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Abstract. Feature selection (FS) averts the consideration of unwanted features
which may tend the classification algorithm to classify wrongly. Choosing an opti-
mal feature subset from the given set of features is challenging due to the complex
associations present within the features. In non-convex conditions, the gradient-
based algorithms suffer due to local optima or saddle points with respect to initial
conditions where swarm intelligence algorithms pose a higher chance to converge
over the global optima. The Salp Swarm Algorithm (SSA) proposed by Mirjalili et
al. is based on the chaining behaviour of sea salps but the algorithm lacks diversity
in the exploration stage. Rectifying the exploratory behaviour and testing the algo-
rithm against the FS problem is the motivation behind this work. Three variants of
the algorithm are proposed, of which the Vigilant Salp Swarm Algorithm (VSSA)
inherits the vigilant mechanism in Grey Wolf Optimizer (GWO), the second vari-
ant and the third variant replace a simple crossover operator and shuffle crossover
operator instead of the follower’s position update mechanism used in the VSSA to
form Vanilla Crossover VSSA (VCVSSA) and Shuffle Crossover VSSA (SCVSSA).

Keywords: Feature selection, optimization, k-nearest neighbors, salp swarm algo-
rithm

Mathematics Subject Classification 2010: 68T01

1 INTRODUCTION

Feature selection is a challenging problem where two contradicting objectives of
selecting the minimal number of features and achieving maximum accuracy on clas-
sification have to be attained. The feature selection discards the un-impacting or
misleading features in training the algorithm for the classification. Using unwanted
features for classification may deteriorate the algorithm’s performance as fitting an
extra dimension with respect to any learning algorithm takes considerable time due
to the curse of dimensionality. The predominantly used feature selection (FS) mod-
els are of three types: filter, embedded and wrapper. The filter feature selection
models are independent of the learning algorithm and rank the features based on
any relationship amid the features. The ranking models are computationally low
in cost. However, after ranking, choosing the n number of best features would be
sub-optimal as ranking algorithms would investigate only the necessity of a single
feature at a time. This phenomenon biases the feature selection only towards some
specific data relationship alone. But, in a real scenario, the features may have com-
plex dependencies. For example, a feature when being alone may not be essential
but, when combined with any other features it would become a vital indicator for
classification. As the complexity of the dependency between the features increases,
the filter models would fail to mine out the significant feature subset. In the case of
the wrapper model, the association with the classification algorithm provides feed-
back to the feature selection algorithm [1]. It aids the FS algorithm in procuring the
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minimal and better optimal subset of features. The bio-inspired algorithms [2] can
swiftly investigate the problem space and find the optimal solution in contrast to the
gradient-based algorithms [3], which use only the slope of the current position. The
convergence speed of the swarm intelligence algorithms is higher than the gradient
following algorithms. The gradient-based algorithms may get stuck in local minima
or on saddle points, paving the way to choose unwanted features and thereby dete-
riorating the learning algorithm’s performance. The above phenomenon can be seen
in the comparison table. The balanced exploration and exploitation capabilities of
the swarm algorithms bestow the capability of mining the best optimal solution.
A hybrid algorithm fabricated by inheriting the existing swarm algorithms’ best
traits will be much more efficient than their parent algorithms. The Salp Swarm
Algorithm proposed by [4] uses two different mechanisms for updating a salp. One
is used for updating the leader regarding the food position and the second is for
updating the followers as a chain. Using a single solution for guiding may stag-
nate the algorithm in local optima as it lacks diversity. Introducing the influence
of other eminent solutions would enhance the exploratory behaviour in the initial
search and make the particles more vigilant. The GWO [5] algorithm replicates the
vigilant hunting strategy of the wolves where a group of wolves surround the prey
and attack them. Both the Salp Swarm Algorithm and the GWO are being used on
several applications as they uncover promising solutions.

1.1 Goals

The prime goal of the proposed paper is to adopt an enhanced position update mech-
anism for the Salp Swarm Algorithm. The following objectives will be scrutinized
to ensure enhanced performance of the proposed algorithm.

• A hybrid position update model that increases the efficiency of the guiding
mechanism.

• An algorithm capable of finding a minimal and the optimal subset of features
best suited for classifying the objects with high accuracy compared to the SSA.

• An algorithm that could outperform the other primarily used feature selection
algorithms.

• An algorithm that aids in classifying data of different dimensions.

1.2 Organization

The paper is organized as follows: Section 1 comprises the introduction to feature
selection, introduction to swarm intelligence and defines the goal. Section 2 enu-
merates the related work on bio-inspired and feature selection algorithms. Section 3
provides the needed preliminaries and the proposed variants. Section 4 depicts the
experimentation setup. Section 5 discusses the results and analysis. Section 6 con-
cludes the paper with the findings accomplished.
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2 RELATED WORK

Feature selection is an NP-hard problem that tries to avert the curse of dimensional-
ity. Choosing a subset of m features out of n would result in 2n different combinations
of feature subsets. Each feature in a feature vector is represented as either 1 or 0
to denote whether the respective feature is selected or not. Various algorithms have
been proposed starting from the Genetic Algorithm [6], Simulated Annealing [7],
Ant Colony Optimization [8] and PSO [9]. Other state-of-the-art swarm algorithms
are Cuckoo Search [10], Bat Algorithm that mimics the echolocation behaviour of
bats [11], Firefly Algorithm [12], Biogeography-Based Optimizer [13] and Whale
Optimization Algorithm [14].

All the data observed need not necessarily be used for the classification and
the data may possess several complexities such as dependency between features
and irrelevant features. These feature selection algorithms pick out the essential
features among the complete set and facilitate the execution of classification algo-
rithms to provide high accuracy and low running time. The F-score [15], PCA [16],
and correlation-based feature (CBF) selection [17] are some of the filter model fea-
ture selection algorithms. The filter models have no interaction with the learning
algorithm and are purely dependent on the features’ characteristics. The wrapper
models on the other extreme works on the feedback from the learning algorithm. The
elegant behaviour of the bio-inspired algorithm has attracted researchers to adopt
these algorithms for wrapper feature selection algorithms. For feature selection,
algorithms like hybrid genetic algorithm [18], hybrid PSO [19] with micro genetic
algorithm and Gaussian mutation were used. Unlike the problems with continuous
space, the binary algorithm takes values of either 0 or 1. Binary variants of the
algorithms like bGWO [20], BPSO [21] and Binary Ant Lion Optimizer [22] were
introduced specifically for the feature selection problems. To convert the continuous
algorithms into their binary equivalent without altering any of their characteristics,
the transfer functions [23] were introduced. There are totally 8 different functions
that can be broadly divided into two families of S-shaped and V-shaped functions.
Both the S-shaped and the V-shaped family of transfer functions map the input
from the continuous range into values amid the range [0,1] which is later converted
to binary value with conditions similar to Equation (11). Binary algorithms like the
Binary Salp Swarm [24] and the Binary Dragonfly Algorithm [25] also used transfer
functions.

3 PRELIMINARIES AND PROPOSED ALGORITHM

3.1 Brief on SSA

The SSA algorithm proposed by Ali Mirjalili et al. [4] is a population-based algorithm
inspired by the swarming behaviour of the transparent jelly-like fish. This fish moves
analogous to the motion exhibited by jet propulsion where the water is inhaled and
exerted from its body to move forward. Along with the motion, the salps feed from
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the inhaled water by filtering out the plankton. The locomotive behaviour of the
salp swarm is modelled mathematically to solve the optimization problems. They
bind together as salp chains and exhibit swarming behaviour. These salps move as
long chains and are attached to each other.

3.1.1 Salp Swarm Algorithm

The salps chain can be divided into two parts: the leader and the followers. The
first salp is termed the leader, and the rest form the chain members or followers, as
shown in Figure 2.

Figure 1. Representation of salp swarm in problem space

The complete population data is stored as the matrix comprising the number
of individuals and the number of dimensions. All the agents and their respective
features are combined to form the matrix xij as in Figure 1, where i denotes the
salp or agent number and j denotes the dimension. The position update of the salp
members is done separately in two stages. The leader’s position is updated using
the Equation (2) which relies on the target food position.

c1 = 2 ∗ e−(
4l
L )

2

, (1)

x1j =

{
Tj + c1 ∗ ((ubj − lbj) ∗ c2 + lbj) , c3 ≥ 0.5,

Tj − c1 ∗ ((ubj − lbj) ∗ c2 + lbj) , c3 ≥ 0.5,
(2)

xij =
1

2

(
xij + xi−1

j

)
, i ≥ 2. (3)

The variable x1j is jth dimension of the first salp. Variable T denotes the target
or food, and ub and lb are the upper and lower bound respectively. The parameters
c2, and c3 are random numbers amid [0, 1] and the parameter c1 is calculated as
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Algorithm 1: SSA pseudo code

Initialize the population within the bound;
while current iteration ≤ total no. of iterations do

Compute fitness of each salp;
T = salp possessing best fitness (Target or Food);
Update parameter c1 using Equation (1);
for each salp particle xi do

if i==1 then
Update leader salp solution using Equation (2);

else
Update followers on-chain using Equation (3);

end

end

end
Return T

Figure 2. Salp swarm

given in Equation (1), which changes in accordance to the iteration count. The
parameter c1 is a crucial parameter that balances the algorithm between exploration
and exploitation. The parameter l refers to the current iteration and L depicts the
total number of iterations. The remaining salps other than the leader are being
modified using Equation (3). The Pseudo code for the complete working model of
the SSA is given in Algorithm 1. Several variants of the Salp Swarm Algorithm
have been proposed so far. Among these variants specialized for feature selection
are the bSSA [26] and iSSA [27]. In bSSA three major variants were proposed the
S-shaped transfer function variants, the V-shaped transfer function variants and the
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simple crossover variant. The transfer functions are one of the ways by which the
values at any range are transformed into a range amid [0, 1]. The algorithm was
run over 22 different datasets with 30 independent runs each. The iSSA algorithm
used the inertia weight ω parameter from PSO and the target food. The algorithm
was run over 23 different datasets with 20 independent runs each. The multi-salp
chain [28] algorithm split the salps into sub-chains, updated the parameter with
different strategies for each sub-chain and was run over 20 datasets with 30 iterations
on each.

3.2 Proposed Algorithm

The salp chain updates the food in two phases where updating the leader position is
highly critical. Based on the leader’s position, the chain particles will be updated. In
such cases, if the leader gets into local optima there is a huge chance for the followers
to avoid promising search areas. To avert this situation the vigilant mechanism found
in the GWO is introduced. Three algorithms are proposed: the first is VGSSA
algorithm, the second is VCVSSA and the third is SCVGSSA.

Figure 3. Vigilant SSA
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3.2.1 Vigilant Salp Swarm Algorithm

Instead of relying on only one best solution as the target food, three best solutions
namely Alpha, Beta and Delta are adopted. The Pseudo Food given in Equation (4)
is the average of the three solutions. The Pseudo Food (PFj) for each dimension j
is replaced instead of Target Food Tj used in the SSA. The parameters r1, r2, r3 are
random numbers in between the range [0, 1]. The overall working mechanism of the
VSSA is depicted in Figure 3. After the accomplishment of maximum iterations, the
best solution (α) is returned as given in the pseudo-code of VSSA in Algorithm 2.

Algorithm 2: VSSA algorithm pseudo code

Initialize population with respect to the bounds;
while Max iterations ≥ current iteration do

Derive fitness for each salp;
Update α, β, δ food sources;
α = 1st best solution;
β = 2nd best solution;
δ = 3rd best solution;
PF = Compute Pseudo Food with Equation (4);
Update c1 w.r.t. Equation (1);
for each salp particle xi do

if xi is leader then
Use Leader position update as in Equation (8);

else
Use followers position update as in Equation (3);

Return α;

PFj = ((A1 ∗ αj)+(A2 ∗ βj) + (A3 ∗ δj))/3, (4)

A1 = 2 ∗ r1, (5)

A2 = 2 ∗ r2, (6)

A3 = 2 ∗ r3, (7)

x1j =

{
PFj + c1 ∗ ((ubj − lbj) ∗ c2 + lbj) , c3 ≥ 0.5,

PFj − c1 ∗ ((ubj − lbj) ∗ c2 + lbj) , c3 ≥ 0.5.
(8)

3.2.2 Vanilla Crossover Vigilant Salp Swarm Algorithm (VCVSSA)

As a binary problem, feature selection either rejects or accepts a feature. Using
the proposed VSSA algorithm an enhancement in the exploration of the agents can
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be achieved. However, the salp chain followers still update their positions using
Equation (3) which intuitively relocates the solution amid itself and its predecessor.
This phenomenon can be more efficiently modelled by using a crossover operator ψ
as in Equation (9). The crossover operator is predominantly used in the inheritance
phase of the genetic algorithm [6, 29, 30]. The crossover operator can extract the
exact features from both of its parents. The vanilla (simple) single-point crossover
as given in Figure 4 inherits half of its characteristics from parent A and the rest
half from parent B which is equivalent to Equation (3).

xt+1
i = ψ(xi, xi−1). (9)

In Equation (9), the child feature set xt+1
i is the salp i at time t + 1 which is

derived from its parents, xi the salp itself at time t and the salp’s predecessor xi−1.

Figure 4. Simple single point crossover (vanilla crossover)

3.2.3 Shuffle Crossover Vigilant Salp Swarm Algorithm (SCVSSA)

A simple single-point crossover would be a better choice as it averts having a com-
plete, continuous domain calculation and also depicts the behaviour of Equation (3).
But, the single-point crossover has a substantial drawback of always inheriting either
the left or right half of the parent as a whole.

Figure 5. Shuffle crossover
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The single-point crossover again introduces the paucity of inheriting multiple
combinations of features. To overcome all these difficulties the proposed SCVSSA
uses shuffled crossover operator φ which carries out crossover as given in Equa-
tion (10) instead of the position update by Equation (3).

xij = φ(xij, x
i−1
j ). (10)

In shuffle crossover, both the parents are shuffled with the same indices and
then a single point crossover is done with the final reverse shuffling of the children
to roll them back into their original indices again. The single-point crossover after
the shuffling overcomes its earlier difficulties. The shuffled crossover also inputs
the parents and outputs the children as done by the simple crossover. The overall
mechanism of the shuffle crossover can be observed in Figure 5 and the combined
flowchart for both the crossover mechanisms is given in Figure 6.

Figure 6. Flowchart for vanilla (VCVSSA)/shuffled (SCVSSA)
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4 EXPERIMENTATION

4.1 Feature Representation

As discussed in Section 2, feature selection is a discrete problem. The feature sets
can be modelled as binary solutions represented as an n-dimensional vector as in
Figure 7 which uses 0 to reject and 1 to accept the respective feature.

Figure 7. Feature vector representation

The algorithm is initialized and later updated over continuous domain values.
To directly convert jth dimension of the ith continuous agent xij into its respective

binary agent (bxij) Equation (11) is used. The converted bxij is utilized to calculate
the fitness of the corresponding continuous solution.

bxij =

{
1, if xij ≥ 0.5,
0, if xij < 0.5.

(11)

4.2 Classification Algorithm and Parameter Setup

The KNN classification used in this experiment uses certain distance measures to
classify the data. A generic KNN model uses Euclidean distance as given in Equa-
tion (12) for the classification.

D(X1, X2) =
√

(X1 −X2)2. (12)

Various parameters used for the other algorithms are enumerated in the table,
for the sake of fair comparison all the algorithms were implemented in the same
language and compared with the same sample on each iteration.

4.3 Fitness Function

The feature selection’s fitness function comprises two objectives contradicting each
other. The first objective is selecting the feature that yields high accuracy for the
classification algorithm and the second is selecting the least number of features.
Aggregating both these objectives the fitness function which is utilized in most of
the literature is being adopted as given in Equation (13). The error rate γR of the
solution is given as (1 − accuracy). R is the number of features selected in the
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solution and N is the total number of features. The hyperparameters (ρ, σ) decide
the weights for the error rate and the features selected. The hyperparameter σ is
given by σ = (1 − ρ) and the other hyperparameter ρ is given as 0.99 because the
reduction of error rate has to be weighted higher than the number of features. These
hyperparameter values are adopted from the literature [22, 31].

Fit = ρ ∗ γR(D) + σ ∗ |R|
|N |

. (13)

4.4 Datasets

The proposed variants are tested over 24 datasets of various modalities and char-
acteristics to prove the durability of the algorithm in versatile conditions. All the
datasets have been downloaded from the standard UCI machine learning dataset
repository [32] and ASU feature selection repository [33]. Very few algorithms in
the literature have tested the feature selection with such enormously high-dimension
datasets. Failing to test on such large dimension datasets will fail to portray the
exact capabilities of the exploration and the exploitation of the algorithm. In this
work, datasets of both large and small dimensions have been tested to generalize
the algorithm’s capability under various conditions. The datasets with feature sizes
greater than 100 are termed large-dimension datasets. The number of instances in
the datasets also varies in accordance with the change in dimensions. Some of the
datasets possess missing values too. The above-given traits provide a challenging
task of testing the exploration and exploitation ability of the algorithm such that
the algorithms have to elect the optimal feature subset.

4.5 Experiment Setup

Including the raw VSSA, two other variants incorporating crossover have been
proposed. All the proposed three variants are compared with the baseline Salp
Swarm [4], its recently proposed hybrids bSSA [24], iSSA [27] and predominantly
used feature selection algorithms bGWO [34], GOA [35], ALO [36] and PSO [37].
The general parameter setting derived from the literature [24] is used for the exper-
imentation as enumerated in Table 2.

The feature selection algorithms are compared over three standard metrics: fit-
ness, accuracy and number of selected features. Each algorithm is run 30 times over
a dataset and its arithmetic mean is counted for the final comparison. The dataset
is split into 80-20 ratio where 80% is utilized for training the classifier and 20% is
utilized for testing it. For each of the 30 iterations performed, a unique sample of
training and testing data was subjected to all the algorithms. By providing the same
sample to all the algorithms for each round, the bias of the classifier with respect to
the sample could be completely averted and all the algorithms would have an equal
opportunity to showcase their performance.
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Sl. No. Parameters Value

1 Population 7

2 Neighbor count in KNN 5

3 Independent run 30

4 Fitness parameters ρ = 0.99, σ = 0.01

5 GOA c = [Min = 0,Max = 1],
cMin = 0.0004, cMax = 1

6 PSO w = 1; c1 = 1.5; c2 = 2.0;

7 (SSA/VSSA/SCVSSA), bGWO c1, a = [Max = 2,Min = 0]

Table 2. Parameter configuration

5 RESULTS AND DISCUSSION

5.1 Assessment of Results

The fitness, accuracy and the number of features selected are tabulated in Tables 3,
4 and 5. The fitness value must be minimal as the error rate and no features are
considered. Each cell in the table corresponds to either the mean (avg) or the
standard deviation (std) for 30 independent runs on each dataset of the respective
algorithms. The proposed variants are compared with the baseline, modified SSA
and the other existing algorithms. On accuracy alone, the KNN without feature
selection is compared.

5.1.1 Comparison over SCVSSA

Among the three proposed variants, the SCVSSA algorithm has outperformed every
other algorithm over most datasets. It has been ranked 1 on both fitness and ac-
curacy against all the other algorithms including the other proposed variants which
is evident from Table 3 and Table 4. From those tables, it is also evident that
the SCVSSA has outperformed all the other algorithms on 87.5% of the datasets
in terms of fitness and accuracy. Considering individually, SCVSSA has outper-
formed VCVSSA, bSSA [24] and PSO [37] over 95.8% of the datasets and the
VSSA, iSSA [27], bGWO [34], GOA [35], ALO [36] and baseline SSA [4] over 100%
of the datasets on accuracy and fitness. In addition, the näıve KNN classifier was
also subjected to experimentation and its accuracy is compared in Table 4. It clearly
shows the need for the feature selection that has increased the accuracy by 16%.
From Table 3 inference can be made that, on all datasets, the algorithm performs
better. In terms of the number of features chosen, the SCVSSA is ranked second.
The parameters in the fitness Equation (13) facilitate the primary goal to acquire
good accuracy and the secondary goal to elect the minimal number of features.

Therefore, the SCVSSA has balanced well in accordance with the fitness equation
and has tried to converge with the global minima without getting stuck or stagnating.
For example, On the Soybean-small dataset, all the algorithms have achieved the
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Figure 8. Comparison over average fitness

classification accuracy of 100% and in such cases, the iSSA has failed to provide the
least number of features instead, SCVSSA has chosen the least number of features.
Even though SCVSSA has not been ranked one in terms of features selected, it
is evident that the algorithm has provided a good reduction rate of features that
provide the best accuracy which is the vital component.

5.1.2 Comparison over VCVSSA

The VCVSSA uses simple crossover despite the shuffled. This variant ranked 2,
surpasses the other algorithms other than SCVSSA. The algorithm has an increased
average accuracy of 15% than the raw KNN algorithm with no feature selection.
The algorithm has surpassed VSSA in over 62% of the datasets, iSSA, ALO and
SSA in over 83% of the datasets, bSSA in over 91% of the datasets, bGWO, GOA
and KNN in over 100% of the datasets in terms of accuracy. Sufficiently with
the ordinary crossover, the algorithm could perform considerably well. However,
the Shuffled crossover was proposed to improve the accuracy to some greater ex-
tent. Regarding the number of features selected, it has also managed to a good
extent and is placed next to the VCVSSA. The overall performance of this vari-
ant can also be termed good when compared to the other algorithms than the
VCVSSA.

5.1.3 Comparison over VSSA

The VSSA is the näıve model which did not use any crossover operator. Instead, it
has used Equation (11) for acquiring the binary equivalent of a feature vector. The
VSSA has the least proficiency among the proposed algorithms. But it is better
than every other existing algorithm compared in Tables 3, 4 and 5.

The VSSA algorithm has outstepped the existing algorithms on 11 datasets in
terms of accuracy. The algorithm has a higher accuracy for 20 of the datasets, i.e.
83% over PSO and SSA. Likewise, higher accuracy over 87% of the datasets has
been achieved on iSSA and ALO, 91% over bSSA and 100% over bGWO, KNN and
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Figure 9. Comparison over average accuracy

GOA. In terms of the feature reduction, even though VSSA being ranked 4th, it has
showcased a satisfactory rate of reduction in features.

5.1.4 Overall Analysis on Results with Meta-Heuristic Algorithms

Three variants were proposed, out of which one variant without crossover and the
rest two with crossover operator have been proposed. All three algorithms have been
compared over the three metrics of accuracy, fitness and number of features selected.
Tables 3, 4 and 5 show that the variant SCVSSA that uses the shuffled crossover
has gained better proficiency than the other two. Utilization of the Pseudo food
has enhanced the search on exploration and exploitation stages where the leader is
being re-positioned without being biased towards the best solution alone.

164 183 204
107

1,155 1,207
1,051

200

982 1,020

0

200

400

600

800

1000

1200

1400

S
C
V
S
S
A

V
C
V
S
S
A

V
S
S
A

iS
S
A

b
S
S
A

b
G
W
O

G
O
A

A
L
O

P
S
O

S
S
A

A
v

e
r
a

g
e
 f

e
a

tu
r
e
s
 S

e
le

c
te

d

Algorithms

Figure 10. Comparison over the average number of features selected

The comparison of all the datasets between the proposed algorithm and the
existing algorithm is given in Figure 11 and Figure 12. The box plot depicts the
median – a measure of centrality, and quartile ranges which aid the measures of
dispersion, minimum and maximum values. On the algorithms such as bSSA and
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the bGWO the elongated whiskers and box sizes indicate a higher deviation from the
median. This depicts the instability of the algorithm under various conditions and
may fail to perform consistently under all conditions. From the plots, it is clearly
visible that SCVSSA has less deviation and is more stable than the other algorithms
in most of the datasets. The algorithm’s minimum and maximum accuracies are
not highly deviated from the median of the algorithm. Thus the algorithm can be
termed more stable and has a good combination of exploration and exploitation
under various conditions.

SCVSSA VCVSSA VSSA iSSA bSSA bGWO KNN GOA ALO PSO SSA

a) Color coding for the box plots
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Figure 11. Box plot comparison – proposed vs. existing meta heuristic algorithms over
dataset (1–12)

5.2 Comparison over Filter Methods

As discussed in Section 1, the filter models are independent of the classification
algorithm apart from the wrapper models. These filter models are mostly used to
rank the features based on its characteristics. Once the features are being ranked
the first n feature would be chosen and the classification would be performed on
it. The correlation-based feature selection CFS [17] uses the statistical measure of
correlation to rank the feature. Other filter algorithms used for the comparison are
Laplacian [38], F-score [39], relieff [40] and mutinffs [41]. The SCVSSA algorithm
which is selected as the best algorithm from the previous findings is subjected to
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SCVSSA VCVSSA VSSA iSSA bSSA bGWO KNN GOA ALO PSO SSA

a) Color coding for the box plots
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Figure 12. Box plot comparison – proposed vs. existing meta heuristic algorithms over
dataset (13-24)

test against the filter models. Once the features are ranked using the filter models
the same number of n features which has been obtained by the SCVSSA has been
filtered from the respective algorithms and subjected to the KNN classifier whose
accuracy is enumerated in Table 6. From Table 5 it is visible that the SCVSSA
has cleanly surpassed all the filter algorithms over all the datasets. From Figure 13
which summarizes the average accuracy of all the algorithms, it can be inferred that
the SCVSSA is far better than the most commonly used filter models for feature
selection.

6 CONCLUSION AND FUTURE WORK

In this paper, the SSA’s performance has been improved by incorporating the vig-
ilant mechanism adopted from the GWO. In addition to the above enhancement,
two different crossover methods equivalent to the follower position update strategy
of the SSA were applied. The main contribution of the paper is the adoption of
a vigilant mechanism and shuffled crossover mechanism over the SSA. The effec-
tiveness of this algorithm is tested by subjecting the proposed algorithms to the
standard benchmark datasets downloaded from the UCI machine learning reposi-
tory and ASU feature selection repository. The datasets were chosen such that they
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Figure 13. Comparison of average accuracy over filter models

possess various proportions of dimensions and a number of instances. To prove the
proficiency of the VSSA and enhanced versions of VSSA, they were compared with
the original SSA, its other hybrids and other promising meta-heuristic algorithms.
The comparison and the analysis of results certainly portray that the SCVSSA could
be adopted for feature selection to obtain good accuracy with the least number of
features. The future direction of this work can be carried out by introducing and in-
vestigating the transfer function for the conversion of binary vectors. This wrapper
model is well suited to be adopted as a pre-processing amenity for feature selection
before applying a machine learning classifier.
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