
Computing and Informatics, Vol. 42, 2023, 480–500, doi: 10.31577/cai 2023 2 480

ONTOLOGY FOR BLIND SQL INJECTION

Jean Rosemond Dora, Ladislav Hluchý

Institute of Informatics
Slovak Academy of Sciences
Dúbravská cesta 9
845 07 Bratislava, Slovakia
e-mail: {jeanrosemond.dora, Ladislav.Hluchy}@savba.sk

Karol Nemoga

Institute of Mathematics
Slovak Academy of Sciences
Štefánikova 49
811 04 Bratislava, Slovakia
e-mail: nemoga@mat.savba.sk

Abstract. In cyberspace, there exists a prevalent problem that heavily occurs to
web application databases and that is the exploitation of websites by using SQL
injection attacks. This kind of attack becomes more difficult when it comes to
blind SQL vulnerabilities. In this paper, we will first make use of this vulnerability,
and subsequently, we will build an ontology (OBSQL) to address the detection of
the blind SQL weakness. Therefore, to achieve the exploitation, we reproduce the
attacks against a website in production mode. We primarily detect the presence of
the vulnerability, after we use our tools to abuse it. Last but not least, we prove the
importance of applying ontology in cybersecurity for this matter. The mitigation
techniques in our ontology will be addressed in our future work.

Keywords: SQL injection, blind SQL, vulnerability, weakness, ontology, semantic
web, information security, cyber threats, website security, web application vulnera-
bilities, attack detection

https://doi.org/10.31577/cai_2023_2_480

How to Conduct Attacks to Exploit Blind SQL Vulnerabilities 481

1 INTRODUCTION

The significance of the website at present, and its constant use, make it a niche
for evildoers to obtain confidential data of users. According to recent research
from https://www.verizon.com/business/en-gb/resources/reports/dbir/

(2022), web application attacks are involved in 26% of all breaches, making the
second most common attack pattern. Knowing this information is extremely cru-
cial for both the attackers and the IT security engineers, as it involves security
concerns.

The detection of the blind SQL injection is a high-level scenario. It involves
advanced tools and techniques to be used by the attacker. First and foremost,
a web application developer does not mean to be a cyber security analyst; there-
fore, it may be hard for him to detect vulnerabilities. Moreover, during the pro-
gramming phase of the web application, the may use some common techniques
in PHP, Java, Python, etc. to mitigate SQL vulnerability. However, detecting
the blind SQL injection will require a deep analysis of the codes and the use of
penetration testing tools. Manually, it is very time-consuming to detect the vul-
nerability and attack its corresponding database. One of the reasons is that the
injection payloads that should be used differ from a database to a database. For
example, we need at least two (2) different payloads to abuse SQLite3 and MySQL
databases.

Regarding this web application vulnerability, an important factor that requires
great attention is when it accepts user input. For example, if it accepts users to be
registered, submit, log in, comment, etc. Publishing the website without submitting
it to a penetration testing phase, will be presented to attackers like a doorless house
for thieves. Additionally, it is also vital to expand the awareness of the need to
comprehensively evaluate what kinds of information the web application will reveal
as output when a request is made, and which mechanisms we use to break down the
request to keep up the whole security framework high.

To approach this idea, we resort to the methodology that necessitates knowing
the followings:

• what kind of response,

• who utilizes,

• for what purposes,

• if this, then that.

Hence, a question may be risen: “How can we use semantic languages, (semantic
axioms and rules) to help us understand the structure of a possible vulnerability?”
Thus, comes the importance of ontology.

Briefly, an ontology is a well-structured diagram consisting of a tree of classes
(sub-classes) or simply classes inheritance, attributes, and relationships. The con-
struction of an ontology relies on the establishment of rules.

https://www.verizon.com/business/en-gb/resources/reports/dbir/

482 J.R. Dora, L. Hluchý, K. Nemoga

The rest of this paper is then organized as follows: Section 2 provides the defini-
tion and impact of the Blind SQL injection. It also summarizes some related works.
Sections 3 and 4 embrace the attack scenario, the detection, and the exploitation
of the vulnerability. Section 5 provides information on the usability of ontology
in cybersecurity, the semantic web, axioms, and rules implementation. Section 6
provides our future work and concludes the paper.

Note: For privacy reasons, we are obliged to hide some confidential data in the
figures (public address and more), since it is a live website.

2 DESCRIPTION AND IMPACT OF BLIND SQL INJECTION

Here, we will describe SQL injection from two angles:

1) SQL vulnerabilities – It is when a web page suffers from SQL weakness. This
kind of vulnerability cannot be detected by simply reading the website source
code only, most of the time it has to go through a testing phase.

SQL injection is a code injection method that may destroy the database of
a web application if wrongly used. Imagine a scenario where a bank stores
all its clients’ data in a specific database. Having access to that database
can help the attacker find relevant and sensitive information, such as clients’
names, hashed or plaintext passwords, telephone numbers, home addresses,
signed contracts, etc. We also have to note that such companies have a lot
of databases on their systems. Thus, manually exploiting this vulnerability
can be problematic, as the attacker may have no clues about the name of
the database management system (DBMS), databases name, tables name, and
columns name. Utilizing automatic tools is more appropriate for this partic-
ular detection and exploitation of the vulnerability. It helps us reduce the
time of the attack since all the requests will produce latency of the target
server.

Usually, this attack works by inserting malicious code in an SQL statement.
Wherever there are some parameters, then it is possible to inject any payload
for detection purposes. SQL injection is one of the most common web applica-
tion vulnerabilities on the OWASP checklist.

2) SQL attacks – commonly known as SQL injection, it is when the SQL vul-
nerability of a web page is being exploited by an attacker, or by a penetration
tester.

Therefore, blind SQL injection arises when a web application is vulnerable to
SQL injection, but its HTTP responses do not include the results of the relevant
SQL query or the information of any database errors.

With this type of vulnerability, many techniques such as UNION attacks are not
efficient, since they rely on being able to see the results of the injected query
within the website’s responses.

How to Conduct Attacks to Exploit Blind SQL Vulnerabilities 483

However, it is still possible to exploit the blind SQL injection to access unau-
thorized data, but different techniques must be applied. From a boolean operation
case, it asks the database true or false questions and determines the answer based on
the response of the application. This attack scenario is often used when the website
is configured to show generic error messages but has not diminished the code that
is vulnerable to SQL injection.

From a latency viewpoint, the payload request aims to slow down the time the
server takes to respond to the query. That being said, an attacker can double-check
how the server reacts in time when a payload is injected.

The impact of exploiting the SQL vulnerabilities is greatly significant since the
attacker can steal confidential data from the database of the web application (user-
name, table name, user passwords, etc.). For more information, please the following
related works: [1, 2, 3, 4, 5, 6, 7, 8].

In the following section of the practical part (Detection&Exploitation), we had
to force the server response to slow down to detect the presence of the blind SQL
vulnerability from the target website.

3 DETECTION OF BLIND SQL VULNERABILITIES

Detecting the blind SQL weakness from a website can be difficult using the manual
inputs (payloads) method to a query field. Sometimes, it requires to the attacker
hundreds of payloads to inject into the user-input field of the web page. Saying so,
attempting to inject commands one by one by an individual is drastically not a good
practice. Therefore, hackers or penetration testers usually resort to manual tools or
some automated tools to achieve this goal.

By injecting some characters into the user input of the web page, we found a table
name “X”. And the text on the page provides more information about another
table name “Y” and its column “Y1”. However, some of this data was dummy,
fake. We had to find a way somehow to abuse what we have obtained from the
response. From the following source (please see https: // hackersonlineclub.

com/ sql-injection-cheatsheet/), We realized that the present blind SQL is a
“Generic Time-Based SQL Injection” by invoking the ASCII char. When we used
500000000/1 (please see below), the server response comes up automatically. But
using /2, it takes 2 seconds to pop up.

Next, by modifying the payload, we forced the server to give us a response at
the time of our choice.

We have seen clearly how we were able to detect the presence of this vulnerability.
The next section will demonstrate how we were able to exploit it.

4 EXPLOITATION OF BLIND SQL VULNERABILITIES

The attempt to exploit a system is usually the subsequent action after detecting
the presence of a vulnerability. To proceed with the exploitation, we first double-

https://hackersonlineclub.com/ sql-injection-cheatsheet/
https://hackersonlineclub.com/ sql-injection-cheatsheet/

484 J.R. Dora, L. Hluchý, K. Nemoga

Figure 1. No latency has occurred from the server response

Figure 2. 2s of latency has been occurred from the server response

checked if the target web application is behind a firewall. We also made sure that
we had full right to do anything we want to exploit the vulnerability from that
target website. As we can see below, the command we used is very aggressive
and dangerous as the “–risk 3” and “–level 4” might disrupt or erase the target
database.

We realized that the target was behind a firewall, so we had to find a way
to bypass this type of protection. To do so, we used “–tamper=space2comment”
command.

How to Conduct Attacks to Exploit Blind SQL Vulnerabilities 485

Figure 3. Bypassing firewall

When everything is set up properly (your full right to attack the target, your
tools), then it is time to launch the attack. The attack vigorously sends multiple
requests to the website server trying to obtain the exact database management sys-
tem (DBMS) it uses. As we can see in the following figure, we were able to extract
the database name, the tables name, and the rows and columns.

For demonstration purposes, we have chosen our target website for which we
already know the number of its databases and which do not contain hundreds of
tables. It helps avoid time-consuming attacks.

Figure 4. Successful blind SQL attack of the target website database

We have seen how we successfully hacked into a web application and gain infor-
mation from its database system. Now, let us use the ontology approach to see how
it can help when it comes to cybersecurity.

5 NOVEL APPROACH FOR THE DETECTION
OF SQL INJECTION ATTACKS (ONTOLOGY)

From the previous sections, we have demonstrated a few examples of how SQL
injection (blind) weaknesses can be detected by an attacker (or any individual,
penTester for example). We have also seen how he can make use of those vulner-
abilities by injecting some payloads to jeopardize the target system. Therefore, is
extremely important thus imperative to fight against the adversary by implementing

486 J.R. Dora, L. Hluchý, K. Nemoga

significant methodologies (approaches and steps) to strengthen security and miti-
gate the attacks. The term ontology approach is a powerful mechanism which we
can start with. For more information about other ontological approaches, please
see [9, 10].

Usually, the word ontology can be defined as a formal and explicit specification
of a set of concepts in a specific field of interest. The clear specification of those
concepts is usually presented in a shape of a well-structured scheme composed of
classes inheritance and sub-classes, relationships, and attributes.

5.1 Ontology and Semantic Web

Ontology can be designed to facilitate data to be shared and reused across multiple
applications, institutions, organizations, and so on. Based on the field of interest,
security experts can use ontology to enhance their systems. In medicine, for instance,
IT security engineers can use ontology for pregnancy, covid-19, diabetes, Alzheimer’s
etc. Please see [11, 12] for some related works.

To apply the concept of ontology in a field, some components should be put into
question. The typical ontology components are:

Categories: concepts, i.e., types of objects;

Individuals: situations or things (in this case, individuals are also known as “first-
order objects”);

Relationships: ways in which individuals and groups can communicate;

Limitations (Constraints): The formal and steady description of what must be
true until some inputs are accepted;

Features: classes, properties, aspects, parameters, or instances that objects and
categories can contain;

Axioms: assertions, or statements in a logical and understandable form that form
together with the perceivable theory that is illustrated and demonstrated by the
ontology in their domains.

Before we dive into the construction of our ontological approach, let us first define
its importance.

5.1.1 The Reasons of Implementing Ontological Approach in Cyberspace

Ontology is an exciting approach for linking up the description of a data model
and the related rules into one application. Ontologies developed in Web Ontology
Language (OWL) acquire many benefits afforded by the semantic web stack. The
goal of OWL is to represent complex knowledge of entities in a domain through
a logic-based language, via a computational, such that the knowledge encapsulated
can be ascertained for consistency or utilized as a basis for inferences on that specific
knowledge.

How to Conduct Attacks to Exploit Blind SQL Vulnerabilities 487

• To share a comprehensive structure of data, and information between people.
The ontology also allows the reuse of domain knowledge.

• To split domain knowledge from operational knowledge.

• To make domain assumptions obvious.

• To carefully analyze domain knowledge.

It is good practice to install and configure or use proactive detection tools.
Many web-based detection tools are reactive, i.e., they function according to the
specific rules set by the administrator.

The attack can only be prevented if the exact signature of the attack is not only
recognized by the scanning tools but also present.

– It is easy for a malicious entity to launch an attack altering the signature
since the majority of the existing techniques are signature-based, which hold
the syntax of the attack.

– Additionally, statistical mechanisms used in Intrusion Detection Systems
(IDS) largely provide an attainable solution for the network layer. How-
ever, this solution is not efficient at the application layer since it focuses on
the character distribution of the input and does not take into account its
contextual nature.

5.1.2 Ontology Model – Communication Protocols

The communication protocols, as its name says, allow the transfer of messages
from one point to another. It is shaped as semantic networks. The essential part
of this activity relies on the “Protocol” concept, which can be classified as the
main class of the following sub-classes FTP, SMTP, HTTPS, HTTP. This clas-
sification subsequently involves three (3) other concepts: Message, Request, Re-
sponse.

One of the finest benefits of the ontology approach is that it comes up with
inference potentiality and the required constructs that enable software systems to
reason over the knowledge base.

The following example will produce a response latency of two (2) seconds from
the web server response in the attacker’s environment, (taken from Figure 2):

query=12’;SELECT LIKE(CHAR(22,23,. . . ,28,29),UPPER(HEX(RANDOM

BLOB(500000000/2))))–

To illustrate the inference activity and flexibility in semantic rules, the query
string carries the detection payloads which forces the web server to respect its re-
quest. Instead of inserting a single parameter in the user-input field, (12 for ex-
ample), we added a SELECT + LIKE of a RANDOMBLOB command there to
experience the latency.

The referrer is in line 13, the request does not involve any cookies. All the other
lines from the “Request” tab are irrelevant to us. The inference of the ontology

488 J.R. Dora, L. Hluchý, K. Nemoga

yields all the numerous activities using a general semantic rule. Generally, the rules
give a focal point if the malicious payload infects the parameter values. Additionally,
the rules describe the inference structure through transitive features.

5.2 Implementation of Rules

By applying the semantic concept, we can use deductive inference rules to reason
on a piece of HTTP well-constructed diagram.

Let us describe to which class hierarchy each method and protocol are belonging:

• GET < Method,

• POST < Method,

• HTTP < Protocol,

• SQL injection attacks < Attack,

• Request Header ⊓ Response Header ≡⊥,

• POST ⊓GET ≡⊥.

In our proposed approach, all subsume (<) relations are transitive, irreflexive
and asymmetric. But the equivalence (≡) relations are reflexive, symmetric and
transitive. Likewise, no conceptually disjoint (⊓) relations contravene its properties
of symmetric, reflexive and transitive. We established these rules based on how
we were able to detect the SQL injection vulnerabilities, then applied them to our
ontology.

Rule 1: Person(?P) ⊓ hasTools(?P, ?Q → Attacker(?P)(Transitivity),

Rule 2: SubClassOf(?P, ?Q) ⊓ typeOf(?n,?P) → typeOf(?n, ?Q)(Transitivity),

Rule 3: hasPartOf(?P, ?Q) ⊓ hasPartOf(?Q, ?n) → hasPartOf(?P, ?n)(Transiti-
vity),

Rule 4: contains(?P, ?Q) ⊓ contains(?Q, ?n) → contains(?P, ?n)(Transitivity).

From rules 3 and 4, the 5th becomes:

Rule 5: hasPartOf(?P, ?Q) ⊓ contains(?Q, ?n) → contains(?P, ?n)(Transitivity),

Rule 6: Attacker(?P) ⊓ hasInput(?P, ?Q) ⊓ hasPartOf(?webAp, ?HTML) ⊓
contains(?query, ?method) ⊓ contains(?method, ?param) ⊓
∃Vulnerability(?webAp, ?v) ⊓ is sentBy(?P, ?a) → is detectedBy(?a, ?v)
(Drived),

Rule 7: IF Rule 6¬is detectedBy(?a, ?v) → continue(?Q, ?a2)(Drived).

Rule 7 becomes:
Attacker(?P)∧ hasInput(?P, ?Q)∧ hasPartOf(?webAp, ?HTML)∧ contains(?query,
?method) ∧ contains(?method, ?param) ∧ hasVulnerability(?webAp, ?v) ∧
is sentBy(?P, ?a) ∧ notFound(?response, ?v) ∧ Payload(?a2) → continue(?Q, ?a2)).

How to Conduct Attacks to Exploit Blind SQL Vulnerabilities 489

Rule 8: IF Rule 6 is detectedBy(?a,?v) OR Rule 7 is detectedBy(?a2, ?v) ⊓
∃Vulnerability(?webAp, ?v) ⊓ infectedBy(?param, ?a) OR infectedBy(?param,
?a2) → exploitedBy(?P, ?v)(Drived).

Interpretation of the rules

• The first rule is a basic rule that states that if someone has some tools (Kali,
Metasploit, maliciousPayload, . . .), and uses them illegally, then that person
is an attacker.

• Rule number 2, indicates that if class P is a sub-class of Q, then each in-
stance of class P also belongs to class Q. For example: if the “Tools” class
is a subclass of “Technology”, then every instance (browsers, Kali Linux,
Metasploit, . . .) of the Tool class also belongs to the Technology class. The
similar paradigm for the rule 3.

• This Rule 4, basically indicates that if the request contains a malicious string,
and that, the malicious string contains a parameter value, then the request
also contains that parameter value.

• Rule 5: The HTTP Request has part Referer, and the Referer contains the
payload, then the HTTP Request also contains the payload.

• Rule 6: The HTML webpage allows user input. The attacker uses his method
built with a parameter of his choice to query the request. If the server
responds with a latency defined by the payload, then the vulnerability will
be detected by the attacker.

• Rule 7: If the server is not responding (the request does not produce any
latency), it does not mean that the web application is not vulnerable. There-
fore, continue the attack process.

• Rule 8: If the response produces latency (from rule 6), then through the
inference process the vulnerability will be possibly exploited by the attacker
using some attack vectors.

5.3 Transformation of SWRL Rules to OWL Axioms

We present a theoretical idea applied to our ontology. Let E, F, G and H be
some pairwise disjoint, infinite sets of classes, sub-classes, properties (Object and
Data), individuals and variables where ⊤, ⊥ ∈ E; the universal property U ∈ F
i.e., owl:topObjectProperty. A class expression is an element of the following
grammar I ::= (I ⊓ I | ∃F.I | ∃.Self | E | {a} where E ∈ E, F ∈ F and a ∈ G.

Let us now resort to the definition of what an axiom is: it is a formula of the
form E ⊑ K or F1 ◦ · · · ◦ Fn ⊑ F with E, K ∈ I and E(i) ∈ F. A rule is a first-order
logic formula ordinarily of the form ∀p(β(x) → η(q)) with β and η conjunctions
of atoms; and p, q are subsequently non-empty sets of terms where p ⊆ q. Rules
and Axioms expressions are very significant in building an ontology. Furthermore,
they are referred to as logical formulas. Axioms correspond to OWL2 whereas rules
correspond to SWRL.

490 J.R. Dora, L. Hluchý, K. Nemoga

Consider some terms w and z and a conjunction of atoms β. We say these two
terms w and z are directly connected, or joined in β if they occur in the same atom
in β. We say w and z are connected in β if there is some sequence of terms w1,
. . . , wk with w1 = w, wk = z, and wi−1 and wi are directly linked in β for every
i = 2, . . . , k.

Additionally, for rules rules of the form β → η; there exists an interpretation
it which entails rules. Therefore, for every substitution subst, we have that it,
subst |= β implies it, rules |= η. That means, the semantics of rules here follows
analogous standard semantics of the first-order predicate logic. From the same
perspective, we say that two groupings of logical formulas S and S ′ are equivalent
if and only if each interpretation it that calls for S and S ′ are equivalent (S ≡ S ′)
and vice-versa.

On the same current of idea, S ′ is a conservative extension of S if and only if:
Every interpretation that calls for S ′ also calls for S.

Each interpretation that entails, calls for S ′ is only expressed for the symbols
in S can be extended to an interpretation calling for S ′ by adding appropriate
interpretations for further signature symbols. Normally, all the variables in the
body of a rule are connected. If two (2) variables for example (a, b) are not linked
with the body of a rule, then we could simply append the atom U(a, b) to the body
of the rule resulting in a semantically ≡ rule.

Using a fundamental example in the ontology can help us explain the transfor-
mation of rules into an axiom.

Example 1. Consider the rule Γ = Person(p) ∧ hasChild(c, c’) ∧ Female(c’) →
Daughter(c’). The following sequence of rules can be produced as follows:

(∃hasChild.Person)(c’) ∧ Female(c’) → Daughter(c’)
(∃hasChild.Person ⊓ Female)(c’) → Daughter(c’)

Rule ∆Γ from the above example can be now transformed into an axiom as
stated in the following lemma.

Lemma 1. Consider some rule Γ. If ∆Γ is of the form A(p) → B(p), then Γ is
equivalent to the axiom A ⊑ B.

Since the equivalence relation is transitive, the rule Γ is equivalent to the axiom
∃hasTools.Person ⊓ Attacks ⊑ Attacker.

Proof. Let r and r′ be some rules such that r′ results by using some of the transfor-
mations (as in the previous example) to r. By definition, we can conclude that there
is an equivalency between r and r′. We can also demonstrate through induction that
Γ is equivalent to ∆Γ. Additionally, if δ (α → γ) is of form E(p) → F(p), then by the
definition of the semantics of rules and axioms, E ⊑ F is ≡ to δ (α → γ). Therefore,
since the equivalence (≡) relation is transitive, then we can safely say that γ is ≡
to E ⊑ F. 2

How to Conduct Attacks to Exploit Blind SQL Vulnerabilities 491

Lemma 2. Furthermore, let us consider some rule Gamma (Γ). If ∆Γ is of the
form

∧m
t=2(At(xt−1)) ∧Rt(xt−1, xt) ∧An(xn) → G(x1, xn), then the group of axioms

At ⊑ ∃RAt .Self | t = 1, . . . ,m} ∪ {RAt ◦ R1 ◦ · · · ◦ RAm−1 ◦ Rm ◦ RAm ⊑ G} where
all RAt are the properties unique for each class At is conservative extension of the
rule Γ.

Proof. As illustrated in Lemma 1, rules Γ and ∆Γ are equivalent. Thus, the lemma
which follows the set of rules presented in the statement of the lemma is a con-
servative extension of Γ. See the following figure to see the preprocessing axiom
generated in Protégé in the ROWLTAB plugin. 2

Figure 5. Rule is being converted to OWL axiom

Before implementing these rules, we had to create instances, data properties,
object properties, and individuals to cooperate with the classes, and sub-classes;
without that, the ontology will not understand your intention. The below listed the
main classes and sub-classes. However, there are a lot of sub-classes that are not
listed in the figure.

The figure 8 presents the individuals by class, where we can add “data properties
assertion, object properties assertion, description types, etc.”

For rational numbers xsd:decimal is of the best practice when using SWRL rules
because it is the default for SWRL (Figure 7). When SWRL sees a literal such as
2.0 it draws the inference that the datatype is xsd:decimal. For other data types,
you need to explicitly define the datatype as the literal. The property is functional
because a Process can only have one value for its slack.

After that, we use the Drools rule engine to apply the rules in Section 5.2 to our
ontology. If the rules are matched the properties you have established in the software
protégé, then running the program using Pellet or HermiT plugins will generate the
inferred classes along with their characteristics.

Note that, in the Protégé application, you can install several plugins to suit
your needs, and add them to your tabs. After installing, you can simply go to
“Window → Tabs” and select your desired one to add to your project. For more
information about the software, here is a practical guide to building OWL on-
tology https://www.researchgate.net/publication/351037551_A_Practical_

Guide_to_Building_OWL_Ontologies_Using_Protege_55_and_Plugins. The au-
thor very well described the concept of “Description Logic Reasoner to check the
consistency of the ontology, data properties”. He also introduces the Semantic Web
Rule Language (SWRL) and a walk-through of creating SWRL and SQWRL rules.

https://www.researchgate.net/publication/351037551_A_Practical_Guide_to_Building_OWL_Ontologies_Using_Protege_55_and_Plugins
https://www.researchgate.net/publication/351037551_A_Practical_Guide_to_Building_OWL_Ontologies_Using_Protege_55_and_Plugins

492 J.R. Dora, L. Hluchý, K. Nemoga

Figure 6. The ROWLTab interface with integrated axioms

We subsequently used the ROWLTab, “ROWL” and “SWRL” tab options to
build the rules.

• Clicking on the “OWL + SWRL → Drools” button will transfer SWRL rules
and relevant OWL knowledge to the rule engine.

• Likewise, clicking on the “Run Drools” button will run the rule engine.

• Clicking on the “Drools→OWL” button will transfer the inferred rule engine
knowledge to OWL knowledge.

The SWRLAPI supports an OWL profile called OWL 2 RL and uses an OWL 2
RL-based reasoner to perform reasoning. An example is given in the following figure.

5.4 Ontology Design

In this section, we define the formalization of the core ontology concepts for SQL
injection attacks. First, we introduce the set of terms:

• Term extraction consists of gathering a list of terms together that are relevant
for a specific domain of knowledge. This can be done by defining a set of
concepts. The properties, relationships, and meaning of concepts should be

How to Conduct Attacks to Exploit Blind SQL Vulnerabilities 493

Figure 7. Data properties

Figure 8. Individuals by class

evaluated before building the class hierarchy. To build our ontology, we make
use of the following terms: SQL injection, Blind SQLi, attacks, vulnerability,
weakness, attacker, web application, security layer, tools, technology, payloads,
victim, exploitation.

• Modules identification consists of defining the set of individuals that will comply
with the ontology scheme.

• The entities, data properties, object properties, and individuals of the ontology
modules are designed using the Description Logics (hence DL) notation.

494 J.R. Dora, L. Hluchý, K. Nemoga

Figure 9. Running Reasoner to establish rules

Figure 10. Subclasses of the Attacker ontology

The Attacker is a class in our ontology that generates the malicious payload
using some technologies to launch the attack against a target victim. This class is
further subdivided into several classes.

The following description logic (DL) represents the formal definition of the class
Attacker.

Our ontology below describes briefly the security layers as a class, but we did not
emphasize the mitigation of the SQL attacks. The approach is more related to the
detection of the vulnerability. However, to encompass all the important concepts of
the attack scenario, we also addressed some mitigation techniques that can be used
to reduce these types of attacks.

How to Conduct Attacks to Exploit Blind SQL Vulnerabilities 495

Figure 11. DL of the Attacker ontology

• The sub-class Security may include Firewall, IDS, IPS helps the administrator
of the website to log and block any malicious-looking activity in the website
in real-time such as SQL injections, XSS attacks, etc. The sub-classes valida-
tion Mechanism may also include Filters, Sanitization are meant to be imple-
mented most of the time by the web application developer during the coding
process.

• if Vulnerability exists, then a response from the target web server may alert
the client (hence, the attacker’s web browser). If the alert does not occur with
a string response, then mostly it may occur in a form of latency.

• The class SQLi Attacks contains several subclasses and sub-subclasses; it is the
main class for the penetration testing phase. This is where all the attempts
(SQL malicious payloads) occurred.

6 CONCLUSIONS

From now, our level of thinking about security risks and privacy – specifically about
how our confidential data is stored online, should be well-oriented more seriously.
In this paper, we briefly talked about the cybersecurity offensive. However, having
this kind of knowledge about how users’ data can be extracted by attackers abusing
SQL injection vulnerabilities leads us into digging into how we can prevent this
from happening. We briefly demonstrated through the establishment of semantic
rules how we can make use of the ontology to detect vulnerabilities. Due to the
required size of this paper, a deeper description will be elaborated on in our future
work. Therefore, in our next paper, we will dive into the work performance of our
ontology approach for the detection of SQL vulnerabilities and will be more oriented
to the mitigation techniques.

Abbreviations and Acronyms

SQLi: SQL injection,

496 J.R. Dora, L. Hluchý, K. Nemoga

Figure 12. Description of the ontology, generated from OWLViz plugin

How to Conduct Attacks to Exploit Blind SQL Vulnerabilities 497

DL: Description Logic,

ICS: Industrial Control System,

OWASP: Open Web Application Security Project,

OWL: Web Ontology Language.

Mathematical Symbols

Figure 13. OWL DL axioms and facts [13]

498 J.R. Dora, L. Hluchý, K. Nemoga

Acknowledgement

This work was supported by the Slovak Research and Development Agency under
the Contract No. APVV-20-0548 (ARIEN), also by the Slovak Scientific Grant
Agency VEGA 2/0125/20, VEGA 2/0119/23 and APVV 19-0220.

REFERENCES

[1] Gomez-Valades, A.—Martinez-Tomas, R.—Rincon, M.: Integrative Base On-
tology for the Research Analysis of Alzheimer’s Disease-Related Mild Cognitive
Impairment. Frontiers in Neuroinformatics, Vol. 15, 2021, Art. No. 561691, doi:
10.3389/fninf.2021.561691.

[2] Zouri, M.—Ferworn, A.: An Ontology-Based Approach for Curriculum Map-
ping in Higher Education. 2021 IEEE 11th Annual Computing and Com-
munication Workshop and Conference (CCWC), 2021, pp. 0141–0147, doi:
10.1109/CCWC51732.2021.9376163.

[3] Karimi, S.—Iordanova, I.—St-Onge, D.: An Ontology-Based Approach
to Data Exchanges for Robot Navigation on Construction Sites. 2021, doi:
10.48550/arXiv.2104.10239.

[4] Singels, L.—Biebuyck, C.—Maluleke, L.: A Formal Concept Analysis Driven
Ontology for ICS Cyberthreats. In: Gerber, A. J. (Ed.): Proceedings of the First
Southern African Conference for Artificial Intelligence Research (SACAIR 2020).
2020, pp. 247–263.

[5] Sattar, A.—Ahmad, M.N.—Surin, E. S.M.—Mahmood, A.K.: An Improved
Methodology for Collaborative Construction of Reusable, Localized, and Share-
able Ontology. IEEE Access, Vol. 9, 2021, pp. 17463–17484, doi: 10.1109/AC-
CESS.2021.3054412.

[6] Aguado, E.—Sanz, R.: Using Ontologies in Autonomous Robots Engineering.
Robotics Software Design and Engineering, IntechOpen, 2021, doi: 10.5772/inte-
chopen.97357.

[7] Lu, D.—Fei, J.—Liu, L.: A Semantic Learning-Based SQL Injection Attack De-
tection Technology. Electronics, Vol. 12, 2023, No. 6, 1344 pp., doi: 10.3390/electron-
ics12061344.

[8] Crespo-Mart́ınez, I. S.—Campazas-Vega, A.—Guerrero-Higue-
ras, Á.M.—Riego-DelCastillo, V.—Álvarez-Aparicio, C.—Fernández-
Llamas, C.: SQL Injection Attack Detection in Network Flow Data. Computers
and Security, Vol. 127, 2023, Art. No. 103093, doi: 10.1016/j.cose.2023.103093.

[9] Nallusamy, S.—Hoo, M.H.—Zulkifle, F.A.: Controlled Experiment for As-
sessing the Contribution of Ontology Based Software Redocumentation Approach to
Support Program Understanding. Computing and Informatics, Vol. 40, 2021, No. 5,
pp. 1025–1055, doi: 10.31577/cai 2021 5 1025.

[10] Yakhyaeva, G.—Karmanova, A.—Ershov, A.: Application of the Fuzzy Model
Theory for Modeling QA-Systems. Computing and Informatics, Vol. 40, 2021, No. 6,
pp. 1197–1216, doi: 10.31577/cai 2021 6 1197.

https://doi.org/10.3389/fninf.2021.561691
https://doi.org/10.1109/CCWC51732.2021.9376163
https://doi.org/10.48550/arXiv.2104.10239
https://doi.org/10.1109/ACCESS.2021.3054412
https://doi.org/10.1109/ACCESS.2021.3054412
https://doi.org/10.5772/intechopen.97357
https://doi.org/10.5772/intechopen.97357
https://doi.org/10.3390/electronics12061344
https://doi.org/10.3390/electronics12061344
https://doi.org/10.1016/j.cose.2023.103093
https://doi.org/10.31577/cai_2021_5_1025
https://doi.org/10.31577/cai_2021_6_1197

How to Conduct Attacks to Exploit Blind SQL Vulnerabilities 499

[11] Dora, J. R.—Nemoga, K.: Ontology for Cross-Site-Scripting (XSS) Attack in Cy-
bersecurity. Journal of Cybersecurity and Privacy, Vol. 1, 2021, No. 2, pp. 319–339,
doi: 10.3390/jcp1020018.

[12] Dora, J. R.—Nemoga, K.: Clone Node Detection Attacks and Mitigation Mech-
anisms in Static Wireless Sensor Networks. Journal of Cybersecurity and Privacy,
Vol. 1, 2021, No. 4, pp. 553–579, doi: 10.3390/jcp1040028.

[13] Baader, F.—Calvanese, D.—McGuinness, D.—Patel-Schneider, P.—
Nardi, D.: The Description Logic Handbook: Theory, Implementation and Ap-
plications. Cambridge University Press, 2003.

https://doi.org/10.3390/jcp1020018
https://doi.org/10.3390/jcp1040028

500 J.R. Dora, L. Hluchý, K. Nemoga

Jean Rosemond Dora works in the CAI Editorial Office as
Reviewer, as well as in UI SAV. He is a penetration tester,
focusing primarily on detecting and exploiting (upon request)
vulnerabilities from a given environment. He holds certificates
among which, Cybersecurity and Infrastructure Security Agency
(CISA) from the U.S. Department of Homeland Security, In-
dustrial Control System (ICS); Certified Ethical Hacker (CEH),
Practical Network Penetration Testing (PNPT), Security Aware-
ness Foundations and Training. He holds Ph.D. degree obtained
from the Institute of Mathematics, Slovak Academy of Sciences

(MUSAV). Has Master’s degree from the Faculty of Electronics and Informatics, Slovak
University of Technology (FEI-STU) in Bratislava. Holds a second Master’s degree in
computer science from the Faculty of Education in Ružomberok. He is also employed
in internal/external, web applications, and wireless network assessments in penetration
testing as an independent contractor. Additionally, He is an online instructor, teaching
ethical hacking courses on Udemy, Thinkific, and Teachable platforms.

Ladislav Hluch�y is Senior Research Scientist and Manager
with more than 20 years of experience in leading national and
international research projects and teams of 5 to 20 researchers.
He is a competent scientist in the area of high-performance com-
puting, multi-cloud computing, parallel and distributed infor-
mation processing, and knowledge management. His research
also focuses on data flow management through abstract lan-
guage mechanisms. In the past, Ladislav Hluchý, Associate
Professor, has participated in several cooperations with indus-
try, which is beneficial for the transfer of the project results into
practice.

Karol Nemoga Director of the Institute of Mathematics Slo-
vak Academy of Sciences. He graduated from the Faculty of
Mathematics and Physics of Charles University in Prague. In
1976, he joined the Institute of Mathematics Slovak Academy
of Sciences. He has been its director since 2015. He works as
University Teacher. He specializes in cryptology, computational
number theory, and coding theory. He published about 30 sci-
entific articles and about ten teaching texts. He is also working
in the Association for Computing Machinery, and the Institute
of Electrical and Electronics Engineers (IEEE). He is a member

of the Union of Slovak Mathematicians and Physicists, the Slovak Gas Society, and the
International Association for Cryptology.

