
Computing and Informatics, Vol. 42, 2023, 1184–1212, doi: 10.31577/cai 2023 5 1184

METAHEURISTIC FOR SOLVING THE DELIVERY
MAN PROBLEM WITH DRONE

Ha-Bang Ban∗, Hai-Dang Pham

School of Information and Communication Technology
Hanoi University of Science and Technology
e-mail: BangBH@soict.hust.edu.vn, HaiPD@soict.hust.edu.vn

Abstract. Delivery Man Problem with Drone (DMPD) is a variant of Delivery
Man Problem (DMP). The objective of DMP is to minimize the sum of customers’
waiting times. In DMP, there is only a truck to deliver materials to customers while
the delivery is completed by collaboration between truck and drone in DMPD.
Using a drone is useful when a truck cannot reach some customers in particular
circumstances such as narrow roads or natural disasters. For NP-hard problems,
metaheuristic is a natural approach to solve medium to large-sized instances. In
this paper, a metaheuristic algorithm is proposed. Initially, a solution without
drone is created. Then, it is an input of split procedure to convert DMP-solution
into DMPD-solution. After that, it is improved by the combination of Variable
Neighborhood Search (VNS) and Tabu Search (TS). To explore a new solution
space, diversification is applied. The proposed algorithm balances diversification
and intensification to prevent the search from local optima. The experimental
simulations show that the proposed algorithm reaches good solutions fast, even for
large instances.

Keywords: DMPD, metaheuristic, VNS

1 INTRODUCTION

Delivery Man Problem with Drone (DMPD) is a variant of Delivery Man Problem
(DMP) that is seen as a “customer-centric” routing problem. However, in DMP,
there is only a truck to deliver materials to customers. In the case of narrow or

∗ Corresponding author

https://doi.org/10.31577/cai_2023_5_1184

Metaheuristic for Solving the Delivery Man Problem with Drone 1185

congested roads and disasters, when a truck cannot reach some customers, the drone
is used. Informally, in DMPD, there is a truck and drone at the main depot s, and
n customers. The goal is to find a tour with a combination of truck and drone that
minimizes the overall customers’ waiting times while ensuring that all customers are
served.

Using drone to deliver parcels to customers is not new in the literature. Many
companies use drones for parcel delivery [1] because drone brings many advan-
tages:

1. It can be operated on itself;

2. It is beneficial in the case of congestion;

3. It can move faster than trucks [2].

However, a drone also has some drawbacks:

1. The drone can carry parcels of 2 kilograms. It cannot carry packages that exceed
its weight [3]. Therefore, it needs to return to the depot after each delivery;

2. Its range is limited because of the battery-powered engines. On the other hand,
the truck has a long range and brings many materials but is rather heavy and
slow.

Therefore, the collaboration between trucks and drones brings many advantages.
The idea of the collaboration is that the delivery truck and drone collaboratively
serve all customers. Figure 1 describes an example in which 8 customers need to be
visited. We see that the drone visits two customers instead of the truck. The truck
is not waiting and can serve another customer instead. The truck or drone that first
reaches the reconnection node has to wait for each other. By the parallelization of
delivery tasks, the total waiting time can be reduced.

To the best of our knowledge, though various works were proposed to solve DMP
and its variants [4, 5, 6, 7, 8, 9, 10, 11, 12, 13], there is no work for DMPD in the
literature. Due to the characteristics of the problem, adapting these metaheuristics
for DMP to solve DMPD is not easy. We aim to develop an effective metaheuristic
to solve the problem. The success of any metaheuristic approach depends on the
right balance between intensification and diversification. The main contributions of
this work can be summarized as follows:

• From the algorithmic perspective, the proposed metaheuristic consists of five
steps. We introduce a split heuristic that builds a DMPD solution from a DMP
solution. In the local search step, the VNS with new neighborhoods adapted
from the traditional ones is proposed for DMPD. This step aims to exploit the
explored solution space. Lastly, a diversification step is applied to lead our search
to a new region. Moreover, Tabu Search is incorporated into our algorithm to
prevent the search from local optima.

• From the computational perspective, extensive numerical experiments on bench-
mark instances show that our algorithm reaches good solutions fast, even for

1186 H.-B. Ban, H.-D. Pham

large instances. In addition, the proposed algorithm is adapted to solve DMPD.
The outcome shows that the proposed algorithm obtains good solutions fast. Its
solutions are compared with the state-of-the-art metaheuristics’ ones.

The rest of this paper is organized as follows: Sections 2, and 3 present the literature
and the problem definition, respectively. Section 4 describes the proposed algorithm.
Computational evaluations are reported in Section 5. Sections 6 and 7 discuss and
conclude the paper, respectively.

2 LITERATURE

DMPD is NP-hard because it is a generalization case of DMP. Despite the similar-
ities between DMP and DMPD, solving DMPD is more challenging due to drone’s
presence. Currently, there are three main methods to solve an NP-hard problem,
specifically:

1. exact algorithms,

2. approximation algorithms, and

3. heuristic (or metaheuristic) algorithms.

The exact algorithms obtain the optimal solution, but they consume more time.
Therefore, it can only solve the problems with small sizes. Meanwhile, for an α-
approximation algorithm, the value of α is often large, and they are complex to
implement. Metaheuristic, on the other hand, is naturally suitable to solve large-
sized instances in a short time.

2.1 DMP

Though we found no work for DMPD, several classes of problems closely related to
the problem were introduced in the literature: the Delivery Man Problem (DMP),
DMP with Profits (DMPP), and DMP in post-disaster.

• Delivery Man Problem (DMP) is a particular case where DMPD has no drone.
Numerous works for DMP can be found in [6, 7, 8, 9, 10, 11, 13]. Ban et al. [7]
also present an exact algorithm to solve instances with up to 40 vertices. Several
approximation algorithms [10, 11, 13] are proposed to solve DMP with the best
ratio of 3.59. In the metaheuristic algorithms, these algorithms [6, 8, 9] obtain
good solutions fast for instances with up to 1000 vertices.

• DMP with Profits (DMPP) aims to find a travel plan for a server that maximizes
the total revenue. However, contrary to DMP, in DMPP, not all the customers
need to be visited. Metaheuristic algorithms in [5, 14] can solve well the prob-
lem with up to 500 vertices. After that, Dewilde et al. [12] have introduced
a stochastic variant of DMPP under uncertain travel times. The difference be-
tween DMPP and stochastic DMPP is that the travel times in stochastic DMPP

Metaheuristic for Solving the Delivery Man Problem with Drone 1187

are uncertain. The stochastic DMPP is heuristically solved using a beam search
heuristic.

• In the minimizing latency in the post-disaster road clearance operations (ML-
RCP) [4], we find a tour to minimize latency sum in the post-disaster. Their
metaheuristic algorithm reaches the optimal or near-optimal solutions on Istan-
bul data within seconds.

These algorithms are the state-of-the-art algorithms for DMP. However, there is no
drone presence, and they cannot be adapted directly to DMPD. That means that
we cannot use the above algorithms to solve DMPD.

2.2 Routing with Drone

The UAV for surveillance purposes has been used for a long time. However, in
recent times, research for drone delivery has been improved by logistics companies.
We describe the works related to routing with drone.

• Murray et al. [15] first introduced the TSP with drone (TSPD) in which there are
a single truck and a single drone. In this paper, two constraints are considered.
In the first constraint, the drone can deliver only one parcel at a time because
of the capacity limit. The second one shows that a subset of the customers can
be visited by a drone. They proposed a mixed integer programming formulation
and a heuristic to minimize the completion time for all vehicles.

• Agatz et al. [16, 17] proposed TSPD with different constraints in comparison
with Murray et al. in which the drone is allowed to launch and return to the same
location (the constraint is forbidden in [15]). They developed a new dynamic
programming approach to solve exactly the problem with up to 10 vertices.

• Freitas and Penna [18] proposed a metaheuristic with the min-time objective
function. Firstly, a mixed-integer program (MIP) is used to obtain an initial
solution. Then it is modified by removing some truck vertices and adding some
drone ones. Finally, several neighborhoods are applied to find better solutions.
The experiment shows that the delivery time is decreased up to 68%.

• Poikoene et al. [19] proposed a branch-and-bound to solve TSPD in the case
of allowing drone to revisit customers. They tested the proposed algorithm on
small instances. The experimental results indicate that the problem can be
solved optimally for the problem with 10 customers.

• Poikoene et al. [1] have extended TSPD with more constraints. Specifically,
a drone can serve multiple customers in a row. Moreover, the capacity limit of
a drone is also mentioned. They proposed a flexible heuristic that obtains good
solutions fast. It showed that metaheuristic is a suitable approach for DMPD.

• Ha et al. [20] proposed a metaheuristic algorithm to minimize the total opera-
tional cost (the min-cost TSPD). They proposed the greedy randomized adaptive
search procedure (GRASP) to minimize the total operational cost (the min-cost

1188 H.-B. Ban, H.-D. Pham

TSPD) [20]. The results are quite good in terms of solution quality and running
time. They then presented a hybrid genetic algorithm (GA) [21] with some new
strategies to control diversity. The results are provided for instances with up to
50 and 100 customers.

• TSPD with more than one drone is also interested by many researchers in liter-
ature [22, 23, 24, 25, 26, 27].

The above works are the state-of-the-art algorithms to solve TSPD. DMPD in this
paper is different from TSPD. Our objective function is to minimize the total waiting
time of customers (customer-oriented routing), while their works aim to minimize
the minimum travel cost (server-oriented routing). The difference between the two
objective functions leads to a big difference in their solutions. In [28], Salehipour
et al. showed that the good algorithms for the TSP cannot be adapted for DMP.
Therefore, developing an efficient algorithm for DMPD is necessary.

3 PROBLEM DEFINITION

We are given a complete graph Kn = (V,E) with V = V
′ ∪{v1} where v1 is a depot

and V
′
= V t ∪ V d ∪ V c in which V t, V d, V c are the set of vertices visited by only

truck, only drone, and both of them, respectively. Let C = {cij | i, j = 1, . . . , n} be
the distance matrix between all vertices. The travel time between a pair of vertices
(vi, vj) is the distance between vi and vj (cij). Let ρ = β

α
be the ratio between the

drone’s and truck’s travel time per unit distance. Every customer can be served by
either a truck or drone. A drone can only deliver one parcel at a time. We make
the following assumptions:

• A truck can dispatch and pick up a drone only at the depot or at a customer
location.

• Customers can only be served once, either by a drone or a truck.

• DMPD allows the parallelization of delivery tasks. That means the drone departs
from the truck at the customer i. It then drops off a parcel at the second
customer j and goes to the connection customer k. The drone cannot serve
more than one customer between nodes i and j.

• The vehicle (truck or drone) that first arrives at the reconnection node has to
wait for the other one.

• When returning to the truck to take another parcel, the time required to prepare
the drone launch is negligible.

Our objective is to minimize the total waiting time of all customers.
Because of the presence of the truck and the drone, a DMPD solution T =

(TR,DR) is represented by two components:

• A truck tour, denoted as TR, is a sequence of vertices: TR = {v1, v2, . . . , vk, . . . }.

Metaheuristic for Solving the Delivery Man Problem with Drone 1189

• A drone tour, denoted as DR, is a sequence of tuple < i, j, k >. That means
drone launches from vi, delivers to vj, and rejoins truck at vk.

2

0

3

1

4

5 6

7

Truck
vertex
drone
vertex

truck
route

drone
route

Combined

Figure 1. The simple example of DMPD

After that, we describe a simple example of DMPD. There are three types of
vertices. A truck vertex is a vertex that is delivered by truck. Similarly, a drone
vertex is a vertex delivered by a drone. A combined vertex is a vertex visited by
both the truck and drone. For example, there are 7 vertices in the graph in which
vertex 1 and 6 are truck vertices, while vertex 2 and 5 are drone vertices. Last,
vertex 3, 4, and 7 are combined vertices. The truck moves from the depot to vertex
1 while the drone is flown from the depot to vertex 2. After that, truck travels
from vertex 1 to 3, and drone moves from vertex 2 to 3. The truck and drone are
rejoined at vertex 3. The truck has to wait for the drone if it goes to vertex 3 before
the drone. On the other hand, the drone has to wait for the truck if it goes to
vertex 3 before the truck. The truck and drone travel together to vertex 4. The
drone is launched toward vertex 5 while the truck goes to vertices 4 to 6. The truck
and drone are rejoined at vertex 7. The waiting time of vertices is calculated as
follows:

w(v0) = 0,

w(v1) = α× c(v0, v1),

w(v2) = β × c(v0, v2),

w(v3) = w(v1) + α× c(v1, v3),

w(v4) = max{w(v1) + α× c(v1, v3), w(v2) + β × c(v2, v3)}+ α× c(v3, v4),

w(v5) = w(v4) + β × c(v4, v5),

w(v6) = w(v4) + α× c(v4, v6),

1190 H.-B. Ban, H.-D. Pham

w(v7) = w(v6) + α× c(v6, v7),

W (T) =
7∑

i=0

wi.

If the drone first arrives at v3, v7, it has to wait for the truck because the drone
cannot serve more than one customer between nodes i and j. It means that cus-
tomers at v3, v7 must be served by the truck. The waiting time of customer at v4 is
calculated more complex than the others because of rendezvous time.

The objective function in this example is different from the one of TSPD when it
optimizes the following function cost: max{α× (c(v0, v1)+ c(v1, v3)), β× (c(v0, v2)+
c(v2, v3))}+α×c(v3, v4)+max{α× (c(v4, v6)+c(v6, v7)), β× (c(v4, v5)+c(v5, v7))}+
α× c(v7, v0).

4 A METAHEURISTIC ALGORITHM

Truck
vertex
drone
vertex

Combined

Figure 2. Label assignment for a vertex

The algorithm is divided into five steps: In the first step, a solution without the
drone is created. Then, it is an input of splitting procedure to convert DMP-solution
into DMPD-solution in the second. After that, it is improved by the combination
of Variable Neighborhood Search (VNS) and Tabu Search (TS) in the local search.
When the proposed algorithm gets stuck into local optima, diversification is used.
It leads the search to unexplored solution space. Algorithm 1 depicts the whole
process. In line 2, we build a giant DMP tour TTR visiting the depot and all the
customers. For that aim, we apply some heuristics for construction. As a result,
an initial solution TTR, where all vertices are visited by truck and no vertex is
assigned to drone. Line 5 decomposes TTR in two partitions: the first assigned to

Metaheuristic for Solving the Delivery Man Problem with Drone 1191

Algorithm 1 General scheme of algorithm

Input: v1, V,Ni(T)(i = 1, . . . , 6), level are a starting vertex, the set of vertices in
Kn, the set of neighborhoods, the parameter to control the strength of the
perturbation procedure, respectively.

Output: the best solution T ∗.
1: {Step 1: Construction-DMP}
2: TTR ← construction-DMP(v1, V,Ni(T), Kn); {TTR is DMP tour}
3: {Step 2: Split phase}
4: T = (Tt, Td)← split(TTR); {Assign vertices into “drone”, “truck”, or “combined”

label}
5: T ∗ ← T ;
6: while The stop condition is not satisfied do
7: T

′ ← T ;
8: {Step 3: Local search}
9: k = 1;

10: repeat
11: Find the best neighborhood T

′′
of T ∈ Nk(T

′
);

12: if ((W (T
′′
) < W (T

′
) and (T

′
is not Tabu)) ∥ (W (T

′′
) < W (T ∗)) then

13: T
′
= T

′′
;

14: Update Tabu list;
15: if ((W (T

′′
) < W (T ∗)) then

16: T ∗ = T
′′
;{Update the best solution}

17: k = 1;
18: else
19: k = k + 1; {switch to another neighborhood}
20: until k < kmax;
21: {Step 4: Intensification}
22: if W (T

′′
) < W (T) then

23: T = Perform VNS without using tabu on the solution T
′′
;

24: if (W (T
′′
) < W (T)) or (W (T ∗) < W (T)) then

25: T
′′ ← T ;

26: if (W (T ∗) < W (T)) then
27: T ∗ ← T ; {Update the best solution}
28: T ← T

′′
;

29: {Step 5: Diversification}
30: T ←− Perturbation(T, level);
31: return T ∗;

1192 H.-B. Ban, H.-D. Pham

Algorithm 2 GRASP + VNS

Input: v1, V, γ are a starting vertex, the set of vertices in Kn, and the size of RCL,
respectively.

Output: the initial solution T .
T ← v1;
while |x| < n do
Create RCL with γ vertices vi ∈ V closest to vl; // vl is the last vertex in T ;
Select randomly vertex v = {vi|vi ∈ RCL and vi /∈ T};
T ← T ∈ {v};

repeat
T

′ ← Shaking(T);
T

′′ ← arg min Nk(T
′
); {local search}

if (L(T
′′
< L(T)) then

T ← T
′′ {update solution}

else
k = k + 1; {switch to another neighborhood}

until k = kmax

return T ;

truck (Tt) and the second assigned to drone (Td). Lines 9–22 optimize the tour T
by using six neighborhoods in local search. In lines 23–33, the VNS step is imple-
mented without Tabu in the intensification step. Line 15 implements Perturbation
to maintain diversity. The algorithm is repeated until the stop condition is satisfied.

4.1 Construction-DMP

In the first step, we generate a DMP solution from some heuristics. In this paper,
three heuristics and an exact algorithm are used as follows:

• k-nearest neighbor [29]: It is inspired by the well-known nearest-neighbor algo-
rithm. It begins from the root and repeatedly travels each vertex that is chosen
among k closest vertices randomly.

• Insertion heuristic [29]: It works similarly to the above heuristic, but it picks
a random vertex among all unvisited nodes iteratively.

• GRASP with VNS: The version of GRASP construction phase [30] is used to
create an initial solution, and then it is improved by the VNS [31, 30]. Initially,
at each vertex, a Restricted Candidate List including its nearest vertices is built.
At a constructive step, a vertex is selected randomly from RCL, and added into
the solution. The GRASP stops when all vertices are visited. After that, the
GRASP’s solution is shaken by swapping vertices randomly before the VNS
step is used to improve the solution. The shaking aims to maintain the diversity
of our search. The VNS is based on a simple principle that systematically
switches between different neighborhoods. In the VNS, we use some popular

Metaheuristic for Solving the Delivery Man Problem with Drone 1193

Algorithm 3 Greedy approach for splitting

Input: v1, V are a starting vertex and graph, respectively.
Output: the best solution T ∗.
1: v1.label = “combined”;
2: TR = TR ∪ {v1};
3: i = 0;
4: while ∃v is unvisited do
5: v = T [i];
6: if (v.label == “truck”) then
7: rd =random(2);
8: if (rd ==1) then
9: v′.label = “truck”;

10: TR = TR ∪ {v′};
11: else
12: v.label = “drone”;
13: TD = TD ∪ {v1};
14: else if (v.label == “drone”) then
15: for k ← i+ 1 to n do
16: find a v

′
= {vj|vj is unvisited and T (i− 1, j, k) = mink−1

j=i+1 T (i, j, k)};
17: v.label = “combined”;
18: else
19: rd =random(2);
20: if (rd ==1) then
21: v.label = “truck”;
22: else
23: v.label = “drone”;
24: T = T ∪ {v1};
25: return T ∗;

neighborhoods such as remove-insert (N1), swap (N2), and 2-opt (N3) [30]. The
combination between the GRASP and VNS demonstrated the efficiency in [8].
The GRASP + VNS scheme is described in Algorithm 2.

• Exact algorithm: We can use an exact algorithm in [7] to obtain the optimal
solution for DMP. However, the exact algorithm can solve the problem with
small sizes (less than 40 vertices).

4.2 Split Scheme

In this step, two approaches are used: Greedy heuristic and exact partitioning al-
gorithm based on dynamic programming. All approaches remain in the sequence of
vertices visited.

1194 H.-B. Ban, H.-D. Pham

Algorithm 4 Dynamic-Programming for splitting(Kn, C)

Input: Kn, C are the graph, and the distance matrix, respectively.
Output: A matrix M , a list of drone vertices DM.
1: for i← 1 to n do
2: for j ← 1 to n do
3: M [i, j]← 0;
4: DM [i, j]← 0;
5: for i← 1 to n do
6: for j ← 1 to n do
7: TT ← −Inf ;
8: for k ← i to j do
9: TTd = β × (c(vi, vk) + c(vk, vj)).

10: TTt = α× (
∑k−2

h=i c(vh, vh+1) +
∑j−1

h=k+1 c(vh, vh+1)).
11: if (TT ≤ max{TTd, TT t}) then
12: TT = max{TTd, TT t})
13: DM [i, j] = k; {drone position is stored}
14: M [i, j] = TT ;
15: MT [1]← 0;
16: DM = ϕ;
17: for each vi in V do
18: w=Inf;
19: for k ← 1 to i do
20: if (MT [k] +M [k, i] < w) then
21: w = MT [k] +M [k, i];
22: DP = k;
23: DM = DM ∪DP ; {DM is a list of drone positions}
24: MT [i] = w;
25: Assign a vertex at DP position as “drone” label.
26: return DM ;

4.2.1 Greedy Approach

We propose a greedy heuristic to split an initial TTR into two subtours:

1. a subtour for the drone;

2. and a subtour for the truck.

Each vertex v ∈ V is assigned by a label. The “truck” label indicates the truck, while
the “drone” label indicates the drone. Moreover, a vertex that both the truck and
drone can travel is called “combined”. Our greedy approach includes two phases.
An initial solution consisting of the truck and drone is generated in the first phase,
while “drone” label assignment optimization is done in the second. In this first
stage, the label of all vertices is “unvisited”. In every heuristic step, a vertex is
assigned to the “truck” or “drone” label. The algorithm stops when there is no

Metaheuristic for Solving the Delivery Man Problem with Drone 1195

Algorithm 5 Perturbation(T, level)

Input: T, k are the tour, and the number of swap, respectively.
Output: a new tour T .
1: TR, TD = get(T);
2: while (level > 0) do
3: {Perturbation for truck}
4: iTR = rand(TR);
5: jTR = rand(TR);
6: TR=swap(iTR, jTR, TR);
7: {Perturbation for drone}
8: iTD = rand(TD);
9: jTD = rand(TD);

10: TD = swap(iTD, jTD, TD);
11: level = level − 1;
12: T = (TR, TD);
13: return T ;

“unvisited” vertex. The detail of the Split Algorithm is described in Algorithm 3.
To assign a label for a current vertex v, we need to consider its previous one:

• If a previous vertex is “combined” one, there are three label candidates (“truck”,
“drone”, and “combined”) for the current vertex v (see Figure 2 a)). Which label
brings the best total cost for the tour will be selected.

• If a previous vertex is the truck vertex, there are two options (“truck”, and
“combined”) for the current vertex v (see in Figure 2 b)). We choose a label
such that the tour receives the best cost.

• If a previous vertex is the drone vertex, the label of the current vertex is “com-
bined” (see Figure 2 c)). This is the only option in this case.

After the first step, we optimize the “drone” label assignment in the second
one. An operation is defined by a triplet (i, j, k), which starts at vi, delivers at
vk by drone, and rejoins at vj. We try to enumerate the different cases result-
ing from changing a set of vk candidates. After that, a vk is picked so that our
solution reaches the best cost. For example, in Figure 3, the drone and truck
can rejoin at v3, v4, and vn. Vertex v4 is chosen because rejoining at this vertex
makes our solution’s cost decrease. The time complexity of the greedy heuristic is
O(n2).

4.2.2 Dynamic Approach

We now describe an algorithm to partition an initial solution T = {v1, v2, . . . , vk,
. . . , vn} into a truck tour TR and a drone tour TD based on dynamic programming.
The order of vertices in T remains unchanged. For each vertex, the algorithm decides

1196 H.-B. Ban, H.-D. Pham

to visit it by the truck or drone. A move is defined by a triplet (i, j, k), which starts
at vi, delivers at vk by the drone, and rejoins at vj. If a move does not contain the
drone, we set k to −1. We also define T (i, j, k) by the maximum amount of time to
complete (i, j, k):

T (i, j, k) = max

{
β × (c(vi, vk) + c(vk, vj)), α×

(
k−2∑
h=i

c(vh, vh+1)

)

+

j−1∑
h=k+1

c(vh, vh+1) + c(vk−1, vk+1)

}
.

For each subsequent move (vi, vi+1, . . . , vj) in the tour, the minimum time is calcu-
lated as follows:

T (i, j) =
j−1

min
k=i+1

T (i, j, k).

The recursive formulation for computing the minimum arrival time for the truck to
reach a vertex is:

W (0) = 0,

W (vi) =
i−2

min
k=0

(W (vk) + T (k, i− 1) + α× c(vi−1, vi)).

The argmini−2
k=0(W (vk) + T (k, i− 1) + α× c(vi−1, vi)) is used to determine which of

vertex is to be visited by the drone or truck.

4.3 Local Search

In this step, we apply the VNS [32, 33] for a full solution T = (TR, TD). Neighbor
solutions are evaluated, and the best feasible neighboring solution is accepted if it
is non-tabu, improving, or tabu but globally improving. Six of our neighborhoods
are inspired by traditional moves. We then describe these neighborhoods:

• Exchange role (N1) exchanges the drone vertex to the truck vertex and vice
versa. An example is shown in Figure 3.

• Swap (N2) tries to swap the positions of each pair of vertices in T . An example
is shown in Figure 4.

• Reverse-Swap (N4) removes each pair of vertices from T and reverses the sub-
tour between them. An example is shown in Figure 5.

• 2-opt (N4) removes each pair of vertices from T and reverses the sub-tour be-
tween them. An example is shown in Figure 6.

• Add-drone (N6) selects a truck location and replaces its delivery with drone
delivery. An example is shown in Figure 7.

Metaheuristic for Solving the Delivery Man Problem with Drone 1197

• Remove-drone (N5) selects a drone location and replaces its delivery with a truck
delivery. An example is shown in Figure 8.

After the local search step, its cost value is less than the current best value the new
best value is updated. Moreover, all moves are updated in Tabu list.

4.4 Intensification and Diversification

When we find a good solution space, we try to exploit it in an intensification step.
To exploit good solution space, we implement Step 2 without any tabu move. Af-
ter that, the algorithm goes to the perturbation step to maintain diversification.
A mechanism design plays an important role in obtaining success. If too small
moves are applied, the search may get stuck into the previously visited solution
space. On the other hand, excessive moves may drive the search to unexpected
regions. In this work, we use two different perturbation methods for truck and
drone. A perturbation method is simple to exchange some vertices visited by truck
and drone for truck and drone, respectively. The detail of the step is described in
Algorithm 5.

4.5 Tabu Lists

A tabu list for the moves is included in the proposed algorithm. The tabu status is
assigned to an element for θ iterations, where θ is randomly selected. We describe
the tabu list for each move as follows:

Exchange role: A position of exchanged vertices cannot be implemented by the
same type of move if it is tabu.

Swap move: Two vertices swapped cannot be swapped again if they are tabu.

2-opt and reverse moves: The moves applied to two vertices cannot be applied
again to the same positions.

Remove-drone: A “drone” vertex remains a “drone” label if it is tabu.

Add-drone: A “truck” vertex remains a “truck” label if it is tabu.

4

6

7

5

2

3

0

1

4

6

7

5

2

1

0

3

Figure 3. The exchange role

1198 H.-B. Ban, H.-D. Pham

4

6

7

2

3

0

1

4

6

7

5

1

3

0

2

4

6

7

5

3

1

0

2

Figure 4. The swap

4

6

7

5

2

3

0

1

4

6

7

5

2

3

0

1

Figure 5. The reverse

4

6

7

5

2

3

0

1

4

6

2

5

7

3

0

1

Figure 6. The 2-opt

4

6

7

5

2

3

0

1

4

6

7

5

2

3

0

1

Figure 7. The drone insertion

Metaheuristic for Solving the Delivery Man Problem with Drone 1199

4

6

7

5

2

3

0

1

4

6

7

5

2

3

0

1

Figure 8. The drone removal

5 EVALUATIONS

Our algorithm is run on a Pentium 4 core i7 3.40GHz 8GB RAM processor. For all
experiments, the parameters γ, level, and θ are set to 10, 5, and 5, respectively. These
parameters are selected using empiric experiments and, with them, the algorithm
might provide good solutions.

5.1 Instances

The proposed algorithm is tested on 900 instances in two datasets as follows:

• The first dataset is proposed by Poikonen et al. which are available on [19, 1].
This dataset includes 100 instances with up to 39 vertices. Customer locations in
each instance are generated randomly from 50-by-50 grid. Moreover, the truck
traveling time to move from customer i to j is calculated by ⌊|xi − xj|+ |yi − yj|⌋

while drone travel time is calculated by

⌊√
((xi−xj)

2+(yi−yj)
2)

ρ

⌋
. The speed of drone

is ρ times faster than truck speed. To evaluate the efficiency of the proposed
algorithm with different speeds of truck and drone, our algorithm is tested with
ρ values = 1, 2, and 3.

• The second dataset is released by Bouman [34]. This dataset consists of three
types. In the first type (the uniform instances), the x and y coordinates are
generated uniformly from [0, 100]. For the second type (the 1-center), an angle ϕ
and distance r is created uniformly. The x and y coordinates are computed as
r × cos(ϕ), and r × sin(ϕ). By doing this, locations close to the center (0, 0)
with higher probability than in the previous case. Finally, we have the 2-center,
which is generated in the same way, but every location is transformed into 200
distance units over the x coordinate with probability 0.5. These instances have
a greater probability of closing to two centers at (0, 0) and (200, 0). In all cases,
the drone is ρ times as fast as the truck.

5.2 Results

The improvement of the proposed algorithm is defined considering Best.Sol (Best.Sol
is the best solution found by our algorithm) in comparison with the other algorithms

1200 H.-B. Ban, H.-D. Pham

as follows:

Gap1[%] =

∣∣∣∣Best .Sol − BKS

BKS

∣∣∣∣× 100%, (1)

Gap2[%] =

∣∣∣∣Best .Sol − DMPS

Best .Sol

∣∣∣∣× 100%, (2)

Improv [%] =

∣∣∣∣Best .Sol − Init .Sol

Init .Sol

∣∣∣∣× 100%. (3)

In all tables, Init.Sol, Best.Sol, Aver.Sol, T correspond to the initial, best, av-
erage solution, and average time in seconds of ten executions obtained by the pro-
posed algorithm, respectively, while BKS is the best-known solution in the literature.
DMPS corresponds to DMP solution in the first step. The experiment results can
be found in Tables 1 to 18 in [35]. The values in Tables 1, 2 and 3 in this paper are
the average values calculated from Tables 1 to 18 in [35].

Currently, no metaheuristic for this problem can be found in the literature to
compare directly. Therefore, it is difficult to evaluate the efficiency of the proposed
algorithm exactly. To overcome the issue, several state-of-the-art metaheuristic al-
gorithms for TSPD are chosen to compare to our algorithm. Fortunately, Bouman
et al. [36], and Murray et al. [15] support their code for solving TSPD. However,
their algorithms are developed for TSPD rather than DMPD. We adapt their ob-
jective function to solve DMPD. Therefore, the proposed algorithm and their algo-
rithms can be compared directly. Moreover, our solutions are compared to some
algorithms [36, 15, 37] in the case of TSPD. All algorithms are run on the same
instances.

Different experiments have been carried out to evaluate the efficiency of the
proposed algorithms as well as analyze the impact of parameters: investigate the
performance of different construction heuristics for DMP, explore the performance
of different heuristics to convert from DMP to DMPD; compare DMPD solutions
with solutions in the case of an only truck, analyze the impact of drone in developing
the quality of solution, consider DMPD with some constraints, compare our solution
quality with the previous algorithms in the case of TSPD.

5.3 The Impact of Different DMP’s Construction Heuristics for DMPD

In this experiment, we evaluate the performance of different construction heuristics
for DMP’s solution. The experimental results can be found in Table 1.

Overall, all heuristics work with stable results. The GRASP with VNS provided
the best solution quality in comparison with the other heuristics. Specifically, in
Table 1, the average gap of k-nearest neighbor and Insertion heuristic are −21.93%
and −21.44%, respectively, while the average one of GRASP + VNS is −25.71%.

Metaheuristic for Solving the Delivery Man Problem with Drone 1201

It is understandable because GRASP with VNS balances diversification and inten-
sification while the others only maintain intensification. In addition, we carried out
some additional tests and found that, in general, using the optimal DMP tours does
not obtain the better solution quality for DMPD while it consumes more time to
solve. From these analyses, we decided to use GRASP with VNS to generate DMP
tours in the next experiments.

α, β Instance
NN IH GRASP

Gap2 T Gap2 T Gap2 T

1, 1
Uniform −12.77 2.09 −13.26 2.56 −18.58 2.83
SingleCenter −14.56 2.19 −13.44 2.53 −23.21 2.53
DoubleCenter −15.85 2.07 −15.37 2.61 −18.37 2.63

1, 2
Uniform −22.09 2.12 −22.01 2.60 −23.29 2.64
SingleCenter −24.51 2.17 −22.56 2.53 −24.68 2.50
DoubleCenter −24.97 2.05 −23.98 2.71 −19.66 2.69

1, 3
Uniform −27.06 2.12 −26.96 2.72 −36.19 2.71
SingleCenter −27.08 2.17 −27.10 2.54 −34.53 2.52
DoubleCenter −28.49 2.05 −28.30 2.81 −32.89 2.81

aver −21.93 2.11 −21.44 2.62 −25.71 2.65

Table 1. Experiment results with three construction methods

[

α, β Instance diff [%]
Split DP
Time Time

1, 1
Uniform 0.00 2.83 6.83
SingleCenter −0.85 2.53 5.53
DoubleCenter −0.77 2.63 5.63

1, 2
Uniform −0.53 2.64 6.64
SingleCenter −0.41 2.50 6.50
DoubleCenter −0.73 2.69 7.01

1, 3
Uniform 0.00 2.71 6.71
SingleCenter −0.17 2.52 5.52
DoubleCenter −0.30 2.81 6.81

aver −0.42 2.65 6.35

Table 2. Experiment results between Exact and GRASP Construction Methods

5.4 The Impact of the Method to Assign Drone Vertices

In this experiment, we evaluate the performance of two methods to assign drone
vertices. The experiment results can be found in Table 2.

For using two methods, using the dynamic programming approach helps the
proposed algorithm to obtain a slightly better solution than using the greedy ap-
proach when the average difference of diff [%] between them is only below 0.42%

1202 H.-B. Ban, H.-D. Pham

Instances
α = 1, β = 1 α = 1, β = 2 α = 1, β = 3

Gap2 Improv T Gap2 Improv T Gap2 Improv T

Uniform −18.58 −4.96 2.09 −23.29 −10.24 2.12 −36.19 −23.91 2.12

SingleCenter −23.21 −2.58 2.19 −24.68 −4.46 2.17 −34.53 −14.47 2.17

DoubleCenter −18.37 −4.27 2.07 −19.66 −5.78 2.05 −32.89 −19.55 2.05

aver −20.05 −3.94 2.12 −22.54 −6.83 2.11 −34.54 −19.31 2.11

Table 3. Experiment results with various the values of α and β

α, β Instances
Murray et al. Agatz et al.

better equal worse better equal worse

1, 1
Uniform 81 10 9 65 12 22
SingleCenter 83 3 14 67 10 23
DoubleCenter 85 5 10 60 24 26

1, 2
Uniform 73 0 27 26 42 32
SingleCenter 79 0 21 51 14 35
DoubleCenter 66 0 34 45 9 44

1, 3
Uniform 72 0 28 18 64 18
SingleCenter 79 0 21 21 40 39
DoubleCenter 77 1 22 16 70 14

Sum 695 19 186 369 286 253

Table 4. Comparisons with two Murray et al.’s and Agatz et al.’s algorithms

(see Table 2). It shows that the greedy approach is also good for assigning drone
vertices. More interestingly, while using a dynamic program consumes more time
for large instances, the greedy approach spends less time on these cases. Thus, to
balance solution quality and running time, using the greedy approach is a suitable
choice, especially for large instances.

5.5 The Impact of the Improvement Phase

In this experiment, we evaluate the performance of the improvement phase in de-
veloping our solution quality. The experiment results can be found in Table 3.

It is shown that the difference in the average gap between the construction and
improvement phases is from −3.94% to −19.31%. The average gap is rather large.
It indicates the good efficiency of the improvement phase. However, for the larger
instances with up to 100 vertices, our search is quite time-consuming. Hence, to
reduce the running time, we can only run the construction phase with a loss of
−10.03% solution quality on the overall average.

5.6 Comparison of DMPD Solutions with DMP Solutions

In this experiment, we compare the results of DMP with the drone and DMP without
the drone. The experiment results can be seen in Table 3.

Metaheuristic for Solving the Delivery Man Problem with Drone 1203

Instances Best.Sol Aver.Sol Gap1 T

uniform-51-maxradius-60 1 322.29 1 335.04 16.74 0.28

uniform51-maxradius100 1 322.29 1 322.29 16.74 0.08

uniform51-maxradius150 1 322.29 1 325.83 16.74 0.07

uniform52-maxradius60 1 135.77 1 186.17 48.17 0.08

uniform52-maxradius100 1 172.43 1 256.52 52.96 0.06

uniform52-maxradius150 1 172.43 1 215.11 52.96 0.05

uniform53-maxradius100 952.87 1 051.09 18.44 0.08

uniform53-maxradius150 973.23 1 046.33 20.97 0.05

uniform54-maxradius60 1 450.59 1 457.04 56.78 0.07

uniform54-maxradius100 1 433.15 1 447.19 54.90 0.16

uniform54-maxradius150 1 433.15 1 449.20 54.90 0.06

uniform55-maxradius60 1 481.55 1 481.55 33.22 0.06

uniform55-maxradius100 1 444.72 1 513.20 29.90 0.06

uniform55-maxradius150 1 444.72 1 499.50 29.90 0.08

uniform56-maxradius60 1 530.57 1 530.57 50.58 0.14

uniform56-maxradius100 1 512.88 1 524.67 48.84 0.09

uniform56-maxradius150 1 530.57 1 530.57 50.58 0.11

uniform57-maxradius100 885.07 885.07 19.23 0.08

uniform58-maxradius1000 1 291.83 1 318.55 27.42 0.08

uniform58-maxradius150 1 291.83 1 291.83 27.42 0.06

uniform60-maxradius40 1 169.87 1 169.87 26.26 0.05

uniform60-maxradius60 1 162.91 1 162.91 25.51 0.07

uniform60-maxradius100 1 162.91 1 175.47 25.51 0.08

uniform60-maxradius150 1 162.91 1 162.91 25.51 0.06

aver 34.59 34.59

Table 5. Experimental results for DMPD with the range constraint

By using the drone, the proposed algorithm reaches better solutions than by
using the truck only. Specifically, the average gap between DMPD’s and DMP’s
solution quality is from −18.58% to −34.54%. The large difference shows the
important role of the drone in improving the solution quality. In all cases, the
waiting time of customers is improved though the speed of the drone and truck is
equal. Intuitively, when two vehicles deliver simultaneously, the waiting time of
clients certainly is improved.

5.7 Comparison of DMPD with Different Speeds of the Drone

In this experiment, we evaluate the impact of different drone speeds on the results
of DMPD. The experiment results can be seen in Table 3.

To evaluate the impact of different drone speeds, the ratio ρ = β
α
is changed from

one to three. For example, the ratio 2 means the drone travels at twice the speed of
as truck. The results show that all of the proposed algorithms obtain better solutions

1204 H.-B. Ban, H.-D. Pham

Instances Best.Sol Aver.Sol Gap1 T

uniform 51 novisit 20 rep 1 1 322.29 1 330.55 53.02 0.25

uniform 51 novisit 20 rep 2 1 135.77 1 206.62 31.44 0.18

uniform 51 novisit 20 rep 3 952.87 1 013.97 10.27 0.52

uniform 51 novisit 20 rep 4 1 433.15 1 440.84 65.85 0.10

uniform 51 novisit 20 rep 5 1 444.72 1 490.37 67.19 0.05

uniform 51 novisit 20 rep 6 1 512.88 1 519.95 75.08 0.12

uniform 51 novisit 20 rep 7 885.07 885.07 2.42 0.06

uniform 51 novisit 20 rep 8 1 345.26 1 345.26 55.68 0.05

uniform 51 novisit 20 rep 9 1 162.91 1 186.46 34.58 0.04

uniform 51 novisit 30 rep 10 1 322.29 1 330.55 53.02 0.10

uniform 51 novisit 30 rep 11 1 135.77 1 222.79 31.44 0.10

uniform 51 novisit 30 rep 12 952.87 1 012.38 10.27 0.20

uniform 51 novisit 30 rep 13 1 433.15 1 453.21 65.85 0.12

uniform 51 novisit 30 rep 14 1 444.72 1 478.96 67.19 0.14

uniform 51 novisit 30 rep 15 1 512.88 1 524.67 75.08 0.06

uniform 51 novisit 30 rep 16 885.07 885.07 2.42 0.05

uniform 51 novisit 30 rep 17 1 162.91 1 170.76 34.58 0.06

uniform 51 novisit 40 rep 18 1 322.29 1 334.32 53.02 0.08

uniform 51 novisit 40 rep 19 1 135.77 1 236.68 31.44 0.10

uniform 51 novisit 40 rep 20 1 038.13 1 068.81 20.14 0.12

uniform 51 novisit 40 rep 21 1 359.89 1 411.81 57.37 0.16

uniform 51 novisit 40 rep 22 1 444.72 1 513.20 67.19 0.07

uniform 51 novisit 40 rep 23 1 512.88 1 518.77 75.08 0.08

uniform 51 novisit 40 rep 24 885.07 885.07 2.42 0.05

uniform 51 novisit 40 rep 25 1 291.83 1 305.19 49.50 0.05

uniform 51 novisit 40 rep 26 1 162.91 1 173.38 34.58 0.05

aver 43.31 0.11

Table 6. Experimental results for DMPD with the INCOMP constraint

when the speed of drone increases. Specifically, the drone with double speed further
reduces completion times by at least 2% points, while the drone 3 times as fast as
the truck adds at least another 12% points improvement on average. Note, that in
practice, we expect the drone to reach speeds that are more than the speed of the
truck1. This means that for realistic drone speeds, our heuristics provide very good
solutions.

5.8 Comparison with the Other Algorithms for DMPD

In this experiment, we compare the results of the proposed algorithm with the
others [36, 15]. The experiment results can be seen in Table 4. In Table 4, each
column includes three subcolumns that have “better”, “equal”, and “worse” labels.

1 https://www.droneomega.com/how-fast-do-drones-fly/

https://www.droneomega.com/how-fast-do-drones-fly/

Metaheuristic for Solving the Delivery Man Problem with Drone 1205

Instances P. Bouman et al. Murray et al. Best.Sol

uniform-1-n5 158.65 227.72 158.65

uniform-2-n5 199.07 199.07 199.07

uniform-3-n5 159.65 174.60 159.65

uniform-4-n5 136.10 181.84 136.10

uniform-10-n5 181.50 181.50 181.50

uniform-11-n6 140.55 171.70 140.55

uniform-67-n20 284.46 368.68 340.04

uniform-77-n50 500.55 677.10 564.70

singlecenter-28-n7 133.05 247.25 216.53

singlecenter-33-n8 141.47 166.90 153.21

singlecenter-93-n100 970.58 1 220.91 970.58

singlecenter-94-n100 985.60 1 497.03 985.60

doublecenter-65-n20 504.41 646.16 579.13

doublecenter-86-n75 895.32 1 310.30 895.32

doublecenter-87-n75 982.08 1 342.53 982.08

doublecenter-93-n100 1 057.31 1 479.56 1 057.31

doublecenter-94-n100 1 100.50 1 532.66 1 100.50

doublecenter-95-n100 1 189.19 1 819.39 1 189.19

doublecenter-96-n100 1 163.53 1 705.61 1 163.53

Table 7. Comparisons of the proposed algorithm with the others for TSPD (α, β = 1, 1)

The “better”, “equal”, and “worse” labels mean that our solutions are better, equal,
and worse in comparison with the other algorithms.

The experimental results for DMPD in Table 4 show that in 900 instances, our
algorithm finds 674 better and 207 worse solutions than Murray et al.’s algorithm [15]
while it reaches 369 better and 253 worse solutions than Agatz et al.’s algorithm [34].
We also use the Wilcoxon test to evaluate the hypothesis that the proposed method
generates statistically better results than the other methods. The results indicate
that the proposed algorithm shows a significant improvement over Murray et al.’s
algorithm with a level of significance α = 0.05. However, since the p-value was
larger than the significance level (0.05), it indicates that no statistically significant
improvements are detected between our best solutions with Agatz et al.’s ones.
Nevertheless, 655 out of 900 better or the same solutions found in comparison with
Agatz et al.’s algorithm is still beneficial.

5.9 Results for Variants of DMPD

In this paper, we consider the problem with additional constraints that are:

• Original DMPD: DMPD without any constraints.

• DMPD with INCOMP: A subset of customers must not be visited by the drone.
This constraint can be found in Ha et al. [20, 21].

1206 H.-B. Ban, H.-D. Pham

Instances P. Bouman et al. Murray et al. Best.Sol

uniform-1-n5 228.57 227.72 158.65

uniform-14-n6 170.97 162.55 140.02

uniform-44-n9 239.15 222.10 217.63

uniform-52-n10 209.31 229.01 205.55

singlecenter-14-n6 238.41 104.31 99.82

singlecenter-33-n8 249.88 166.90 153.21

singlecenter-92-n100 912.50 1 312.59 1 161.43

singlecenter-99-n100 695.77 1 059.70 979.62

doublecenter-42-n9 483.48 468.60 480.16

doublecenter-68-n20 558.53 698.35 675.46

doublecenter-69-n20 626.51 730.97 712.96

doublecenter-70-n20 531.49 715.15 703.48

doublecenter-71-n50 921.26 1 053.45 1 062.32

doublecenter-72-n50 776.98 1 169.53 1 105.39

doublecenter-73-n50 697.26 990.38 990.96

doublecenter-74-n50 754.47 1 112.06 754.47

doublecenter-75-n50 876.80 1 164.56 1 209.75

doublecenter-76-n50 916.30 1 107.57 916.30

doublecenter-77-n50 754.65 1 065.48 754.65

doublecenter79-n50 794.50 1 068.85 968.70

doublecenter80-n50 879.11 1 245.45 879.11

doublecenter81-n75 969.61 1 265.04 1 305.23

Table 8. Comparisons of the proposed algorithm with the others for TSPD (α, β = 1, 2)

α, β Instances
Our algorithm
% Gap1 T

1, 1

poi-10-x −12.77 2.09
poi-20-x −14.56 2.19
poi-30-x −15.85 2.07
poi-40-x −22.09 2.12
aver −24.51 2.17

1, 2

poi-10-x −12.77 2.09
poi-20-x −14.56 2.19
poi-30-x −15.85 2.07
poi-40-x −22.09 2.12
aver −24.51 2.17

1, 3

poi-10-x −12.77 2.09
poi-20-x −14.56 2.19
poi-30-x −15.85 2.07
poi-40-x −22.09 2.12
aver −24.51 2.17

Table 9. Comparisons with Roberti and Ruthmair’s algorithm for small instances

Metaheuristic for Solving the Delivery Man Problem with Drone 1207

• DMPD with Range: The flying range of the drone is limited. This constraint is
mentioned in Ha et al. [20, 21].

The constraints are popular when there are many drone-incompatible customers
or the limit of drone’s range. In this experiment, the common method is to add
penalty values to the cost function for each infeasible solution to solve the problems
with additional constraints. Therefore, the proposed algorithm is adjusted to adapt
to these constraints. In the construction phase, we try to find a feasible solution. If it
finds any feasible one, the solution is an input for the improvement phase. Otherwise,
the penalty value is added to the original objective function. The advantage of the
penalty technique is a simple implementation. With a tour T , let V (T) be the
violation. The violation value V (T) is computed as follows:

• For DMPD with INCOMP:

V (T) = max{d(T), 0}.

• For DMPD with Range:

V (T) =

<i,j,k>∈DR∑
max{cij + cjk − 2×Rd, 0}.

d(T), Rd are the number of vertices that must not be served by the drone but
receiving the drone delivery (violation) and the operation range of the drone, re-
spectively. Solutions are then evaluated according to the weighted fitness function
L

′
(T) = L(T) + ρ ∗ V (T), where ρ is the penalty parameter.
Tables 5 and 6 show the results of DMPD with Range, and DMPD with IN-

COMP. As we know, the constraints make the problem more difficult. In some
cases, finding a feasible solution is a challenge. However, the proposed algorithm
finds feasible solutions fast for many cases. The differences in the average gap be-
tween DMPD’s solution and DMPD with Range and INCOMP are 34.59%, and
43.51%, respectively. It indicates that the constraints strongly impact the results.

5.10 Results for TSPD

From Tables 7, 8 and 9, we tested the proposed algorithm for TSPD. Our algorithm
still runs well for TSPD, although it was not designed to solve it. In comparison
with the metaheuristic algorithms of Murray et al. [15] and Agatz et al. [16], our
results are better than Murray et al.’s ones and are comparable with Agatz et al.’s
ones in many cases. In addition, we run the proposed algorithm with small instances
in [37]. Specifically, the proposed algorithm can find near-optimal solutions for the
instances with 40 vertices. In many cases, the exact algorithm in [37] fails to find
the optimal solution because of memory and time limits. On the other hand, the
proposed algorithm reaches better solutions in these cases.

1208 H.-B. Ban, H.-D. Pham

The algorithms in[16, 15] are executed on the same configuration. Therefore, it
is convenient for us to compare the running time exactly. From the experimental
results, the running time of the proposed algorithm is comparable with the other
algorithms.

6 DISCUSSIONS

In this paper, we propose the hybrid approach between VNS with Tabu and Shak-
ing, as follows. Firstly, the VNS maintains intensification by generating many good
locally optimal solutions around the optimal global solution while the Shaking tries
to maintain diversification. The combination balances diversification and intensifi-
cation. Secondly, TS prevents the search from getting trapped into cycles. It helps
the search to drive to the optimal global solution.

Considering the experiments, the proposed algorithm is tested with various sce-
narios: investigate the performance of different construction heuristics, explore the
performance of different split heuristics, analyze the impact of drone on solution
quality, and compare our solution quality with the previous algorithms. From the
experimental results, we conclude:

• DMP’s solution quality is relatively important to generate an initial solution
for DMPD. In some methods, the metaheuristic (GRASP with VNS) obtains
better solutions than the others. In small instances, the exact algorithm can be
used to reach the optimal solutions for DMP. However, in most cases, the exact
solutions for DMP cannot help the proposed algorithm find better solutions for
DMPD while it consumes more time. The GRASP with VNS is the best choice
in terms of solution quality and running time.

• The split step takes an important role in the final result. Using dynamic pro-
gramming can receive a very slightly better than the greedy approach but it
consumes much time for large instances. On the other hand, the greedy ap-
proach balances between solution quality and running time well. Therefore, the
first strategy for decreasing the running time is using the greedy method with
a loss of −10.03% solution quality on average.

• The results demonstrate that drone supports us in improving solution quality
in comparison with truck only. The higher the speed of drone is, the more
the total waiting time of clients decreases. In addition, the proposed algo-
rithm finds feasible solutions for DMPD with constraints. The experimental
results show that the constraints strongly affect the solution quality. It im-
plies that the problem becomes much more complex when the constraints are
involved.

• The algorithm finds better solutions than Murray et al. [15], and Agatz et al. [16]
in the case of DMPD. The proposed algorithm is also tested with TSPD’s in-
stances. The results show that the proposed algorithm is comparable with the
other algorithms [36, 15]. In addition, the proposed algorithm can find nearly

Metaheuristic for Solving the Delivery Man Problem with Drone 1209

optimal solutions for the instances with 40 vertices. In many cases, the proposed
algorithm finds better solutions in these cases, while Roberti and Ruthmair’s al-
gorithm [37] fails because of memory or time limits. Therefore, the proposed
algorithm can be applied to TSPD well, though, it is not designed to solve
it.

7 CONCLUSIONS

In this paper, we introduce DMPD. The main contribution is to propose a meta-
heuristic algorithm that balances intensification and diversification for solving
DMPD. In the first step, a solution without the drone is generated by some heuris-
tics. Then, it is an input of split procedure to convert it into DMPD-solution. After
that, it is improved by the combination of Variable Neighborhood Search (VNS)
and Tabu Search (TS). We implemented the algorithm on the benchmark dataset
to compare it to several state-of-the-art metaheuristics. The proposed algorithm
obtains better solutions in comparison with the other algorithms in many cases.
Our algorithm is also tested with TSPD. The results show that our solutions can
be compared with the previous algorithms, and the proposed algorithm can find
near-optimal solutions for instances with up to 40 vertices in a short time. However,
the running time of the algorithm can be improved to meet practical situations. In
addition, applying to some different neighborhoods will be investigated in future
research. Moreover, some other aspects will be considered to make the problem
a more practical situation. In the first aspect, truck uses gasoline to move. It can
run a long distance. Therefore, we do not consider the energy consumption of truck
in this paper. Otherwise, the drone needs to return to the truck after each deliv-
ery to recharge energy and its range is limited because of battery-powered engines.
Nevertheless, we assume that the drone always recharges energy when needed. In
the second aspect, multiple drones and trucks deliver packets at the same time.
Considering these aspects will be our aim in future work.

Acknowledgements

This research was supported by the Hanoi University of Science and Technology
under grant number T2021-PC-021.

REFERENCES

[1] Poikonen, S.—Golden, B.—Wasil, E.A.: A Branch-and-Bound Approach to
the Traveling Salesman Problem with a Drone. INFORMS Journal on Computing,
Vol. 31, 2019, No. 2, pp. 335–346, doi: 10.1287/ijoc.2018.0826.

[2] Burgess, M.: DHL’s Parcelcopter Drone Can Make Drops Quicker
Than a Car. WIRED UK, 2016, https://www.wired.co.uk/article/

dhl-drone-delivery-germany.

https://doi.org/10.1287/ijoc.2018.0826
https://www.wired.co.uk/article/dhl-drone-delivery-germany
https://www.wired.co.uk/article/dhl-drone-delivery-germany

1210 H.-B. Ban, H.-D. Pham

[3] Popper, B.: Hydrogen Fuel Cells Promise to Keep Drones Flying for
Hours. The Verge, 2015, https://www.theverge.com/2015/12/15/10220456/

intelligent-energy-hydrogen-fuel-cell-drone.

[4] Ajam, M.—Akbari, V.—Salman, F. S.: Minimizing Latency in Post-Disaster
Road Clearance Operations. European Journal of Operational Research, Vol. 277,
2019, No. 3, pp. 1098–1112, doi: 10.1016/j.ejor.2019.03.024.

[5] Avci, M.—Avci, M.G.: A GRASP with Iterated Local Search for the Traveling
Repairman Problem with Profits. Computers and Industrial Engineering, Vol. 113,
2017, pp. 323–332, doi: 10.1016/j.cie.2017.09.032.

[6] Ban, H.B.—Nguyen, D.N.: Improved Genetic Algorithm for Minimum Latency
Problem. Proceedings of the 1st Symposium on Information and Communication
Technology (SoICT ’10), ACM, 2010, pp. 9–15, doi: 10.1145/1852611.1852614.

[7] Ban, H.B.—Nguyen, K.—Ngo, M.C.—Nguyen, D.N.: An Efficient Exact Al-
gorithm for the Minimum Latency Problem. Progress in Informatics, Vol. 10, 2013,
pp. 167–174, doi: 10.2201/NiiPi.2013.10.10.

[8] Ban, H.B.—Nguyen, D.N.: A Meta-Heuristic Algorithm Combining Between
Tabu and Variable Neighborhood Search for the Minimum Latency Problem. Funda-
menta Informaticae, Vol. 156, 2017, No. 1, pp. 21–41, doi: 10.3233/FI-2017-1596.

[9] Ban, H.B.: A Metaheuristic for the Delivery Man Problem with Time Windows.
Journal of Combinatorial Optimization, Vol. 41, 2021, No. 4, pp. 794–816, doi:
10.1007/s10878-021-00716-2.

[10] Blum, A.—Chalasani, P.—Coppersmith, D.—Pulleyblank, B.—
Raghavan, P.—Sudan, M.: The Minimum Latency Problem. Proceedings
of the Twenty-Sixth Annual ACM Symposium on Theory of Computing (STOC ’94),
1994, pp. 163–171, doi: 10.1145/195058.195125.

[11] Chaudhuri, K.—Godfrey, B.—Rao, S.—Talwar, K.: Paths, Trees, and Min-
imum Latency Tours. 44th Annual IEEE Symposium on Foundations of Computer
Science, 2003, pp. 36–45, doi: 10.1109/SFCS.2003.1238179.

[12] Dewilde, T.—Cattrysse, D.—Coene, S.—Spieksma, F.C.R.—
Vansteenwegen, P.: Heuristics for the Traveling Repairman Problem with
Profits. Computers and Operations Research, Vol. 40, 2013, No. 7, pp. 1700–1707,
doi: 10.1016/j.cor.2013.01.003.

[13] Goemans, M.—Kleinberg, J.: An Improved Approximation Ratio for the Min-
imum Latency Problem. Mathematical Programming, Vol. 82, 1998, No. 1-2,
pp. 111–124, doi: 10.1007/BF01585867.

[14] Beraldi, P.—Bruni, M.E.—Laganà, D.—Musmanno, R.: The Risk-Averse
Traveling Repairman Problem with Profits. Soft Computing, Vol. 23, 2019, No. 9,
pp. 2979–2993, doi: 10.1007/s00500-018-3660-5.

[15] Murray, C.C.—Chu, A.G.: The Flying Sidekick Traveling Salesman Problem:
Optimization of Drone-Assisted Parcel Delivery. Transportation Research Part C:
Emerging Technologies, Vol. 54, 2015, pp. 86–109, doi: 10.1016/j.trc.2015.03.005.

[16] Agatz, N.—Bouman, P.—Schmidt, M.: Optimization Approaches for the Trav-
eling Salesman Problem with Drone. Transportation Science, Vol. 52, 2018, No. 4,
pp. 965–981, doi: 10.1287/trsc.2017.0791.

https://www.theverge.com/2015/12/15/10220456/intelligent-energy-hydrogen-fuel-cell-drone
https://www.theverge.com/2015/12/15/10220456/intelligent-energy-hydrogen-fuel-cell-drone
https://doi.org/10.1016/j.ejor.2019.03.024
https://doi.org/10.1016/j.cie.2017.09.032
https://doi.org/10.1145/1852611.1852614
https://doi.org/10.2201/NiiPi.2013.10.10
https://doi.org/10.3233/FI-2017-1596
https://doi.org/10.1007/s10878-021-00716-2
https://doi.org/10.1145/195058.195125
https://doi.org/10.1109/SFCS.2003.1238179
https://doi.org/10.1016/j.cor.2013.01.003
https://doi.org/10.1007/BF01585867
https://doi.org/10.1007/s00500-018-3660-5
https://doi.org/10.1016/j.trc.2015.03.005
https://doi.org/10.1287/trsc.2017.0791

Metaheuristic for Solving the Delivery Man Problem with Drone 1211

[17] Bouman, P.: Code for the Traveling Salesman Problem with Drone. 2018, https:
//github.com/pcbouman-eur/Drones-TSP.

[18] de Freitas, J. C.—Penna, P.H.V.: A Variable Neighborhood Search for Fly-
ing Sidekick Traveling Salesman Problem. International Transactions in Operational
Research, Vol. 27, 2019, No. 1, pp. 267–290, doi: 10.1111/itor.12671.

[19] Poikonen, S.—Wang, X.—Golden, B.: The Vehicle Routing Problem with
Drones: Extended Models and Connections. Networks, Vol. 70, 2017, No. 1, pp. 34–43,
doi: 10.1002/net.21746.

[20] Ha, Q.M.—Deville, Y.—Pham, Q.D.—Hà, M.H.: On the Min-Cost Traveling
Salesman Problem with Drone. Transportation Research Part C: Emerging Technolo-
gies, Vol. 86, 2018, pp. 597–621, doi: 10.1016/j.trc.2017.11.015.

[21] Ha, Q.M.—Deville, Y.—Pham, Q.D.—Hà, M.H.: A Hybrid Genetic Algo-
rithm for the Traveling Salesman Problem with Drone. Journal of Heuristics, Vol. 26,
2020, No. 2, pp. 219–247, doi: 10.1007/s10732-019-09431-y.

[22] Daknama, R.—Kraus, E.: Vehicle Routing with Drones. CoRR, 2017, doi:
10.48550/arXiv.1705.06431.

[23] Dorling, K.—Heinrichs, J.—Messier, G.G.—Magierowski, S.: Vehi-
cle Routing Problems for Drone Delivery. IEEE Transactions on Systems,
Man, and Cybernetics: Systems, Vol. 47, 2017, No. 1, pp. 70–85, doi:
10.1109/TSMC.2016.2582745.

[24] Kim, S.—Moon, I.: Traveling Salesman Problem with a Drone Station. IEEE Trans-
actions on Systems, Man, and Cybernetics: Systems, Vol. 49, 2019, No. 1, pp. 42–52,
doi: 10.1109/TSMC.2018.2867496.

[25] Schermer, D.—Moeini, M.—Wendt, O.: The Traveling Salesman Drone Station
Location Problem. In: Le Thi, H.A., Le, H.M., Pham Dinh, T. (Eds.): Optimization
of Complex Systems: Theory, Models, Algorithms and Applications (WCGO 2019).
Springer, Cham, Advances in Intelligent Systems and Computing, Vol. 991, 2020,
pp. 1129–1138, doi: 10.1007/978-3-030-21803-4 111.

[26] Mbiadou Saleu, R.G.—Deroussi, L.—Feillet, D.—Grangeon, N.—
Quilliot, A.: An Iterative Two-Step Heuristic for the Parallel Drone Schedul-
ing Traveling Salesman Problem. Networks, Vol. 72, 2018, No. 4, pp. 459–474, doi:
10.1002/net.21846.

[27] Wang, X.—Poikonen, S.—Golden, B.: The Vehicle Routing Problem with
Drones: Several Worst-Case Results. Optimization Letters, Vol. 11, 2017, No. 4,
pp. 679–697, doi: 10.1007/s11590-016-1035-3.

[28] Salehipour, A.—Sörensen, K.—Goos, P.—Bräysy, O.: Efficient GRASP +
VND and GRASP+VNS Metaheuristics for the Traveling Repairman Problem. 4OR,
Vol. 9, 2011, No. 2, pp. 189–209, doi: 10.1007/s10288-011-0153-0.

[29] Johnson, D. S.—McGeoch, L.A.: The Traveling Salesman Problem: A Case
Study in Local Optimization. Chapter 8. In: Aarts, E.H. L., Lenstra, J.K. (Eds.):
Local Search in Combinatorial Optimization. John Wiley & Sons Ltd., 1997,
pp. 215–310.

[30] Feo, T.A.—Resende, M.G.C.: Greedy Randomized Adaptive Search Proce-
dures. Journal of Global Optimization, Vol. 6, 1995, No. 2, pp. 109–133, doi:

https://github.com/pcbouman-eur/Drones-TSP
https://github.com/pcbouman-eur/Drones-TSP
https://doi.org/10.1111/itor.12671
https://doi.org/10.1002/net.21746
https://doi.org/10.1016/j.trc.2017.11.015
https://doi.org/10.1007/s10732-019-09431-y
https://doi.org/10.48550/arXiv.1705.06431
https://doi.org/10.1109/TSMC.2016.2582745
https://doi.org/10.1109/TSMC.2018.2867496
https://doi.org/10.1007/978-3-030-21803-4_111
https://doi.org/10.1002/net.21846
https://doi.org/10.1007/s11590-016-1035-3
https://doi.org/10.1007/s10288-011-0153-0

1212 H.-B. Ban, H.-D. Pham

10.1007/BF01096763.

[31] Belošević, I.—Ivić, M.: Variable Neighborhood Search for Multistage Train Clas-
sification at Strategic Planning Level. Computer-Aided Civil and Infrastructure En-
gineering, Vol. 33, 2018, No. 3, pp. 220–242, doi: 10.1111/mice.12304.

[32] Hansen, P.—Mladenović, N.—Todosijević, R.—Hanafi, S.: Variable Neigh-
borhood Search: Basics and Variants. EURO Journal on Computational Optimiza-
tion, Vol. 5, 2017, No. 3, pp. 423–454, doi: 10.1007/s13675-016-0075-x.

[33] Mladenović, N.—Hansen, P.: Variable Neighborhood Search. Computers and
Operations Research, Vol. 24, 1997, No. 11, pp. 1097–1100, doi: 10.1016/S0305-
0548(97)00031-2.

[34] Bouman, P.: TSP-D-Instances. 2015, https://github.com/pcbouman-eur/

TSP-D-Instances.

[35] Appendix-DMPD.pdf. https://drive.google.com/file/d/16SmLpCUs_nekhO5_

yaCkWoiPWgpBaZB5/view?usp=sharing.

[36] Bouman, P.—Agatz, N.—Schmidt, M.: Dynamic Programming Approaches for
the Traveling Salesman Problem with Drone. Networks, Vol. 72, 2018, pp. 528–542,
doi: 10.1002/net.21864.

[37] Roberti, R.—Ruthmair, M.: Exact Methods for the Traveling Salesman Prob-
lem with Drone. Transportation Science, Vol. 55, 2021, No. 2, pp. 315–335, doi:
10.1287/trsc.2020.1017.

Ha-Bang Ban received his Ph.D. in computer science at the
Hanoi University of Science and Technology (HUST), Vietnam
in 2015. He is currently the Lecturer at the School of Information
and Communication Technology (SoICT), HUST, Vietnam. His
research interests include algorithms, graphs, optimization, lo-
gistics, etc. He has published many publications in peer-reviewed
international journals and conferences.

Hai-Dang Pham received his engineering diploma in informa-
tion technology from the Hanoi University of Science and Tech-
nology (HUST), Vietnam, in 1995 and his Ph.D. in computer sci-
ence from École Pratique des Hautes Études (EPHE), France,
in 2011. He is currently the Senior Lecturer at the School of
Information and Communication Technology (SoICT), HUST,
Vietnam. His current research interests include algorithms, par-
allel and distributed simulation, multi-agent based simulation
and high performance computing.

https://doi.org/10.1007/BF01096763
https://doi.org/10.1111/mice.12304
https://doi.org/10.1007/s13675-016-0075-x
https://doi.org/10.1016/S0305-0548(97)00031-2
https://doi.org/10.1016/S0305-0548(97)00031-2
https://github.com/pcbouman-eur/TSP-D-Instances
https://github.com/pcbouman-eur/TSP-D-Instances
https://drive.google.com/file/d/16SmLpCUs_nekhO5_yaCkWoiPWgpBaZB5/view?usp=sharing
https://drive.google.com/file/d/16SmLpCUs_nekhO5_yaCkWoiPWgpBaZB5/view?usp=sharing
https://doi.org/10.1002/net.21864
https://doi.org/10.1287/trsc.2020.1017

