, Vol. 24, 1988, No. 6, pp. 2527–2529, doi: 10.1109/20.92163.

[32] Ferreira, H.C.—Lin, S.: Error and Erasure Control (d,k) Block Codes. IEEE
Transactions on Information Theory, Vol. 37, 1991, No. 5, pp. 1399–1408, doi:
10.1109/18.133257.

[33] Nasiri-Kenari, M.—Rushforth, C.K.: Some Construction Methods for Error-
Correcting (d,k) Codes. IEEE Transactions on Communications, Vol. 42, 1994,
No. 234, pp. 958–965, doi: 10.1109/TCOMM.1994.580204.

[34] Nguyen, T.T.—Cai, K.—Schouhamer Immink, K.A.—Kiah, H.M.:
Capacity-Approaching Constrained Codes with Error Correction for DNA-Based
Data Storage. IEEE Transactions on Information Theory, Vol. 67, 2021, No. 8,
pp. 5602–5613, doi: 10.1109/TIT.2021.3066430.

[35] Farkaš, P.—Weinrichter, H.: Transcontrol Codes with Run-Length Limitation.
International Journal of Electronics and Communications (AEÜ), Vol. 50, 1996, No. 6,
pp. 353–356.

[36] Lee, T.A.—Heegard, C.: An Inversion Technique for the Design of Binary Con-
volutional Codes for the 1-DN Channel. 1985 Conference on Information Sciences and
Systems, 1985.

[37] Calderbank, A.—Heegard, C.—Lee, T.A.: Binary Convolutional Codes with
Application to Magnetic Recording. IEEE Transactions on Information Theory,
Vol. 32, 1986, No. 6, pp. 797–815, doi: 10.1109/TIT.1986.1057245.

[38] Ferreira, H.C.—Wright, D.A.—Nel, A. L.: Hamming Distance Preserving
Mappings and Trellis Codes with Constrained Binary Symbols. IEEE Transactions
on Information Theory, Vol. 35, 1989, No. 5, pp. 1098–1103, doi: 10.1109/18.42229.

[39] Deng, R.H.—Herro, M.A.: DC-Free Coset Codes. IEEE Transactions on Infor-
mation Theory, Vol. 34, 1988, No. 4, pp. 786–792, doi: 10.1109/18.9775.

[40] O’Reilly, J. J.—Popplewell, A.: A Further Note on DC-Free Coset Codes.
IEEE Transactions on Information Theory, Vol. 36, 1990, No. 3, pp. 675–676, doi:
10.1109/18.54889.

[41] Popplewell, A.—Kokkos, A.—O’Reilly, J. J.: Aspects of Combined Coding
and Linear Modulation and Its Application to Future Personal Communication Sys-
tems. 1991 Sixth International Conference on Mobile Radio and Personal Communi-
cations, IET, 1991, pp. 87–92.

[42] Popplewell, A.—O’Reilly, J.: A Simple Strategy for Constructing a Class of
DC-Free Error-Correcting Codes with Minimum Distance 4. IEEE Transactions on
Information Theory, Vol. 41, 1995, No. 4, pp. 1134–1137, doi: 10.1109/18.391256.

[43] Farkaš, P.—Schindler, F.: Run Length Limited Error Control Codes Con-
struction Based on One Control Matrix Property. Journal of Electrical Engineering,
Vol. 68, 2017, No. 4, pp. 322–324, doi: 10.1515/jee-2017-0046.

[44] Farkas, P.: Turbo-Codes with RLL Properties. IEE Colloquium on Turbo
Codes in Digital Broadcasting – Could It Double Capacity?, IET, 1999, doi:
10.1049/ic:19990793.

[45] Sechny, M.—Farkas, P.: Some New Runlength-Limited Convolutional Codes.
IEEE Transactions on Communications, Vol. 47, 1999, No. 7, pp. 962–966, doi:

https://doi.org/10.1109/20.92163
https://doi.org/10.1109/18.133257
https://doi.org/10.1109/TCOMM.1994.580204
https://doi.org/10.1109/TIT.2021.3066430
https://doi.org/10.1109/TIT.1986.1057245
https://doi.org/10.1109/18.42229
https://doi.org/10.1109/18.9775
https://doi.org/10.1109/18.54889
https://doi.org/10.1109/18.391256
https://doi.org/10.1515/jee-2017-0046
https://doi.org/10.1049/ic:19990793

Adding RLL Properties to Four CCSDS LDPC Codes 189

10.1109/26.774834.

[46] Farkas, P.—Pusch, W.—Taferner, M.—Weinrichter, H.: Turbo-Codes with
Run Length Contraints. International Journal of Electronics and Communications
(AEÜ), Vol. 53, 1999, No. 3, pp. 161–166.

[47] Chomist, R.—Farkaš, P.: Some Extended Hamming Transcontrol Codes. Ra-
dioelektronika 2005 – 15th International Czech-Slovak Scientific Conference, VUT
v Brně, 2005, pp. 342–345.

[48] Chomist, R.—Farkaš, P.: Extended Golay Code with Transcontrol Properties.
The 6th International Conference on Digital Signal Processing and Multimedia Com-
munications. Proceedings of the DSP – MCOM 2005, 2005, pp. 102–105.

[49] Farkas, P.—Chomist, R.: Reed Muller-Codes with Run Length Properties. Sym-
poTIC’04. Joint 1st Workshop on Mobile Future and Symposium on Trends in Com-
munications, 2004, pp. 66–69, doi: 10.1109/TIC.2004.1409500.

[50] Farkašová, K.—Farkaš, P.—Rakús, M.—Ružický, E.—Silva, A.—
Gameiro, A.: Construction of Error Control Run Length Limited Codes Exploiting
Some Parity Matrix Properties. Journal of Electrical Engineering, Vol. 66, 2015, No. 3,
pp. 182–184, doi: 10.2478/jee-2015-0030.

[51] Farkaš, P.—Schindler, F.: Construction for Obtaining Trellis Run Length Lim-
ited Error Control Codes from Convolutional Codes. Journal of Electrical Engineer-
ing, Vol. 68, 2017, No. 5, pp. 401–404, doi: 10.1515/jee-2017-0074.

[52] Farkaš, P.—Janvars, T.—Farkašová, K.—Ružický, E.: On Run-Length Lim-
ited Error Control Codes Constructed from Binary Product Codes. Journal of Elec-
trical Engineering, Vol. 69, 2018, No. 3, pp. 245–249, doi: 10.2478/jee-2018-0033.

[53] Farkaš, P.—Rakús, M.—Páleńık, T.: A New Technique for Incorporating RLL
Properties Into 5G LDPC Codes Without Additional Redundancy. Wireless Personal
Communications, Vol. 119, 2021, pp. 749–762, doi: 10.1007/s11277-021-08235-3.

[54] TC Synchronisation and Channel Coding. Recommended Standard CCSDS 131.0-B-
4 (Blue Book), Issue 4. Consultative Committee for Space Data Systems (CCSDS),
2021.

[55] TM Synchronisation and Channel Coding. Recommended Standard CCSDS 131.0-B-
4 (Blue Book), Issue 4. Consultative Committee for Space Data Systems (CCSDS),
2022.

[56] Gallager, R.G.: Low Density Parity Check Codes. Ph.D. Thesis. Massachusetts
Institute of Technology, 1960.

[57] Farkaš, P.—Páleńık, T.: On Soft Decoding of Some Binary RLL-Transmission
Codes in Systems with Coherent BPSK Modulation. 2022 Cybernetics & Informatics
(K&I), IEEE, 2022, pp. 1–5, doi: 10.1109/KI55792.2022.9925949.

[58] Massey, J. L.: Deep-Space Communications and Coding: A Marriage Made in
Heaven. In: Hagenauer, J. (Ed.): Advanced Methods for Satellite and Deep Space
Communications. Springer, Berlin, Heidelberg, Lecture Notes in Control and Infor-
mation Sciences, Vol. 182, 1992, pp. 1–17, doi: 10.1007/BFb0036046.

[59] Farkaš, P.—Rakús, M.: On Run Length Limitation in Codewords of Some Reed
Solomon Codes. 2022 (Submitted to Wireless Personal Communications).

https://doi.org/10.1109/26.774834
https://doi.org/10.1109/TIC.2004.1409500
https://doi.org/10.2478/jee-2015-0030
https://doi.org/10.1515/jee-2017-0074
https://doi.org/10.2478/jee-2018-0033
https://doi.org/10.1007/s11277-021-08235-3
https://doi.org/10.1109/KI55792.2022.9925949
https://doi.org/10.1007/BFb0036046

190 P. Farkaš, M. Rakús

Peter Farka�s is with the Institute of Multimedia Information
and Communication Technologies, Slovak University of Tech-
nology in Bratislava (STU) and with the Institute of Applied
Informatics, Faculty of Informatics, Pan European University in
Bratislava as a Professor. From 2002 until 2007 he was Visit-
ing Professor at Kingston University, UK and Senior Researcher
at Siemens PSE. In 2003 SIEMENS named him VIP for his in-
novations and patents. In 2004 he was awarded the Werner
von Siemens Excellence Award for research results on two-di-
mensional Complete Complementary Codes. From 2008 to 2009

he worked also as a consultant in the area of Software Defined Radio for SandBridge
Tech. (USA). He was the leader of a team from STU in projects funded by the Euro-
pean Community under the 5FP and 6FP “Information Society Technologies Programs”:
NEXWAY IST-2001-37944 (Network of Excellence in Wireless Applications and Tech-
nology) and CRUISE (Creating Ubiquitous Intelligent Sensing Environments) FP6 IST-
2005-4-027738, (2006–2007). His research interests include Coding, Communications The-
ory and sequences for CDMA. He has published 1 book, about 45 papers in reviewed
scientific journals and up to 100 papers in international conferences. He is the author or
co-author of 7 patents. He is and was serving in TPC of about 60 international confer-
ences and presented 12 invited lectures. As an IEEE volunteer, he was serving in the IEEE
Czechoslovakia Section Executive Committee in different positions from 1992 to 2014 and
from 2005 to 2006 he served as a chair of the Conference Coordinator Subcommittee in
IEEE Region 8. He organized the IEEE R8 Conference EUROCON 2001 and was the
chairman of SympoTIC ’03, SympoTIC ’04, SympoTIC ’06 and co-organizer of the Win-
ter School on Coding and Information Theory 2005. Since 2016 he has been serving as
Vice-Chair of the computer chapter in the IEEE Czechoslovakia Section.

Martin Rak�us studied radio electronics and graduated from
the Slovak University of Technology in 2001. In 2004 he re-
ceived his Ph.D. from the Slovak University of Technology and
in 2020 he became Associate Professor at the same institute.
Since 1995 he has been with the Institute of Multimedia Infor-
mation and Communication Technology, Faculty of Electrical
Engineering and Information Technology, Slovak University of
Technology in Bratislava, Slovakia. His primary research inter-
ests are error control coding and digital communication systems.
He is a member of the IEEE.

