
Computing and Informatics, Vol. 42, 2023, 340–363, doi: 10.31577/cai 2023 2 340

EVOLUTION-BY-COEVOLUTION OF NEURAL
NETWORKS FOR AUDIO CLASSIFICATION

W lodzimierz Funika, Pawe l Koperek, Tomasz Wiewióra

Institute of Computer Science
Faculty of Computer Science Electronics and Telecommunication
AGH University of Krakow, al. Mickiewicza 30, 30-059 Kraków, Poland
e-mail: funika@agh.edu.pl, {pkoperek, tomasz.wiewiora95}@gmail.com

Abstract. Neural networks are increasingly used in recognition problems, includ-
ing static and moving images, sounds, etc. Unfortunately, the selection of optimal
neural network architecture for a specific recognition problem is a difficult task,
which often has an experimental nature. In this paper we present the use of evolu-
tionary algorithms to obtain optimal architectures of neural networks used for audio
sample classification. We extend the Pytorch DNN Evolution tool implementing co-
evolutionary algorithms which create groups of neural networks that solve a given
problem with a certain accuracy, with the support for problems in which training
data consists of audio samples. In this paper we use the co-evolutionary approach
to solve a sample sound classification problem. We describe how the sound data
was prepared for processing with the use of the Mel Frequency Cepstral Coeffi-
cients (MFCC). Next we present the results of experiments conducted with the
AudioMnist dataset. The obtained neural network architectures, whose classifica-
tion accuracy is comparable to the classification accuracy attained by the AlexNet
neural network, and their implications are discussed.

Keywords: Neural networks, evolutionary algorithms, sound recognition

Mathematics Subject Classification 2010: 68-T05, 68-T10

1 INTRODUCTION

Speech is the basic medium of interpersonal communication. However, it is more
and more often used as a communication channel between a human and a ma-

https://doi.org/10.31577/cai_2023_2_340

Evolution-by-Coevolution of Neural Networks for Audio Classification 341

chine thanks to recent developments in the area of speech recognition. Nowadays,
we observe a very rapid development of many tools based on speech recognition
technology. There are multiple examples of such systems, e.g. virtual assistants
([1]: Google Assistant, Apple Siri, Amazon Alexa, Microsoft Cortana), car control
systems [2], robot control systems [3]. The number of applications and systems
which employ a speech-based interface is constantly growing. Speech recognition
and audio classification are already used in search engines, car navigation and trans-
lators.

Recently, using the neural networks became a very popular approach to creating
audio classification systems. One of the main challenges in this context is the time
consuming process of designing the neural network architecture. It requires a lot of
domain knowledge and a large number of experiments. Incorrect decisions may lead
to suboptimal classification performance and render the newly created systems in-
capable of serving its basic purpose. In order to automate and streamline the model
discovery process an evolutionary algorithm may be used. In this paper we demon-
strate how the Pytorch DNN Evolution framework [4] can be used to accelerate the
process of creating neural network architectures which solve the audio classification
problem. The network architectures are obtained in subsequent iterations of the ge-
netic algorithm, which over time solves the given classification problem. To validate
our approach we present the results of a series of experiments conducted with the
AudioMNIST dataset [5] used as a sample input dataset.

The neural network model is only one of the components required. Audio pre-
processing is another crucial element of building a system which communicates with
human users successfully. However, the sound signal analysis is also applicable to
many other fields, e.g. medicine, bio-acoustics or seismology. In medicine, mainly
in otorhinolaryngology, a spectrogram could be used in a voice examination. It
separates the sound signal into bands with different frequencies. Such a result is
used by a phoniatrist to detect a subtle early changes in the voice. These changes
may be the initial stage in the development of vocal chords nodules [6]. Another
field in which sound signal analysis is used is bio-acoustics – it studies the impact
and role of sound in the lives of animals. In this field, tools are mainly used to
extract individual sound characteristics, which can be used to distinguish between
species of animals or even their specific individuals. An example of the use of sound
recognition techniques in bio-acoustics is a bat echolocation research [7]. Sound
analysis is also often used in seismology. There are methods for extracting features
from sound samples. Systems for the classification of micro-seismic signals are being
developed in order to minimize risks in the mining industry [8]. These systems aim
to early detect events which might cause dangerous vibrations in mines. Since audio
pre-processing can be used in such a variety of contexts, there are numerous available
techniques. This means that audio pre-processing requires careful examination and
adjusting to a specific problem. In the system presented in the current paper, the
audio signal is transformed to the MFCC coefficients [9]. In our research we have
attempted to empirically determine an optimal number of coefficients which need to
be used in the context of the analyzed dataset.

342 W. Funika, P. Koperek, T. Wiewióra

The paper is structured as follows. In Section 2 we discuss related research
and the background of our work. In Section 3 we describe the modifications to
the Pytorch DNN Evolution framework. In Section 4 we present a description of
the conducted experiments. In Section 5 the results of the experiments are dis-
cussed. Finally, in Section 6 we conclude our research based on the conducted
experiments.

2 RELATED WORK

In this section the background for our research is presented.

2.1 Using Neural Networks in Sound Classification

Neural networks are a very flexible method for approximating very complex func-
tions. This makes them very useful in many domains, including speech recognition.
An example of the use of neural networks in those areas can be the problem of
classifying the sound recordings of numbers in English [10]. The authors presented
a method of sound samples classification based on spectrograms. The architecture
used in the experiment was based on the architecture of AlexNet [11]. The architec-
ture contained five convolutional layers. Two types of experiments were conducted
on the AlexNet network. The first one was a classification of the recordings of digits,
so there were ten possible classes. The second one was classification of the recordings
according to the gender of the person who has been recorded.

The problem of sound classification can also be solved with architectures, which
previously worked well with the problems of image classification [12]. The authors
adapted the existing network architecture VGG19 [13]. The VGG19 architecture
is most often used to classify images. In the case of image classification tasks, it is
common only to retrain the fully connected layers. However, in the case of audio
classification, the authors decided to retrain the last convolutional block along with
the fully connected layers.

The above approach is based on manual adaptation of the network architecture
to a new type of problem. However, this does not guarantee the creation of an
optimal architecture that will solve the classification problem embedded in another
domain. Subsequent changes introduced in such a network architecture and their
subsequent verification are time-consuming. Therefore, we would like to propose an
approach to automating this process with the use of the coevolutionary algorithm
outlined below.

2.2 Convolutional Neural Networks

There are many types of neural networks which are used in the sound recognition
problems. Convolutional Neural Network (CNN) [14] is one of the most widely used
ones. CNN typically consists of four types of layers [15]: convolutional layer, pooling
layer, fully-connected layer (dense layer), and a softmax layer.

Evolution-by-Coevolution of Neural Networks for Audio Classification 343

All neurons in the convolution layer take as input a cross-section of the output
from the previous layer. Each neuron multiplies the local input data by the weight
matrix. The weight matrix or the local filter is replicated over the entire input
space to detect a specific type of pattern. All neurons share the same weights to
create a feature map of objects. The entire convolutional layer consists of many
feature maps of objects that have been generated using differently placed filters.
This procedure is used to isolate many types of local patterns that may occur in
any location. For speech recognition, the input space may be a two-dimensional
plane where the dimensions of the data are frequencies and time [16]. Following
the convolution layer typically a pooling layer is used. Such a layer similarly as
the convolutional layer takes input from the local region of the previous convolu-
tional layer to generate a single output from that region. The common operator
of these layers used in CNN is max-pooling. It outputs the maximum value in
each sub-region. This operation reduces the computational complexity and makes
the network resistant to slight changes in the position of local patterns. The next
layer after at least one convolutional and one pooling block is a fully connected
layer, also called dense layer. The main task of this layer is the final classification
of the object. This layer identifies the input object and assigns it to the specific
class.

In literature one can also find other types of neural network types, e.g. recur-
rent [17], LSTM [18] or Transformer [19]. They have various applications, however
in this paper we focus just on those which are relevant to our research.

2.3 Evolving of Deep Neural Network Architectures

The use of Deep Learning provided state-of-the-art results in many domains like
image recognition [11, 13] or machine translation [20, 21]. Unfortunately, it involves
to carefully design the neural network architecture, which is often a very compli-
cated task. It relies heavily on the experience and knowledge of the researcher,
what makes it difficult for beginners to modify or create new models fitting their
particular use-case. A variety of Neural Architecture Search (NAS) algorithms were
developed [22, 23] to tackle this issue. Among the employed methods there are
examples of the Reinforcement Learning [24, 25], gradient optimization [26] or evo-
lutionary algorithms (EA) [27, 28]. In the current research we focus on the last
category, due to the high flexibility of the algorithms from that category.

Evolutionary algorithms share one common weakness: in their basic form they
require large amounts of resources in order to evaluate the architectures they create.
In order to mitigate this problem different strategies are being employed [22]:

• Reducing the search space [29, 27]. In the basic approach, the search space of
architectures has the representation of all necessary components of an architec-
ture (e.g. layers, their sizes, connections between layers etc.). This means that
the algorithm needs to take many smaller steps in order to arrive at the opti-
mal solution. To reduce the number of such steps, less granular concepts are

344 W. Funika, P. Koperek, T. Wiewióra

introduced as search space building blocks, e.g. cells or blocks (which consist of
multiple neural layers themselves).

• Reusing neural architecture [28]. Instead of creating every model from scratch,
the search procedure uses the existing artificially designed architectures as
a starting point, then it and transforms them to improve the performance.

• Incomplete training [30]. The individual architecture evaluation is speeded up
by changing the mechanism which ranks the architectures between each other.
Instead of conducting a lengthy training of a full dataset, e.g. early stopping can
be used to limit the amount of computations required to obtain the result of
a comparison. Another variant of this approach is to share some or all weights
with an already trained model.

The co-evolutionary approach employed in the current paper [31] uses subsets
of the original training dataset to reduce the amount of time required to evaluate
an individual. Low level architecture building blocks (neural network layers) are
used to define the search space. All individual neural network models are created
and trained from scratch. This allows to categorize the method as using incomplete
training technique while not employing neural architecture reuse nor reducing the
search space.

2.4 Coevolution of Neural Networks and Fitness Predictors

Coevolutionary algorithms are a type of evolutionary algorithms in which the train-
ing process involves two or more individuals species. In the coevolution algorithm,
the assessment of the quality of a given individual in a population depends on indi-
viduals from a different population. Coevolutionary algorithms can be divided into
two main types: competitive and cooperative ones. In the competitive approach,
the assessment of an individual is obtained through competing with the individu-
als of the other population. On the other hand, the cooperative algorithms allow
individuals from one population to enhance the fitness of individuals of the second
one. This means they promote cooperation of individuals with each other. During
the training process, this results in rewarding the individuals for solving problems
together and punishing for independence.

The evaluation of the individuals in the context of the evolutionary algorithms
can be one of two types: objective or subjective fitness. The first one is aimed
at defining a function that is used to evaluate the assessment of a given individ-
ual which does not require taking into account other individuals (e.g. an error rate
in classification of images). In the second approach the assessment depends also
on other individuals, including individuals of a different species and thus can be
classified as using subjective fitness. To evaluate neural networks (first species),
training set subsets (second species) are being used. Such an approach can be used
to avoid using the full, very often large, training dataset to evaluate the neural
networks what helps to significantly reduce the time required for such an evalua-
tion.

Evolution-by-Coevolution of Neural Networks for Audio Classification 345

An example of implementation of this idea is the Pytorch DNN Evolution [31]
project which attempts to discover an optimal architecture of a neural network used
for the purpose of image classification. It conducts the process of co-evolution of
two populations in which it recombines and mutates individuals to obtain the most
fit individual. The first population consists of neural networks architectures, which
are being trained to classify images. The second one is a population of subsets of
the original training examples dataset, which can be used for quick assessment of
the neural network model. In other words it is a population of so called fitness
predictors. Each population has its own definition of fitness, which is a measure of
quality of an individual and is used to select which individuals are going to survive
to the next iteration of evolution. It is worth nothing that hyperparameters of the
neural network training process are provided as the input to the process and are not
modified by the evolution.

It is important to note that the fitness definition in the context of evolution
of neural networks depends on the problem which is being solved. For a sample
task of predicting the next element in a time-series it might be, e.g., the accuracy of
predictions made by the neural network. In Pytorch DNN Evolution each population
uses its own fitness definition. When trained with the use of dataset S, the neural
network’s n fitness fNN(n, S) can be defined as the accuracy of image recognition
on the given set examples. This can be formalized as Formula (1).

fNN(n, S) = 100 ·
∑|S|

i=1 IsCorrect(Recognize(n, xi),Target(xi)

S
, (1)

where:

• S – the training dataset, it can be e.g. the full dataset or a fitness predictor,

• |S| – is the size of the dataset S,

• xi – ith element of dataset S,

• Recognize(n, xi) – is the class recognized by the neural network under evaluation,

• Target(xi) – is the expected class of the sample as specified in the dataset,

• IsCorrect(x, y) – is a function which can be defined as follows:

IsCorrect(x, y) =

{
1, if x = y,

0, otherwise.
(2)

As the evolution progresses, we expect the fitness to increase, which translates
to an improvement to the recognition accuracy. In the second population of fitness
predictors, the objective of the evolutionary process is to find a subset of the training
dataset which allows to compare the fitness of two neural networks. One way to
achieve such a goal is to identify the samples of the training dataset, which render
similar results to training over the complete dataset. Such samples might have
features which are e.g. very common across the dataset or might be very difficult to

346 W. Funika, P. Koperek, T. Wiewióra

accurately recognize. The fitness of a fitness predictor p (the fFP (p)) is therefore
also defined with the use of the recognition accuracy, however in this case it is not
maximized (Formula (3)).

fFP (p) = 100 ∗ |fNN(T, p) − fNN(T,FullDataset)|, (3)

where:

• FullDataset – the full training dataset,

• p – fitness predictor under evaluation, subset of FullDataset,

• fNN – the neural network fitness as defined in Formula (1),

• T – the neural network used as a trainer for the fitness predictor population.

The co-evolution algorithm which implements these ideas is expressed more for-
mally in the form of a pseudocode, presented in Listing 39.

The result of the coevolution algorithm is a set of neural network architectures.
In the paper [31] the described algorithm is applied to the image recognition problem
based on the MNIST [32] dataset.

2.5 Sound Representation

Sound can be represented in many ways [33]. Depending on the needs, various
representations of the sound samples allow to emphasize a specific aspect of the
data that is the most interesting in a given context. The most basic method to
represent audio data is the waveform which describes changes in sound amplitude
over time. Such a representation is very easy to interpret by humans. Another
method used to represent audio data is the spectrogram. It shows the distribution
of the amplitude spectrum of the sound signal at a given time. Thus, it informs us
about the distribution of the intensity of the sound components depending on the
frequency of these components. One of the most popular representations is the Mel
Frequency Cepstral Coefficients (MFCC) [9]. It is based on the mel scale. This
scale determines the subjective perception of the sound level by human due to the
frequency measurement scale measured in hertz (Hz). The units of this scale are
called mels. MFCC is often used to prepare sound data as input for neural networks.
It was used in the preprocessing described in [34]. Each recording has been split
into audio chunks and transformed into the MFCC representation.

3 EVOLUTIONARY SYSTEM MODIFICATIONS

The main functionality of the Pytorch DNN Evolution framework [4] is the au-
tomatic discovery of neural network architectures for solving supervised learning
problems. It has been designed to support only datasets consisting of images, e.g.
the MNIST [32] and CIFAR10 [35] collections, which are examples of the image
classification problems. However, the architecture discovery method implemented

Evolution-by-Coevolution of Neural Networks for Audio Classification 347

def Eva luate Ind iv idua l (dnn , fp) :
phenotype = TranslateGenotypeToDNN(dnn)
dataset sample = ExtractSamplesFromTrainingDataset (fp)
phenotype . t r a i n (dataset dample)
return phenotype . e v a l u a t e t e s t d a t a s e t ()

def Evo lu t i on I t e r a t i on (parents , t r a i n e r) :
c h i l d r en = []
p a r e n t s s i z e = len (parents)
for i in range (p a r e n t s s i z e) :

swap (parents , i , random(p a r e n t s s i z e))
for i in range (0 , p a r en t s s i z e , 2) :

c r o s s ed ove r = CrossingOver (parents [i] , parents [i +1])
mutated = [Mutate (c r o s s ed ove r [0]) , Mutate (c r o s s ed ove r [1])]
c h i l d r en . extend (mutated)

for i in len (ch i l d r en) :
c h i l d r en [i] . f i t n e s s = Eva luate Ind iv idua l (ch i l d r en [i] , t r a i n e r)

new populat ion = TournamentPopulations (parents , c h i l d r en)
b e s t i n d i v i d u a l = Se l e c tBe s tF i t n e s s I nd i v i dua l (new populat ion)
return new population , b e s t i n d i v i d u a l

def CoEvolution (N fp , N dnn , N epochs) :
popu l a t i on fp = Init ia l izeRandomFPPopulat ion (N fp)
populat ion dnn = Initial izeRandomDNNPopulation (N dnn)

b e s t f p = RandomInt (N fp)
best dnn = RandomInt (N dnn)

for i in range (N epochs) :
for j in range (N dnn) :

populat ion dnn , best dnn = Evo lu t i on I t e r a t i on (
populat ion dnn , b e s t f p)

best dnn . f i t n e s s = Eva luate Ind iv idua l (
best dnn , Fu l lTra in ingDataset)

popu la t i on fp , b e s t f p = Evo lu t i on I t e r a t i on (
popu la t ion fp , best dnn)

Listing 1. The pseudocode of the co-evolution algorithm implemented by pytorch-dnn-
evolution package

in the discussed framework, presented in Figure 1, is not constrained to that class of
problems. It can be applied to other domains, which can be expressed as supervised
learning problems, i.e. it is possible to create a dataset for which sample network
outputs can be assigned. In the current paper we present an attempt to use the the
Pytorch DNN Evolution for sound recognition domain. In the sections that follow
we demonstrate its effectiveness by applying it to a sample dataset.

The Pytorch DNN Evolution is designed to work in a distributed environment
and consists of two major components: the evolution driver and workers. The first
component is responsible for execution of the evolutionary algorithm. It maintains
two populations: generates the genotype of the individuals constituting the initial
population, crosses-over and mutates them according to set probability parameters,
triggers evaluation of individual’s fitness when necessary. The responsibility of the
worker is to perform evaluation of an individual, what can be translated to the

348 W. Funika, P. Koperek, T. Wiewióra

following steps: translating the genotype to a trainable neural network, preparing
the input dataset for training, conducting the training and finally measuring and
reporting the fitness value, e.g. by testing the classification accuracy with the use
of a separate test dataset. It is worth noting that to perform all of its tasks, the
evolution driver is not required to translate the individual’s genotype to another
form. Since the genotype is represented as an array of numbers, applying crossing-
over and mutation is a straightforward operation. Thanks to that, the evolution
driver component can be applied to a wide range of problems and does not need
to be changed, e.g., to introduce support for other types of neural network layers
or a new domain. On the contrary, it is just the worker component which needs
to be altered. Such an architecture allows the researcher to focus on the details
of a specific domain and allows to simply reuse the core co-evolutionary algorithm
without changes.

Figure 1. The architecture of the pytorch-dnn-evolution

In our work, to allow the application of the co-evolutionary approach to the
domain of sound classification, we have extended the worker component. The worker
is one of the crucial parts of the evolutionary system, as it conducts the evaluation
of the individual genotypes. The modifications included:

• Interpretation of the individual genotype has been extended with support for
other neural network layer types e.g. a convolutional layer. The network ar-
chitecture is is not limited to creating simple, fully connected layers anymore.
Supporting the new layer types includes also dynamically introducing the addi-
tional components which transform the format of samples between layers.

• Adjusting the training logic. Introducing the support for different layer types
required also changing how the training and evaluation of networks is conducted.

• Introducing support for new types of datasets. This involves extending the pre-
processing procedures to ensure that the data samples are presented to the neural

Evolution-by-Coevolution of Neural Networks for Audio Classification 349

network as Mel Frequency Cepstral Coefficients and the datasets can be used to
conduct co-evolution. Operations on audio data such as reading data from a file
and retrieving MFCC were implemented using the torchaudio library [36]. In
order to allow evaluation of the discussed approach, we have chosen to integrate
the AudioMnist dataset [5], which has been already widely used in that research
area [37, 38].

The modified version of the framework is presented in Figure 2.
During the first attempts to train neural networks on a set of audio data, we

found a considerable time overhead was introduced by the pre-processing of sound
data (processing the relevant part of the dataset into MFCCs). This would have
a significant impact on the overall operating time of the genetic algorithm, since
each neural network training process requires pre-processing of data before it can
commence. Therefore, we have implemented the caching of the MFCCs and labels
associated with these data. In this approach, the worker converts the entire audio
data set to MFCCs only once before the first training. Coefficients are stored in the
file with the relevant labels. During the training of the subsequent neural networks,
the worker uses the data saved in this file. This optimization allowed to significantly
reduce the experiment time.

4 DATASET PREPARATION

To conduct our experiments we have used the AudioMnist dataset. This collection
contains 30 000 recordings of reading numbers from 0 to 9 in English. The recordings
were prepared by 60 various speakers. Each recording is additionally enhanced with
metadata about the speaker, such as: accent, age, gender. 48 men and 12 women
participated in the recordings. The dataset could be used as a model benchmark
for various audio data classification tasks. The MNIST or the CIFAR10 datasets
perform a similar function for the classification of images.

The analysis of Mel Cepstral Coefficients was used for the data preprocessing for
neural networks. The MFCC is based on the mel scale that reflects the subjective
perception of sound, which is often used in the audio analysis. Generating MFCCs
requires choosing an appropriate number of coefficients which are taken into account
when analyzing a sound sample. The result of MFCC analysis is a three-dimensional
representation of the recording. The dimensions of this data type are time, the
number of Mel Cepstral Coefficient and its value [9]. Figure 3 presents the results
of such an analysis for 10 sound samples of English words from zero to nine. The
horizontal axis represents time, the left vertical axis – the number of coefficients,
the color denotes the MFCC value.

As depicted in Figure 3, the values of Mel Cepstral Coefficients oscillate closer
and closer to zero as the frequency increases. This means that they are less and less
useful for the neural network training. Unfortunately, at the same time, processing
them requires using a model with more parameters, what leads to an increase in the
training time. To optimize the training time, only a subset including between 12

350 W. Funika, P. Koperek, T. Wiewióra

Figure 2. The extended architecture of the pytorch-dnn-evolution which includes changes
described in Section 3

Evolution-by-Coevolution of Neural Networks for Audio Classification 351

Figure 3. Visualization of the first 18 MFCC mel coefficients of the audio sample of words
from ‘zero’ to ‘nine’. The coefficients that were taken into account for neural network
training were marked with a red rectangle.

352 W. Funika, P. Koperek, T. Wiewióra

to 18 first MFCC coefficients is taken into account for the purpose of training. The
optimal number of coefficients to be taken into account has been determined empiri-
cally by running the neural network training experiments. In those experiments the
neural network consisted of three convolutional layers. The dataset was divided into
a training set (25 000 samples) and a test set (5 000 samples). The charts in Fig-
ures 4 and 5 present the results: while Figure 4 shows the relationship between the
number of Mel Cepstral Coefficients and the classification accuracy, Figure 5 shows
the relationship between the number of mel cepstral coefficients and the training
time of the neural network.

Figure 4. Classification accuracy for the first 12 to 20 MFCC coefficients

Figure 5. Training time of the neural network for the first 12 to 20 MFCC coefficients

Evolution-by-Coevolution of Neural Networks for Audio Classification 353

The conducted experiments show that for the AudioMnist dataset, the optimal
number of MFCC coefficients which should be taken into account is 16. Increasing
the number of the coefficients has a negative effect on the training time of the neural
network. Using more coefficients requires operating larger matrices and therefore
requires performing more computations. We also noticed that the classification
accuracy decreases when using more than 16 coefficients, what indicated that using
more data would not lead to improvements in the context of classification.

5 EXPERIMENTS RESULTS

Two experiments were conducted using the modified Pytorch DNN Evolution frame-
work. In the first one, we tried to estimate the appropriate individual size from the
population of the training datasets. This experiment was aimed at evaluation of the
minimum size of the training dataset for which the coevolution algorithm would still
work correctly. The goal of the second experiment was to validate the correctness
of the coevolutionary process and generate an architecture, which would render re-
sults comparable to one designed manually by a human researcher. The coevolution
was applied to the creation of neural networks which attempted to classify sound
samples.

All the test runs were performed using the same configuration. The only excep-
tion was the size of population of training datasets used in the Experiment 1, which
was required due to the nature of that experiment. In all the runs 100 iterations of
coevolution were performed. The parameters of the genetic algorithm are presented
in Table 1.

Parameter
Population of Neural Population of Training
Network Dataset

Crossover probability 0.75 0.75

Mutation probability 0.1 0.1

Individual size 8 1 000

Population size 8 4

Table 1. Parameters of the genetic algorithm used during the coevolution

In the case of the population of neural networks, the size of the individual
corresponds to the size of the generated networks. However, in the case of the
population of training datasets, the size of the individual is the size of the training
dataset.

5.1 Experiment 1

The first experiment using the Pytorch DNN Evolution tool was conducted to find
the optimal size of the training dataset used during the evolutionary process. Such

354 W. Funika, P. Koperek, T. Wiewióra

a dataset on the one hand should be as small as possible to allow for fast indi-
vidual evaluation (neural network training) and on the other hand it should con-
tain enough samples which would allow the evolution to make progress. To find
the optimal size, we conducted subsequent subexperiments in which the size of
the set of training data was gradually being reduced. For each training dataset
size we have conducted five runs. For a given dataset size we have recorded the
maximum accuracy achieved by a neural network and the average accuracy of the
best neural networks obtained through evolution but trained on a full training
dataset.

Table 2 presents the accuracy for different sizes of the training dataset.

Size The Maximum Accuracy The Average Accuracy
of the Training of Neural Networks Trained of Neural Networks Trained

Dataset on the Subset on the Full Dataset

5 000 94.70% 97.28%

4 000 93.28% 96.98%

3 000 93% 97.05%

2000 92% 96.66%

1 000 90% 94.14%

800 81% 93.26%

600 79% 92.30%

400 79% 92.18%

200 77% 92.72%

100 67% 90.72%

Table 2. Accuracy of training for AudioMnist subsets of different size

Based on those results, we drawn the following conclusions:

• While reducing the size of the training dataset we were obtaining lower classifi-
cation accuracy in the neural networks population.

• The neural networks trained on several hundred recordings would not achieve
very good accuracy in the classification. It should be noted that despite that,
the effect of coevolution is still noticeable. We could observe a growing trend
in the accuracy of neural network’s classification for only 800 samples. The
progress made by evolution in this case is presented in Figure 6.

• We have observed gains in the accuracy of the neural network when using train-
ing set sizes above 1 000 samples.

• The optimal size of the training dataset is around 3 000 samples. The accuracy
of classification of the whole dataset of networks obtained through co-evolution
did not grow significantly (for 4 000 it dropped to 96.98 %, for 5 000 it grew to
97.28 %) when we increased the size of training dataset further. However, the
training was becoming considerably slower (Figure 7), (about 7 seconds for 4 000

Evolution-by-Coevolution of Neural Networks for Audio Classification 355

Figure 6. Accuracy of classification achieved by the population of neural networks. The
size of the subset is 800. Maximum achieved accuracy is 81%.

and about 13 seconds for 5 000) per each network training. We have decided to
use the subset size of 3 000 samples in the experiments that followed.

5.2 Experiment 2

In the second experiment the goal of the coevolution process was to find a neural
network architecture capable of solving the problem of digit classification. The size
of the training subset was set to 3 000 recordings, as per result of Experiment 1.
The graphs given in Figures 8 and 9 show the progress of the coevolution algorithm:

• Figure 8 shows the accuracy of the neural networks in the classification of digit
recordings over successive iterations of the coevolutionary algorithm. The in-
creasingly higher fitness values obtained in the subsequent iterations prove that
the individuals cope better and better with speech recognition. This confirms
that the evolution is able to make progress in the expected direction.

• Figure 9 shows the average accuracy of the neural network trained on individuals
from the population of training datasets (fitness predictors). We can observe
that on the contrary to the neural networks improving their accuracy over the
course of evolution, the average accuracy of the training over the population of
fitness predictors is decreasing. This suggests that in order to approximate the
results of the training with a full dataset, the evolution chooses the samples,
for which the classification accuracy is lowest, in other words they are hard to
classify by the neural networks.

356 W. Funika, P. Koperek, T. Wiewióra

Figure 7. Training time of the neural networks for different dataset sizes

Over the course of the evolution, the maximum accuracy that was achieved was
equal to 93 %. However, it should be noted that the network model in the Pytorch
DNN Evolution framework was trained only on a certain subset of training data
selected (the fitness predictor). Under those conditions, the classification accuracy
of the neural network model is expected to be lower than in the case of training the
same network model on the entire dataset. Therefore, the neural network model was
trained again, however by using the entire training dataset. This allowed achieving
the classification accuracy of 97.05 %.

This result can be compared, e.g. with the AlexNet model (designed by a human
researcher) used in [10] which is a convolutional neural network as well. That model
has also been trained to classify the AudioMnist with the use of the stochastic
gradient descent and reached 95.82 % ± 1.49 %. In this context the result obtained
by the automatically generated model could be considered satisfactory. Figure 10
presents the neural network architecture generated by Pytorch DNN Evolution. It
consists of four subsequent CNN layers followed by a fully connected layer, which
produces the final result (a vector of probabilities that the input sample belongs to
each of the ten classes). Such a structure resembles AlexNet in which convolutional
layers are also followed by the fully connected ones.

6 CONCLUSIONS

In this paper we have demonstrated how the Pytorch DNN Evolution tool can be
used to automatically create a neural network architecture for the classification of

Evolution-by-Coevolution of Neural Networks for Audio Classification 357

Figure 8. Classification accuracy achieved by the population of neural networks

digits in speech recordings. This approach allowed us to avoid creating the neural
network architecture ourselves. Since the architecture was created with the use of an
automated procedure (the coevolution process), we only had to define the elements
which the network would consist of and the amount of resources we wanted to ded-
icate to searching for an appropriate architecture. First, in Experiment 1, we have
examined what is the optimal size of the training dataset (size of an individual in
the training set population). We also showed that reducing the size of individuals in
the population of training subsets resulted in decreasing the neural network training
time. As a consequence, the pace of the genetic algorithm accelerated. At the same
time, the experiment has demonstrated that even though the size of fitness predic-
tors was reduced, the classification accuracy did not significantly decrease. This
allowed the evolutionary process to make progress towards the optimal architecture,
while reducing the amount of resources required. One needs to remember, though,
that trading off the accuracy for resource consumption may affect the evolution and
lead it in a wrong direction. In order to avoid rendering the presented approach
ineffective, it is beneficial to empirically confirm that reducing the size of fitness
predictors does not lead to significant negative changes in the fitness metric val-
ues, e.g. in our case reduction of the classification accuracy. If possible the optimal
size should be determined through rigorous experimentation with a wide variety of
fitness predictor sizes.

In Experiment 2, the neural network obtained in the process of co-evolution
achieved a classification accuracy of 97.05 %. This value is comparable to the best re-
sults achieved on the AudioMnist dataset (recognition accuracy of 95.82 %±1.49 %),
described in [10]. The results obtained during the tests of the Pytorch DNN Evo-

358 W. Funika, P. Koperek, T. Wiewióra

Figure 9. Classification accuracy achieved by the population of training datasets. The
accuracy declines as expected: The evolution of the population of training datasets gen-
erates individuals which are harder and harder to classify correctly by the neural net-
works.

lution framework confirmed that coevolution can be used to search for the op-
timal neural network architecture, used to solve the problem of sound classifica-
tion.

The positive results of the experiments prove that the data representation based
on the mel cepstral coefficients is more memory-efficient than the spectrogram. The
mel cepstral coefficients are approximately 10 times smaller than a spectrogram rep-
resentation of the same waveform. Data complexity reduction is especially important
when training neural networks as it allows to reduce the training time.

In the future, the Pytorch DNN Evolution framework can further be extended
with support for other datasets. This would allow to verify whether the coevolution
algorithm works also for other types of problems that may use other data types.
Currently, Pytorch DNN Evolution offers the creation of neural networks by using
two types of layers: convolutional layer and dense layer. We believe that extending
it with new types of layers, e.g. pooling layers, recursive layers, or dropout layers,
would help to apply it to more domains.

Data Availability

The datasets used, generated and analysed during the current study are available in
publicly accessible repositories [5] or can be provided from the corresponding author
on a reasonable request.

Evolution-by-Coevolution of Neural Networks for Audio Classification 359

Figure 10. Neural network architecture generated by Pytorch DNN Evolution framework.
The left side of the rectangle denotes the name and type the NN layer: InputLayer – first
layer which does not transform data, Conv2D – convolution of input data, Flatten – change
the format of data from a multidimensional vector to an array, Dense – fully connected
layer. The right side specifies the format of data at the input and output to and from
a given layer.

Acknowledgements

The research presented in this paper was supported by the funds assigned to AGH
University of Krakow by the Polish Ministry of Education and Science. Our thanks
go also to the PL-Grid infrastructure resources of the ACC CYFRONET AGH,
where experiments have been carried out.

360 W. Funika, P. Koperek, T. Wiewióra

REFERENCES

[1] López, G.—Quesada, L.—Guerrero, L.A.: Alexa Vs. Siri Vs. Cortana Vs.
Google Assistant: A Comparison of Speech-Based Natural User Interfaces. In:
Nunes, I. L. (Ed.): Advances in Human Factors and Systems Interaction. Springer
International Publishing, Cham, 2018, pp. 241–250.

[2] Tombeng, M.T.—Najoan, R.—Karel, N.: Smart Car: Digital Controlling Sys-
tem Using Android Smartwatch Voice Recognition. 2018 6th International Conference
on Cyber and IT Service Management (CITSM), 2018, pp. 1–5, doi: 10.1109/C-
ITSM.2018.8674359.

[3] Gundogdu, K.—Bayrakdar, S.—Yucedag, I.: Developing and Modeling of
Voice Control System for Prosthetic Robot Arm in Medical Systems. Journal of
King Saud University - Computer and Information Sciences, Vol. 30, 2018, No. 2,
pp. 198–205, doi: https://doi.org/10.1016/j.jksuci.2017.04.005.

[4] Pytorch DNN Evolution Framework. 2018, https://gitlab.com/pkoperek/

pytorch-dnn-evolution (Accessed: 2022-03-02).

[5] AudioMNIST Dataset. https://github.com/soerenab/AudioMNIST (Accessed:
2021-01-07).

[6] Niebudek-Bogusz, E.—Woznicka, E.—Korczak, I.—Śliwińska Kowal-
ska, M.: The Applicability of Formant Voice Analysis in Diagnostics of Functional
Voice Disorders. Otorynolaryngologia, Vol. 8, 2009, pp. 184–192.

[7] Mirzaei, G.—Majid, M.W.—Ross, J.—Jamali, M.M.—Gorsevski, P.V.—
Frizado, J. P.—Bingman, V. P.: The BIO-Acoustic Feature Extraction and Clas-
sification of Bat Echolocation Calls. 2012 IEEE International Conference on Elec-
tro/Information Technology, 2012, pp. 1–4, doi: 10.1109/EIT.2012.6220700.

[8] Li, Z.—Peng, P.—He, Z.—Wang, L.: Automatic Classification of Microseismic
Signals Based on MFCC and GMM-HMM in Underground Mines. Shock and Vibra-
tion, Vol. 2019, 2019, doi: 10.1155/2019/5803184.

[9] Bridle, J. S.—Brown, M.D.: An Experimental Automatic Word-Recognition Sys-
tem. JSRU Report, Vol. 1003, 1974, No. 5.

[10] Becker, S.—Ackermann, M.—Lapuschkin, S.—Müller, K.—Samek, W.:
Interpreting and Explaining Deep Neural Networks for Classification of Audio Signals.
CoRR, 2018, arXiv: 1807.03418.

[11] Krizhevsky, A.—Sutskever, I.—Hinton, G.E.: Imagenet Classification with
Deep Convolutional Neural Networks. Proceedings of the 25th International Confer-
ence on Neural Information Processing Systems - Volume 1, Curran Associates Inc.,
Red Hook, NY, USA, NIPS ’12, 2012, pp. 1097–1105.

[12] Zhang, B.—Leitner, J.—Thornton, S.: Audio Recognition Using Mel Spectro-
grams and Convolution Neural Networks. Technical Report, 2019.

[13] Simonyan, K.—Zisserman, A.: Very Deep Convolutional Networks for Large-Scale
Image Recognition. 2014, arXiv: 1409.1556.

[14] Lecun, Y.—Bottou, L.—Bengio, Y.—Haffner, P.: Gradient-Based Learning
Applied to Document Recognition. Proceedings of the IEEE, Vol. 86, 1998, No. 11,
pp. 2278–2324, doi: 10.1109/5.726791.

https://doi.org/10.1109/CITSM.2018.8674359
https://doi.org/10.1109/CITSM.2018.8674359
https://doi.org/https://doi.org/10.1016/j.jksuci.2017.04.005
https://gitlab.com/pkoperek/pytorch-dnn-evolution
https://gitlab.com/pkoperek/pytorch-dnn-evolution
https://github.com/soerenab/AudioMNIST
https://doi.org/10.1109/EIT.2012.6220700
https://doi.org/10.1155/2019/5803184
http://arxiv.org/abs/1807.03418
http://arxiv.org/abs/1409.1556
https://doi.org/10.1109/5.726791

Evolution-by-Coevolution of Neural Networks for Audio Classification 361

[15] Guiming, D.—Xia, W.—Guangyan, W.—Yan, Z.—Dan, L.: Speech Recogni-
tion Based on Convolutional Neural Networks. 2016 IEEE International Conference
on Signal and Image Processing (ICSIP), 2016, pp. 708–711, doi: 10.1109/SIPRO-
CESS.2016.7888355.

[16] Huang, J. T.—Li, J.—Gong, Y.: An Analysis of Convolutional Neural Net-
works for Speech Recognition. 2015 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2015, pp. 4989–4993, doi: 10.1109/I-
CASSP.2015.7178920.

[17] Rumelhart, D. E.—Hinton, G. E.—Williams, R. J.: Learning Representations
by Back-Propagating Errors. Nature, Vol. 323, 1986, No. 6088, pp. 533–536, doi:
10.1038/323533a0.

[18] Hochreiter, S.—Schmidhuber, J.: Long Short-Term Memory. Neural Computa-
tion, Vol. 9, 1997, No. 8, pp. 1735–1780.

[19] Vaswani, A.—Shazeer, N.—Parmar, N.—Uszkoreit, J.—Jones, L.—
Gomez, A.N.—Kaiser, L.—Polosukhin, I.: Attention Is All You Need. CoRR,
2017, arXiv: 1706.03762.

[20] Chen, M.X.—Firat, O.—Bapna, A.—Johnson, M.—Macherey, W.—
Foster, G.—Jones, L.—Schuster, M.—Shazeer, N.—Parmar, N.—
Vaswani, A.—Uszkoreit, J.—Kaiser, L.—Chen, Z.—Wu, Y.—Hughes, M.:
The Best of Both Worlds: Combining Recent Advances in Neural Machine Transla-
tion. Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), Association for Computational Linguistics,
Melbourne, Australia, 2018, pp. 76–86, doi: 10.18653/v1/P18-1008.

[21] Wu, Y.—Schuster, M.—Chen, Z.—Le, Q.V.—Norouzi, M.—
Macherey, W.—Krikun, M.—Cao, Y.—Gao, Q.—Macherey, K.—
Klingner, J.—Shah, A.—Johnson, M.—Liu, X.—Kaiser, L.—Gouws, S.—
Kato, Y.—Kudo, T.—Kazawa, H.—Stevens, K.—Kurian, G.—Patil, N.—
Wang, W.—Young, C.—Smith, J.—Riesa, J.—Rudnick, A.—Vinyals, O.—
Corrado, G.—Hughes, M.—Dean, J.: Google’s Neural Machine Translation
System: Bridging the Gap Between Human and Machine Translation. CoRR, 2016,
arXiv: 1609.08144.

[22] Ren, P.—Xiao, Y.—Chang, X.—Huang, P.—Li, Z.—Chen, X.—Wang, X.:
A Comprehensive Survey of Neural Architecture Search: Challenges and Solutions.
CoRR, 2020, arXiv: 2006.02903.

[23] Chitty-Venkata, K.T.—Emani, M.—Vishwanath, V.—Somani, A.K.: Neu-
ral Architecture Search for Transformers: A Survey. IEEE Access, Vol. 10, 2022,
pp. 108374–108412, doi: 10.1109/ACCESS.2022.3212767.

[24] Cui, J.—Chen, P.—Li, R.—Liu, S.—Shen, X.—Jia, J.: Fast and Practical
Neural Architecture Search. 2019 IEEE/CVF International Conference on Computer
Vision (ICCV), 2019, pp. 6508–6517, doi: 10.1109/ICCV.2019.00661.

[25] Cai, H.—Zhu, L.—Han, S.: ProxylessNAS: Direct Neural Architecture Search on
Target Task and Hardware. International Conference on Learning Representations,
2019, doi: 10.48550/arXiv.1812.00332.

[26] Zela, A.—Elsken, T.—Saikia, T.—Marrakchi, Y.—Brox, T.—Hutter, F.:

https://doi.org/10.1109/SIPROCESS.2016.7888355
https://doi.org/10.1109/SIPROCESS.2016.7888355
https://doi.org/10.1109/ICASSP.2015.7178920
https://doi.org/10.1109/ICASSP.2015.7178920
https://doi.org/10.1038/323533a0
http://arxiv.org/abs/1706.03762
https://doi.org/10.18653/v1/P18-1008
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/2006.02903
https://doi.org/10.1109/ACCESS.2022.3212767
https://doi.org/10.1109/ICCV.2019.00661
https://doi.org/10.48550/arXiv.1812.00332

362 W. Funika, P. Koperek, T. Wiewióra

Understanding and Robustifying Differentiable Architecture Search. CoRR, 2019,
arXiv: 1909.09656.

[27] Gao, J.—Xu, H.—Shi, H.—Ren, X.—Yu, P. L.H.—Liang, X.—Jiang, X.—
Li, Z.: AutoBERT-Zero: Evolving BERT Backbone from Scratch. CoRR, 2021,
arXiv: 2107.07445.

[28] Wistuba, M.: Deep Learning Architecture Search by Neuro-Cell-Based Evolution
with Function-Preserving Mutations. In: Berlingerio, M., Bonchi, F., Gärtner, T.,
Hurley, N., Ifrim, G. (Eds.): Machine Learning and Knowledge Discovery in
Databases. Springer International Publishing, Cham, 2019, pp. 243–258.

[29] Real, E.—Aggarwal, A.—Huang, Y.—Le, Q.V.: Regularized Evolution for
Image Classifier Architecture Search. CoRR, 2018, arXiv: 1802.01548.

[30] Guo, Z.—Zhang, X.—Mu, H.—Heng, W.—Liu, Z.—Wei, Y.—Sun, J.: Single
Path One-Shot Neural Architecture Search with Uniform Sampling. CoRR, 2019,
arXiv: 1904.00420.

[31] Funika, W.—Koperek, P.: Co-Evolution of Fitness Predictors And deep Neu-
ral Networks. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K.
(Eds.): Parallel Processing and Applied Mathematics. Springer International Pub-
lishing, Cham, 2018, pp. 555–564.

[32] LeCun, Y.—Cortes, C.: MNIST Handwritten Digit Database. 2010, http:

//yann.lecun.com/exdb/mnist/.

[33] Natsiou, A.—O’Leary, S.: Audio Representations for Deep Learning in Sound
Synthesis: A Review. CoRR, 2022, arXiv: 2201.02490.

[34] Laguarta, J.—Hueto, F.—Subirana, B.: COVID-19 Artificial Intelligence Diag-
nosis Using Only Cough Recordings. IEEE Open Journal of Engineering in Medicine
and Biology, Vol. 1, 2020, pp. 275–281, doi: 10.1109/OJEMB.2020.3026928.

[35] Krizhevsky, A.: Learning Multiple Layers of Features from Tiny Im-
ages. Technical Report, 2009, pp. 32–33, https://www.cs.toronto.edu/~kriz/

learning-features-2009-TR.pdf.

[36] Documentation of Torchaudio Library. (Accessed: 2021-01-07).

[37] Qu, X.—Wei, P.—Gao, M.—Sun, Z.—Ong, Y. S.—Ma, Z.: Synthesising Audio
Adversarial Examples for Automatic Speech Recognition. Proceedings of the 28th

ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Association
for Computing Machinery, New York, NY, USA, KDD ’22, 2022, pp. 1430–1440, doi:
10.1145/3534678.3539268.

[38] Chen, G.—Zhao, Z.—Song, F.—Chen, S.—Fan, L.—Wang, F.—Wang, J.:
Towards Understanding and Mitigating Audio Adversarial Examples for Speaker
Recognition. 2022, doi: 10.48550/ARXIV.2206.03393.

http://arxiv.org/abs/1909.09656
http://arxiv.org/abs/2107.07445
http://arxiv.org/abs/1802.01548
http://arxiv.org/abs/1904.00420
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/2201.02490
https://doi.org/10.1109/OJEMB.2020.3026928
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://doi.org/10.1145/3534678.3539268
https://doi.org/10.48550/ARXIV.2206.03393

Evolution-by-Coevolution of Neural Networks for Audio Classification 363

W lodzimierz Funika works at the Institute of Computer
Science of the AGH University in Krakow (Poland). His main
research interests are in distributed computing, tool construc-
tion, performance analysis and visualization, data science, and
machine learning. Involved in many EU-funded projects and
Polish-wide projects: PL-Grid and others.

Pawel Koperek is a researcher in the field of machine learning.
He received his Master of Science degree in computer science in
2010 from the AGH University of Science and Technology, where
he studied at the Faculty of Electrical Engineering, Automatics,
Computer Science and Electronics. He has a passion for explor-
ing new ideas in machine learning and is particularly interested
in evolutionary algorithms, deep learning and deep reinforcement
learning and their practical applications (e.g., in the automatic
cloud resource management domain).

Tomasz Wiewi�ora graduated with his Master’s in the field of
computer science at the Faculty of Computer Science, Electron-
ics and Telecommunications of the AGH University of Science
and Technology in Krakow. He works as a programmer in a large
company, where he deals with the implementation of solutions
for clients from the banking industry.

