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Abstract. Quantum-behaved Bat Algorithm (QBA) has been successfully applied
as an optimal technique for dealing with a variety of optimization problems. Nev-
ertheless, QBA suffers from similar problems as other swarm intelligent algorithms,
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such as poor exploration search and falling into local optima in certain conditions.
Aiming at these shortcomings, an improved algorithm that combines convergence
factor and gold sinusoidal self-learning mutation strategies (CGQBA) is proposed.
A directional convergence factor is designed for the global position update process,
it can improve the exploration search ability of the algorithm. Meanwhile, a self-
learning predictive mutation mechanism is added to the algorithm. It contributes to
the algorithm to jump out of the local extremum. The improved CGQBA algorithm
is tested on 20 test functions with different characteristics in the numerical simula-
tion experiments. The results and statistical tests show that CGQBA algorithm has
better convergence speed, accuracy and stability. What is more, the multi-threshold
image segmentation is modelled as an optimization problem, CGQBA algorithm is
applied to the optimization problem to further verify the effectiveness and practi-
cability in the real-world optimization. The results compared with three classical
segmentation methods illustrate that CGQBA algorithm can effectively solve the
image segmentation problem. It has a better segmentation effect and anti-noise
ability.

Keywords: Swarm intelligence, quantum-behaved bat algorithm, convergence ana-
lysis, optimization

1 INTRODUCTION

With the development of computational intelligence, since Eberhart and Kennedy
proposed the particle swarm algorithm [1] (PSO) based on bird flock behavior, there
is a wave of invention for swarm intelligence algorithms. Scholars have proposed
many intelligent optimization algorithms to solve complex optimization problems.
The ant colony algorithm was proposed by Dorigo et al. to simulate the foraging
behavior of ants [2] (ACO). Passino proposed a bacterial foraging algorithm [3]
(BFO) by imitating the behavior of Escherichia coli to devour food in the human
gut. In order to solve the multivariate function optimization problem, Karaboga
and Basturk published the artificial bee colony algorithm [4] (ABC). British scholar
Yang proposed the bat algorithm (BA) [5] and the cuckoo search algorithm [6]
(CS) in 2010 and 2013, respectively. In recent years, scholars have successively pro-
posed the gray wolf optimization algorithm [7] (GWO), the whale optimization algo-
rithm [8] (WOA), and the sparrow search algorithm [9] (SSA). The above-mentioned
swarm intelligent algorithms generally have the common characteristics of random-
ness, parallelism and distribution in the optimization process, and they have the
advantages of wide application range and good performance for optimization prob-
lems.

As an important member of the swarm intelligent algorithm, BA has been widely
and successfully applied to various complex optimization problems. For example,
Long and Zhang applied the BA algorithm to find the solution of constrained opti-
mization problems [10]. Dai and Luo applied the BA algorithm into wireless network
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traffic prediction [11]. Li et al. applied the BA algorithm to the path optimiza-
tion of intelligent robots [12]. Rauf et al. proposed an enhanced BA algorithm
and applied it to predict the number of COVID-19 cases [13]. In a large num-
ber of application practices, researchers have proposed many improved versions of
the BA algorithm to balance the global exploration and local search capabilities
of the algorithm. The corresponding improvement directions of the BA algorithm
can be divided into the following categories: The first category is integrating other
algorithms to obtain the advantages and make up for the shortcomings, such as
combining the BA algorithm with the differential evolution algorithm and parti-
cle filter algorithm [14, 15]. Second one is adding new learning mechanisms and
optimizing search methods, such as the improved BA algorithm [16] based on the
hybrid optimization strategy, introducing the Sobol sequence and the intermittent
Lévy jump strategy [17] into the process of speed and position update. What is
more, there are other aspects to improve the performance of the BA algorithm.
For example, Li et al. extended the BA algorithm to the quantum space and pro-
posed a BA algorithm with quantum behavior [18] (quantum-behaved bat algo-
rithm, QBA). In the past two years, some scholars have proposed improved quan-
tized bat algorithm. For example, Zhu et al. proposed a QBA algorithm with an
average best position orientation [19]. Rugema et al. proposed a novel Cauchy-
Gaussian quantum behavioral bat algorithm and applied it to solve the problem
of economic load distribution [20]. Yang et al. applied the QBA algorithm to
solve the multi-stacker collaborative scheduling optimization problem [21]. Gao
et al. applied the QBA algorithm to the cognition of infinite energy harvesting to
obtain the optimal solution for cooperative transmission of energy and informa-
tion [22].

Despite their efforts, the improvements were limited and there is still room for
improvement. Therefore, this paper proposes an improved QBA with a directional
convergence factor and self-learning mutation strategy, and such strategies were not
used in the original BA. First of all, the directional convergence factor is designed
in the process of updating the global position of bat individuals. It can dynamically
adjust the search step size of individual bats, and it can enhance the diversity
of bats’ location information. Secondly, a gold sinusoidal self-learning mutation
strategy is designed, which objectively determines whether the algorithm needs to be
mutated by the fitness value of the objective function. If the solution falls into local
extrema, or the algorithm does not search in a better direction, it will adaptively
trigger the mutation strategy and integrate the golden sine algorithm to generate
mutation.

The paper is thus organized as follows. The relevant content about quantum-
behaved BA is introduced in Section 2, followed by a detailed presentation of im-
provements of the CGQBA in Section 3. Section 4 gives a global convergence analy-
sis of the update algorithm. Section 5 presents numerical experiments on 20 classic
benchmarks and a real-world classic image multi-threshold segmentation application
was shown in Section 6. Finally, we outline some conclusions with brief discussions
in Section 7.
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2 QUANTUM-BEHAVED BAT ALGORITHM (QBA)

The BA algorithm was proposed by British scholar Xin-she Yang, and was inspired
by the predation of bat groups through echolocation systems. Li et al. proposed
a new version of BA algorithm (QBA) with quantum behavior according to the
relevant theory of quantum systems. The search behavior of BA algorithm is im-
proved to the quantum space, and the aggregation limitation in the search process
of BA algorithm is solved by using the state superposition principle of the quantum
system.

The principle of QBA algorithm is to regard each bat in the population as
a particle in the quantum space. By using the potential field effect of the particle, the
algorithm has an aggregated state and can appear in any area of the entire feasible
search space with a certain probability. In short, compared with the BA algorithm,
the QBA algorithm deletes the velocity update formula and resets the position
update formula of the algorithm according to the theory of quantum systems. The
search steps for solving the objective function are consistent with the BA algorithm.
The steps of the QBA algorithm can be described as follows:

Step 1: Initialize the basic parameters and randomly generate the position infor-
mation xi of the bats. The basic parameters include: bat population size N ,
pulse frequency ri, loudness Ai, maximum number of iterations Tmax, frequency
fi and frequency range [fmin, fmax].

Step 2: Calculate the fitness value of the objective function on the initialized po-
sition information, and then find the global optimal position Pg.

Step 3: Update the pulse frequency fi and the position information xi according
to the iterative formula of the QBA algorithm. The specific iterative formula is
as follows:

xt+1
i =

(
P ± α|P − xt

i| · ln
(
1

u

))
· f t

i , (1)

fi = fmin + (fmax − fmin) · β∗, (2)

P = ϕ1Pi + (1− ϕ1)Pg, (3)

u = rand(0, 1), (4)

where β∗ ∈ [0, 1], ϕ1 obeys a random distribution on range of (0, 1), Pi represents
the current optimal position, and Pg represents the global optimal position.

Step 4: Generate a random number rand1, if the random number rand1 > rti (the
formula of rti is shown as Equation (7)), then generate a new solution around
the neighborhood of the optimal solution x∗ through random disturbance:

Xnew = pbest + εAt, (5)
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where rand1 ∈ [0, 1] obeys a uniform distribution, ε ∈ [−1, 1] is a random vector,
and At is the average loudness of bats.

Step 5: Generate a random number rand2. If the random number rand2 < Ai

and f(Xnew) < f(x∗), then accept the new solution. At this time, the bat is
improved, and the pulse frequency ri and loudness Ai are updated according to
the following formulas:

At+1
i = αAt

i, (6)

rt+1
i = r0i [1− exp(−γt)] , (7)

where 0 < α < 1, γ > 0, both of them are constants.

Step 6: Update the optimal solution and the global optimal solution according to
the fitness value of the objective function.

Step 7: Repeat Steps 3-6 until the global optimum is output when the end condi-
tions are met, and the optimization ends.

3 IMPROVED QBA ALGORITHM (CGQBA)

3.1 Introduced Convergence Factor with Direction

In order to improve the global exploration ability of the QBA algorithm, a shrinkage
factor is designed as a new strategy, and this directional convergence factor β is
added to the global position update process. In the early stages of the update
process, a larger value of |β| enables the bat to obtain a larger step size, which
is conducive to a large-scale global search and has a stronger global exploration
ability. As |β| decreases, its value begins to gradually shrink to a smaller value.
At this time, the step size becomes smaller, which tends to refine the local search,
and it is beneficial to improve the convergence accuracy in the later stage of the
algorithm. The mathematical expression for β is shown as follows:β(t) = 2δ

(
1− t

Tmax

)
,

δ = 2 ∗ rand− 1,
(8)

where t represents the current number of iteration, Tmax represents the maximum
number of iteration, δ is the direction deviation coefficient, and δ ∈ (−1, 1). rand ∈
[0, 1] obeys a uniform distribution. The convergence factor β gradually approaches 0
with the increase of the number of iterations. β has two random directions, positive
and negative, and its values are shown in Figure 1.

By analyzing the mathematical expression and the value figure of β, we can
see that the value of β is in a random positive and negative state. In a certain
search process, β can not only dynamically adjust the search step size of individual
bats, but also increase the diversity of individual bat location information. After
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a) Positive values of β

b) Negative values of β

Figure 1. The values of convergence factor β

introducing the shrinkage factor, the global position update formula of the algorithm
is expressed as:

X t+1
i = β ·

[(
P ± α|P −X t

i | · ln
(
1

u

))
· f t

i

]
. (9)
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3.2 Gold Sinusoidal Self-Learning Mutation Strategies

Just like other swarm intelligent algorithms, the QBA algorithm has randomness
in the search process, which leads to the disadvantage that it may easily fall into
local extreme values in some cases. In response to this shortcomming, this paper
proposed a self-learning predictive mutation mechanism to the QBA algorithm to
strengthen the algorithm’s ability to jump out of local extrema. The proposed
adaptive mutation mechanism mainly includes two parts: self-learning prediction
operation and golden sine mutation mechanism.

3.2.1 Self-Learning Predictive Operation

In order to enhance the utilization of historical optimization information and the
self-learning ability of bats in the search process, the global optimal position of the
bat population is used as the criterion for judging whether the current optimiza-
tion result needs to be mutated. In the optimization process, the optimal solution
searched by the ith bat in the tth iteration is recorded as pti. The mathematical
model of the adaptive pre-judgment operation can be expressed as two modules:
the global optimal evaluation module of the bat population and the pre-judgment
conditions.

First of all, the global optimal position found by n bat individuals under the
current number of iterations is evaluated in the global optimal evaluation module
according to the fitness value of the objective function, and its expression is:

f t
gbest =

n

min
i=1

f t
pi
, (10)

where f t
pi

represents the fitness value of the objective function corresponding to

the optimal solution searched by the ith bat individual in the tth iteration. This
evaluation module records the objective function fitness value f t

gbest corresponding
to the optimal solution searched after t iterations of the entire population, and uses
it as the standard for pre-judgment operations.

The second module is the pre-judgment condition. In this module, the currently
searched solution is compared with the recorded fitness value of the global optimal
solution to form a pre-judgment condition, and its expression is:

ft+1 ≥ f t
gbest (11)

where ft+1 represents the objective function fitness value of the solution searched in
the (t+ 1)th iteration.

The above formula represents that the fitness value of the objective function
corresponding to the optimal solution searched by the (t + 1)th iteration is inferior
to the global optimal solution searched after the tth iteration, which means that the
optimization performance of the current bat population is not good. The search
process may get stuck in a state of local extrema. If this condition is satisfied, the
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algorithm needs to perform mutation perturbation on the current solution. On the
contrary, that is, ft+1 < f t

gbest, which means that the current optimization process
is developing for the better, and no mutation disturbance is required, and the next
iterative search can be continued.

3.2.2 Golden Sine Variation Mechanism

After the above pre-judgment operation, if the mutation conditions are met, the mu-
tation mechanism will be adaptively triggered. The mutation mechanism designed
in this section is inspired by the Golden Sine Algorithm (Golden-SA), which was
proposed by Tanyildizi and Demir in 2017 [23]. The core update formulas of the
algorithm are shown as follows:

xt+1
i = xt

i ∗ | sin(R1)|+R2 ∗ sin(R1) ∗ |θ1 ∗ P t
i − θ2 ∗ xt

i|,

θ1 = a ∗ (1− τ) + b ∗ τ,

θ2 = a ∗ τ + b ∗ (1− τ),

τ =
√
5−1
2

,

(12)

where R1 ∈ [0, 2π], R2 ∈ [0, π], the two are random numbers in the corresponding
range. θ1 and θ2 represent the proportional coefficient of the golden ratio; τ is the
golden ratio.

In the local search of the QBA algorithm, the random perturbation in the vicinity
of the current solution to generate a new solution is changed to use the Golden-SA to
generate a new solution. Such an improved mechanism can combine the Golden-SA
algorithm into the QBA algorithm as an optimized local operator, so that the two
algorithms can be organically integrated, and the search advantage of the Golden-
SA algorithm can be used to make up for the lack of the QBA algorithm’s reduced
convergence accuracy in the later iteration.

Through comprehensive analysis, it is easy to find that the self-learning predic-
tive variation mechanism of the optimal design replaces the part of the original QBA
algorithm that determines whether to randomly generate a new solution by compar-
ing the size of random numbers. The generation of the new solution no longer simply
depends on the comparison between the random number rand2 and the loudness Ai,
but is based on the comparison of the fitness value of the current solution and the
global optimal solution to objectively and rationally judge whether the current so-
lution is excellent and whether it is necessary to produce a new solution. In this
way, the self-learning mechanism first actually judges and then determines whether
mutation is needed, and it can help the algorithm to iterate towards the global opti-
mum. Such an optimized design can improve the performance of the QBA algorithm
effectively.
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3.3 Operation Steps of CGQBA Algorithm

The QBA algorithm (CGQBA) improved by the above convergence factor and gold
sinusoidal self-learning mutation mechanism has the main difference in its opera-
tion steps compared with the QBA algorithm: the convergence factor is added to
the position update Equation (1) in Step 3, and predictive mutation mechanism
is introduced in Step 4. In addition, the original random number size comparison
is changed to a pre-judgment condition based on the fitness value of the objective
function. If the condition is met, the mutation operation is triggered adaptively, and
the Golden-SA is integrated to implement the mutation of the new solution. The
rest of the parts are consistent with the QBA algorithm, so the specific operation
steps will not be repeated. The flow chart of the CGQBA algorithm is shown in
Figure 2.

4 CONVERGENCE ANALYSIS OF CGQBA ALGORITHM

Aiming at the convergence problem of CGQBA algorithm, the method of probability
measure is used to prove it. For the convenience of analysis, some related concepts
are given first.

4.1 Basic Concepts and Convergence Criteria of Global Search Algo-
rithms

Definition 1. An algorithm is called a global search algorithm if it can guarantee
to find the global optimal solution of the desired objective function.

Definition 2. Let the objective function of an optimization problem be f , the
solution space of the objective function is from Rn to R, and S is a subset of Rn.
There is a point Z in S that can minimize the value of the objective function or
generate an acceptable infimum of the objective function on S.

Assumption 1. f(H(z, ζ)) ≤ f(z), if ζ ∈ S, then f(H(z, ζ)) ≤ f ≤ f(ζ), where H
represents a function that generates a solution in the solution space of the objective
function, and this function can ensure that the new solution generated is better than
the current solution. In order to guarantee the correct operation of the optimization
algorithm, H must satisfy Assumption 1. Z represents a minimum value in S, and
ζ represents several feasible solutions obtained by the optimization algorithm on S.
If a random search algorithm has global convergence, it means that the sequence
f(zt)

∞
(t=1) converges to the infimum of the objective function f on S. At the same

time, in order to avoid the ill-conditioned situation, the search target is changed
to search to the essential infimum Φ, Φ = inf(n : q[z ∈ S|f(z) < n] > 0), q[A]
represents the Lebesgue measure on the set A.
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Figure 2. Flowchart of the CGQBA algorithm

Assumption 2. For the set S, A is any Borel subset on it, if the Lebesgue measure
q[A] > 0 of the subset A, then there are:

∞∏
t=0

(1− µt[A]) = 0, (13)

where µt[A] represents the probability of A obtained from measure µt.
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Theorem 1. (Sufficient and Necessary Conditions for Global Convergence of Ran-
dom Search Algorithms) [24] The objective function f is a measurable function,
S is a measurable subset on Rn, and both Assumption 1 and 2 are satisfied. If the
sequence of solutions generated by the search algorithm is set to {zt}∞t=0, then:

lim
t→+∞

B[zt ∈ Rε] = 1, (14)

where B[zt ∈ Rε] denotes the probability of the solution zt ∈ Rε generated by
the search algorithm at the tth iteration, Rε denotes the acceptable region of the
algorithm, and Rε = z ∈ S|f(z) < Φ + ε, ε > 0).

4.2 Global Convergence of CGQBA Algorithm

Next, by proving that the CGQBA algorithm proposed in this paper can satisfy
both Assumption 1 and 2, and then use the necessary and sufficient conditions for
the global convergence of the random search algorithm to prove that CGQBA can
guarantee the convergence to the global optimal solution.

Lemma 1. CGQBA algorithm can satisfy Assumption 1.

Proof. According to the solution steps of the CGQBA algorithm, it is easy to know
that the update method of the current optimal position Pi and the global optimal
position Pg of the bat individual with quantum behavior can be expressed as:

P t+1
i =

xt+1
i , f(xt+1

i ) < f(P t
i ),

P t
i , f(xt+1

i ) ≥ f(P t
i ),

(15)

P t+1
g = arg min

1≤i≤N
f(P t

i ). (16)

Thus, the mathematical description of the function H in the entire solution space
in the CGQBA algorithm can be written as:

H(P t
g , x

t
i) =

P t
g , f(F (xt

i) ≥ f(P t
g),

F (xt
i), f(F (xt

i) < f(P t
g),

(17)

where F (xt
i) represents the specific objective function used in the solution, xt+1

i

represents the result obtained after applying the function F , and xt+1
i = F (xt

i). A
series of optimal positions produced by all bat individuals from the first iteration
to the tth iteration can be expressed as the sequence {P t

g}tt=0. According to the
definition of the CGQBA algorithm, this optimal position sequence is obviously
monotonic. Therefore, the function H defined in the CGQBA algorithm can satisfy
Assumption 1. 2

Lemma 2. CGQBA algorithm can satisfy Assumption 2.
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Proof. According to the relevant content of quantum theory introduced in the
description of the QBA algorithm [18], it can be obtained that the probability density
function of the dth dimension of the bat i at the tth iteration of the CGQBA algorithm
can be written as:

Q(xt
i,d) =

1

L(i, d, t)
exp

(
−2|xt

i,d − pti,d|/L(i, d, t)
)
. (18)

And the probability density function of individual bat i is:

Q(xt
i) =

D∏
d=1

1

L(i, d, t)
exp

(
−2|xt

i,d − pti,d|/L(i, d, t)
)
. (19)

Definition ζti is the probability measure corresponding to the D-dimensional
double exponential distribution. Any Borel subset A of the set S satisfies q[A] > 0,
so there are:

ζti [A] =

∫
A

[
D∏

d=1

1

L(i, d, t)
exp

(
−2|xt

i,d − pti,d|/L(i, d, t)
)]

dxt
i,1 . . . dx

t
i,D, (20)

Kt
i = RD ⊃ S, (21)

where Kt
i represents the support of ζti on the sample space. So we get:

0 < ζti [A] < 1. (22)

The support union of individual bats in the solution space can be shown as:

Kt =
N
∪
i=1

Kt
i , (23)

= RD ⊃ S. (24)

Among them, Kt represents the support of ζt, and the probability A generated by
the distribution ζt can be recorded as:

ζti [A] = 1−
N∏
i=1

(
1− ζti [A]

)
. (25)

From 0 < ζti [A] < 1, we can get:

0 < ζt[A] < 1 (26)

and there is:
∞∏
t=1

(1− ζt[A]) = 0 (27)

Therefore, the CGQBA algorithm can satisfy Assumption 2. 2
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Lemma 3. The CGQBA algorithm is a globally convergent algorithm.

Proof. Because the CGQBA algorithm can satisfy Assumptions 1 and 2 at the
same time, according to Theorem 1, it can be known that it is a globally convergent
algorithm. 2

Then, the optimization performance of the CGQBA algorithm will be tested
through numerical simulation experiments.

5 NUMERICAL EXPERIMENT AND RESULT ANALYSIS

In this section, the optimization performance and convergence of the proposed
CGQBA algorithm will be tested and verified through numerical simulation experi-
ments. In order to ensure the objectivity and comprehensiveness of the comparison
experiment, 20 standard test functions with different modes were selected for nu-
merical experiments, including 7 single-peaked functions (F1 − F7), 6 multi-peaked
functions (F8−F13) and 7 fixed-dimensional functions (F14−F20), and the benchmark
test functions are shown in Table 1. All numerical simulation experiments are tested
using Matlab 2016a on PC Windows 10 with Intel Core i5-1035G1 CPU@1.00GHz
1.19GHz, 16GB memory. In the numerical experiment part, three experiments are
designed, which are the influence of the improvement strategy on the performance
improvement of the algorithm, the comparison experiment with the four classic
swarm intelligence algorithms, and the high-dimensional performance comparison
with the QPSO algorithm, respectively.

5.1 Influence of the Introduced Strategies
on the Performance of CGQBA Algorithm

In order to explore the impact of the two improved strategies designed on the per-
formance of the CGQBA algorithm, the basic QBA algorithm is used as the basic
control group to conduct ablation experiments with algorithms corresponding to
different improved strategies in this subsection. Algorithms with different improve-
ment strategies include: QBA algorithm with shrink factor strategy only (CQBA),
QBA algorithm with adaptive golden sine mutation strategy only (GQBA), and
QBA with both improvement strategies (CGQBA). In the ablative comparison ex-
periments, two different population sizes and dimensionality settings were compared.
First of all, under the setting of population size of 10, maximum iteration number of
500 and dimension of 2, the optimization results of the four algorithms running in-
dependently on 20 test functions 50 times were recorded. The comparison indicators
include the fitness value and running time of the test function. The experimental
results are shown in Table 2, where the best fitness value is marked in bold.

By analyzing the experimental results in Table 2, it can be seen that in terms
of running time, the algorithm with the improved strategy has no obvious extra
time loss compared with the QBA algorithm. The required running time difference
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Function Dimension Optimal Value

F1(x) =
∑n

i=1 x
2
i D 0

F2(x) =
∑n

i=1 |xi|+
∏n

i=1 |xi| D 0

F3(x) =
∑n

i=1(
∑i

j=1 xj)
2 D 0

F4(x) = max{|xi|, 1 ≤ i ≤ n} D 0

F5(x) =
∑n−1

i=1 [100(xi+1 − x2i )
2 + (xi − 1)2] D 0

F6(x) =
∑n

i=1[(xi + 0.5)2] D 0

F7(x) = ix4i + random[0, 1] D 0

F8(x) = −
∑n

i=1 sin(sqrt|xi|) D −418.982× n

F9(x) =
∑n

i=1[x
2
i − 10 cos(2πxi) + 10] D 0

F10(x) = −20 exp
(
−0.2

√
1
n

∑n
i=1 x

2
i

)
−

D 0

exp
(

1
n

√∑n
i=1 cos(2πxi)

)
+ 20 + e

F11(x) =
1

4000

∑n
i=1 x

2
i −

∏n
i=1 cos(

xi√
i
) + 1 D 0

F12(x) = π
n10 sin(πy1) +

∑n−1
i=1 (yi−1)

2[1 + sin2(πyi+1)]
+ (yn − 1)2

D 0
yi = 1 + xi+1

4 , u = (xi, a, k,m) =
k(xi − a)m, xi > a,

0, −a < xi < a,

k(−xi − a)m, xi < a

F13(x) = 0.1{sin2(3πxi)+
∑n

i=1(xi−1)2[1+sin2(3πxi+
1)] + (xi − 1)2[1 + sin2(2πxi)]}+

∑n
i=1 u(xi, 5, 100, 4)

D 0

F14(x) = ( 1
500 +

∑25
i=1

1
j+

∑2
i=1(xi−aij)6

)−1 2 1

F15(x) =
∑11

i=1[ai −
x1(bi

2+bix2)

bi
2+bix3+x4

]2 4 0.00030

F16(x) = 4x1
2 − 2.1x1

4 + 1
3x1

6 + x1x2 − 4x2
2 − 4x2

4 2 −1.0316

F17(x) = (x2− 5.1
4π2x1

2+ 5
πx1−6)2+10(1− 1

8π )cosx1+10 2 0.398

F18(x) = [1 + (x1 + x2 + 1)2(19 − 14x1 + 3x21 − 14x2 +
6x1x2 + 3x22)] ∗ [30 + (2x1 + 3x2)

2 ∗ (18− 32x1 + 12x21 +
48x2 − 36x1x2 + 27x22)]

2 3

F19(x) = −
∑4

i=1 ci exp(−
∑3

j=1 aij(xi − pij)
2) 3 −3.86

F20(x) = −
∑4

i=1 ci exp(−
∑6

j=1 aij(xi − pij)
2) 6 −3.32

Table 1. Test function
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Functions Indicators QBA CQBA GQBA CGQBA

F1

Fitness −4.57E−01 −4.33E−01 0.00E+00 0.00E+00
t 0.1399 0.1792 0.1505 0.1651
T 5 4 6 13

F2

Fitness −4.36E−01 −4.30E−01 5.52E−254 0.00E+00
t 0.1399 0.1667 0.1792 0.2005
T 9 6 13 32

F3

Fitness −4.40E−01 −4.32E−01 0.00E+00 0.00E+00
t 0.1505 0.1938 0.1880 0.1911
T 6 4 7 14

F4

Fitness −4.30E−01 −4.39E−01 1.15E−237 0.00E+00
t 0.1245 0.1766 0.1656 0.1771
T 8 6 13 31

F5

Fitness 2.41E−01 1.52E−01 6.80E−03 2.82E−02
t 0.1318 0.1318 0.1307 0.1313
T 485 457 500 500

F6

Fitness −3.44E−01 −3.47E−01 1.67E−02 1.43E−04
t 0.1297 0.1672 0.1521 0.1677
T 84 36 500 500

F7

Fitness −4.15E−01 −4.04E−01 1.84E−04 1.85E−04
t 0.1333 0.1740 0.1690 0.1797
T 18 17 500 500

F8

Fitness −1.15E+01 −5.71E+01 −8.25E+01 −4.19E+02
t 0.0870 0.0964 0.0974 0.1146
T 500 500 500 500

F9

Fitness −4.24E−01 −4.24E−01 0.00E+00 0.00E+00
t 0.1016 0.1089 0.1052 0.1297
T 8 6 10 22

F10

Fitness −4.35E−01 −4.28E−01 8.88E−16 8.88E−16
t 0.1375 0.1792 0.1828 0.2073
T 9 6 14 34

F11

Fitness −4.29E−01 −4.31E−01 0.00E+00 0.00E+00
t 0.0969 0.1250 0.1120 0.1302
T 6 5 16 23

F12

Fitness −2.70E−01 −2.92E−01 3.54E−02 3.70E−03
t 0.1370 0.1437 0.1432 0.1745
T 136 161 500 500

F13

Fitness −3.09E−01 −3.36E−01 1.66E−02 8.01E−04
t 0.1495 0.1505 0.1484 0.1646
T 86 69 500 500

F14

Fitness 1.22E+01 1.15E+01 1.27E+01 7.88E+00
t 0.4615 0.5437 0.5214 0.4854
T 500 500 500 500

to be continued
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Functions Indicators QBA CQBA GQBA CGQBA

F15

Fitness −4.07E−01 −4.10E−01 3.75E−04 1.00E−03
t 0.1406 0.1844 0.1672 0.1932
T 26 20 500 500

F16

Fitness −1.37E+00 −1.36E+00 −1.02E+00 −1.03E+00
t 0.1161 0.1599 0.1781 0.1786
T 2 1 2 2

F17

Fitness 1.54E+00 3.68E−01 4.00E−01 4.17E−01
t 0.1187 0.1646 0.1510 0.1635
T 500 495 500 500

F18

Fitness 8.37E+01 2.87E+01 3.99E+01 3.01E+00
t 0.1151 0.1734 0.1609 0.1708
T 500 500 500 500

F19

Fitness −1.98E+00 −3.04E+00 −3.84E+00 −3.70E+00
t 0.1573 0.2047 0.2047 0.2161
T 500 500 500 500

F20

Fitness −1.15E+00 −1.60E+00 −3.18E+00 −2.95E+00
t 0.1682 0.2120 0.1995 0.2208
T 500 500 500 500

Table 2. Ablation comparison experimental results of the improved strategy (D = 2)

is approximately 0.15 s. In terms of convergence accuracy, the CQBA algorithm
with only the shrink factor strategy has a slight improvement in the fitness value
of the objective function compared with the QBA algorithm. The GQBA algo-
rithm with the adaptive golden sine mutation strategy can significantly improve
the convergence accuracy of QBA. For example, the theoretical optimal value of
the test function is searched on F1, F3, F9, and F11. On F2 and F4, the con-
vergence accuracy of the QBA algorithm is improved by more than 200 orders of
magnitude. And there are different degrees of improvement in other test func-
tions. Observation based on iteration numbers, the proposed algorithm requires
more iterations, but the time consumption is not significantly increased, which re-
veals that the convergence rate of the improved algorithm is faster. For test function
F1, QBA runs 50 times independently, the number of iterations is about 6 times,
the running time is 0.1399 s, and the search accuracy is −4.35E−01. While the
number of iterations required by CGQBA is about 13 times, the running time is
0.1651 s, and the theoretical optimal value 0.00E+00 is found. Such experimen-
tal results show that the QBA may easily get stuck into local optimal values un-
der certain conditions, just as mentioned in Section 1. While the CGQBA algo-
rithm solves this defect effectively, the proposed algorithm can effectively avoid
falling into the local extremum. In addition, the CGQBA algorithm with two im-
proved strategies is the best among the four comparison algorithms. The results
reflect that the improved algorithm combining the two strategies can synergisti-
cally promote the global exploration and local exploitation abilities of the algo-
rithm.
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In order to test the effect of changes in parameter settings on the performance
of the improved strategy, the population size and dimension settings were both
increased to 30, and the results are shown in Table 3. The comparison indicators are
consistent with Table 2, which are obtained by running each algorithm independently
50 times and calculating the average value. It should be pointed out that F14-F20

are test functions of fixed dimensions, and the numerical experiment of this part of
the function only increases the population size to 30. By analyzing the numerical
results, it can be seen that the algorithm with the improved strategy is better than
the basic QBA algorithm with the increase of population size and dimension. And
the CGQBA algorithm with two improved strategies still has the best optimization
performance, and there is no situation that the optimization performance decreases
with the increase of the dimension, which shows that the improved strategy is stable.

5.2 Performance Comparison with Other Algorithms

In order to further verify the optimization ability of the CGQBA algorithm, it is
compared with the QBA algorithm [18], the particle swarm algorithm (PSO) [1],
the golden sine algorithm (GSA) [23], and the Harris Hawks optimization algorithm
(HHO) [25].

The basic parameters such as the maximum number of iterations, population
size, and dimension of each algorithm are set the same in order to ensure the fair-
ness of the experiments. The characteristic parameter settings of the comparison
algorithms are shown in Table 4. The comparative results of the five algorithms
are shown in Table 5. The results of searching for the theoretical optimal value are
shown in bold. The optimal value and standard deviation of the objective function
in the table can reflect the convergence accuracy and optimization ability of the
algorithm. From the numerical experiment results, it can be intuitively concluded
that the basic QBA algorithm does not search for the theoretical optimal solution
on all test functions. The PSO algorithm only converges to the theoretical optimal
solution on the 4 test functions F16 to F19. The GSA algorithm only converges to the
theoretical optimal solution on the 4 test functions F9, F11, F17 and F18. The HHO
algorithm only converges to the theoretical optimal solution on the 6 test functions
F9, F11, F17 − F19. The CGQBA algorithm proposed in this paper converges to the
theoretical optimal solution on 12 test functions F1−F4, F9, F11 and F15−F20, and
the optimization performance is better. Through the solution results of five algo-
rithms on 20 test functions, it can be clearly concluded that the CGQBA algorithm
has significantly better optimization performance when dealing with test functions
of different modes. By comparing with other algorithms, the CGQBA algorithm
obtains higher optimization accuracy in the solution process.

5.3 High-Dimensional Performance Comparison with QPSO Algorithm

In order to explore the optimization performance of the CGQBA algorithm in high-
dimensional settings, the proposed algorithm is compared with the classical QPSO
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Functions Indicators QBA CQBA GQBA CGQBA

F1

Fitness −4.66E−01 −4.71E−01 0.00E+00 0.00E+00
t 0.3781 0.4609 0.5182 0.5724
T 9 4 9 23

F2

Fitness −4.70E−01 −4.58E−01 2.28E−236 0.00E+00
t 0.3943 0.5578 0.5625 0.5630
T 11 9 18 49

F3

Fitness −4.57E−01 −4.69E−01 0.00E+00 0.00E+00
t 1.2615 1.3859 1.4193 1.3714
T 8 5 10 28

F4

Fitness −4.61E−01 −4.63E−01 1.33E-201 0.00E+00
t 0.3870 0.5271 0.5188 0.5385
T 10 7 17 47

F5

Fitness 2.85E+01 2.84E+01 2.75E+01 2.83E+01
t 0.3693 0.4167 0.3698 0.4234
T 500 500 500 500

F6

Fitness 5.42E+00 3.13E+00 4.02E+00 1.98E+00
t 0.3896 0.5198 0.5089 0.5021
T 500 500 500 500

F7

Fitness −4.46E−01 −4.49E−01 6.33E−05 9.33E−05
t 0.5318 0.6375 0.6411 0.6604
T 15 15 500 500

F8

Fitness −5.71E+01 −3.28E+02 −3.14E+02 −1.19E+03
t 0.2995 0.3214 0.3292 0.3026
T 500 500 500 500

F9

Fitness −4.67E−01 −4.62E−01 0.00E+00 0.00E+00
t 0.3474 0.3589 0.3583 0.4026
T 10 6 13 33

F10

Fitness −4.78E−01 −4.57E−01 8.88E−16 8.88E−16
t 0.4552 0.5370 0.5677 0.4807
T 10 7 17 47

F11

Fitness −4.71E−01 −4.72E−01 0.00E+00 0.00E+00
t 0.3417 0.3859 0.3792 0.3740
T 6 4 8 18

F12

Fitness 4.90E−01 −1.21E−01 5.05E−01 9.00E−02
t 0.6792 0.6927 0.7719 0.6526
T 500 311 500 500

F13

Fitness 2.33E+00 1.55E+00 3.12E−01 7.49E−02
t 0.6474 0.7078 0.6979 0.6979
T 500 500 500 500

F14

Fitness 1.19E+01 1.10E+01 1.27E+01 6.40E+00
t 1.4052 1.5089 1.5167 1.5682
T 500 500 500 500

to be continued



Quantum-Behaved Bat Algorithm (CGQBA) for Optimization 1323

Functions Indicators QBA CQBA GQBA CGQBA

F15

Fitness −4.49E−01 −4.51E−01 3.46E−04 7.37E−04
t 0.3870 0.5109 0.5260 0.5333
T 16 9 500 500

F16

Fitness −1.38E+00 −1.43E+00 −1.03E+00 −1.03E+00
t 0.3682 0.4573 0.4453 0.5203
T 500 500 500 500

F17

Fitness 2.29E−01 1.86E−01 3.99E−01 4.07E−01
t 0.3411 0.4474 0.4349 0.5245
T 500 500 500 500

F18

Fitness 5.59E+00 5.01E+00 2.60E+01 3.01E+00
t 0.3448 0.4792 0.4516 0.4906
T 500 500 500 500

F19

Fitness −3.05E+00 −3.32E+00 −3.86E+00 −3.82E+00
t 0.4641 0.5885 0.6036 0.6125
T 500 500 500 500

F20

Fitness −1.70E+00 −2.25E+00 −3.25E+00 −3.10E+00
t 0.4458 0.5719 0.5604 0.6266
T 500 500 500 500

Table 3. Ablation comparison experimental results of the improved strategy (D = 30)

Algorithms Parameters

CGQBA Amin = 0, Amax = 0.85, rmin = 0, rmax = 0.8
QBA Amin = 0, Amax = 0.85, rmin = 0, rmax = 0.8
PSO C1 = C2 = 2, ωmax = 0.9, ωmin = 0.2
GSA a = −π, b = π
HHO /

Table 4. The related parameters setting

algorithm in this subsection. For the first 12 test functions in Table 1 that can per-
form dimension expansion, 100-dimensional and 200-dimensional high-dimensional
test experiments are carried out respectively. Each algorithm runs 50 times indepen-
dently under each dimension setting, and calculates the test function fitness value
and iterations to examine the optimization performance of the algorithm. For each
index, the average value of 50 test results is calculated, and the results are shown
in Table 6, in which the best value is shown in bold.

By analyzing the results in Table 6, it can be seen that the proposed CGQBA
algorithm can effectively solve high-dimensional problems and exhibit good stability.
In terms of the number of iterations, the CGQBA algorithm performs better in most
test functions in different dimensions. The comparison of the specific iterations of
the two algorithms under different high-dimensional settings is shown in Figure 3. It
can be clearly seen that the number of iterations required by the CGQBA algorithm
on 8 test functions (F1−F4, F8−F11) are significantly better than that of the QPSO
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Func-
Indicators QBA PSO GSA HHO CGQBA

tions

F1
Fitness −4.66E−01 1.29E−05 1.01E−249 1.30E−97 0.00E+00
Std. 5.55E−01 2.18E−05 0.00E+00 6.05E−97 2.20E−03

F2
Fitness −4.70E−01 7.44E−03 3.04E−130 5.94E−52 0.00E+00
Std. 5.94E−01 9.92E−03 1.64E−129 1.56E-51 1.44E−01

F3
Fitness −4.57E−01 3.25E+01 1.22E−232 9.61E-70 0.00E+00
Std. 1.20E−01 8.28E+01 0.00E+00 5.17E−69 7.73E−02

F4
Fitness −4.61E−01 4.82E−01 5.69E-111 2.24E−48 0.00E+00
Std. 1.27E−01 4.82E−01 3.06E-110 1.05E−47 1.08E−02

F5
Fitness 2.85E+01 4.79E+01 4.24E−03 1.64E−02 2.83E+01
Std. 1.15E−01 3.66E+01 7.43E−03 2.64E−02 6.39E−02

F6
Fitness 5.42E+00 8.25E−06 3.91E−04 1.02E−04 1.98E+00
Std. 1.88E−01 1.58E−05 9.23E−04 1.03E−04 6.18E−01

F7
Fitness −4.46E−01 8.97E−02 1.19E−04 1.03E−04 9.33E−05
Std. 3.76E+001 8.97E−02 1.59E−04 7.45E−05 4.83E−02

F8
Fitness −5.71E+01 4.66E+01 −1.26E+04 −1.26E+04 −1.90E+03
Std. 9.19E+00 5.00E+02 1.98E−01 1.26E+00 6.09E+01

F9
Fitness −4.67E−01 1.29E−03 0.00E+00 0.00E+00 0.00E+00
Std. 1.59E+00 1.17E+01 0.00E+00 0.00E+00 5.90E−03

F10
Fitness −4.78E−01 4.42E+01 8.88E−16 8.88E−16 8.88E−16
Std. 1.32E−01 8.60E−04 9.86E−32 9.86E−32 2.50E−03

F11
Fitness −4.71E−01 4.42E+01 0.00E+00 0.00E+00 0.00E+00
Std. 1.42E+00 7.08E+00 0.00E+00 0.00E+00 2.98E−04

F12
Fitness 4.90E−01 7.87E−01 1.39E−05 5.88E−06 9.00E−02
Std. 1.17E−01 9.35E−01 2.23E−05 8.88E−06 1.76E−02

F13
Fitness 2.33E+00 3.30E−03 3.39E−05 1.55E−04 7.49E−02
Std. 1.12E−01 5.03E−03 9.09E−05 2.66E−04 6.97E−02

F14
Fitness 1.19E+01 1.59E+00 1.10E+00 1.39E+00 6.40E+00
Std. 8.02E−01 1.36E+00 3.84E−01 9.40E−01 6.89E−04

F15
Fitness −4.49E−01 5.42E−04 5.33E−04 3.51E−04 3.00E−04
Std. 1.36E−01 3.74E−04 4.49E−04 3.95E−05 8.94E−04

F16
Fitness −1.38E+00 −1.03E+00 −1.02E+00 −1.03E+00 −1.03E+00
Std. 1.84E−01 0.00E+00 8.98E−03 4.15E−09 1.25E−04

F17
Fitness 2.29E−01 3.98E−01 3.98E−01 3.98E−01 3.98E−01
Std. 1.47E−01 1.11E−16 8.22E−04 1.69E−05 3.63E−15

F18
Fitness 5.59E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00
Std. 5.05E+00 1.92E−15 9.64E+00 9.81E−07 4.70E−01

F19
Fitness −3.05E+00 −3.86E+00 −3.80E+00 −3.86E+00 −3.86E+00
Std. 1.02E−01 2.66E−15 6.69E−02 2.02E−03 1.22E−01

F20
Fitness −1.70E+00 −3.28E+00 −2.98E+00 −3.12E+00 −3.30E+00
Std. 2.31E−01 5.60E−02 3.30E−01 8.61E−02 4.59E−01

Table 5. Comparison results of CGQBA and the same type of algorithms (N = 30,
D = 30)
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N, D Functions Algorithms Fitness T

20, 100

F1
CGQBA 0.00E+00 22
QPSO 3.61E−02 500

F2
CGQBA 0.00E+00 41
QPSO 3.69E−01 500

F3
CGQBA 0.00E+00 30
QPSO 4.49E+03 500

F4
CGQBA 0.00E+00 51
QPSO 2.04E+01 500

F5
CGQBA 9.85E+01 500
QPSO 9.74E+02 500

F6
CGQBA 1.27E+01 500
QPSO 2.07E+01 500

F7
CGQBA 1.07E+04 500
QPSO 4.05E+02 500

F8
CGQBA −3.54E+03 50
QPSO −7.61E+02 500

F9
CGQBA 0.00E+00 30
QPSO 1.63E+02 500

F10
CGQBA 8.88E−16 40
QPSO 6.52E−02 500

F11
CGQBA 0.00E+00 18
QPSO 1.61E−02 500

F12
CGQBA 2.09E−01 500
QPSO 2.49E+02 500

to be continued

algorithm. The QPSO algorithm has not converged when it reaches the maximum
number of iterations on all tested functions. In addition, with the large increase of
dimensions, the performance of the CGQBA algorithm proposed in this paper does
not decrease, and it has good stability and robustness. In contrast to the QPSO
algorithm, with the substantial increase of the dimension, the optimization perfor-
mance of the algorithm decreases significantly. In terms of convergence accuracy, it
can be obtained by analyzing the experimental data that the convergence accuracy
of CGQBA algorithm on all test functions is higher than that of QPSO algorithm,
and the CGQBA algorithm has searched for the theoretical optimal value on all
functions.

For the purpose of further evaluating the solution performance of the improved
CGQBA algorithm, the Wilcoxon signed-rank test was performed on the best results
of 50 independent runs of the CGQBA algorithm and the QPSO algorithm under
the 100-dimensional and 200-dimensional settings, respectively. And the significance
level is set to be 5%. The symbols “+”, “-” and “=” respectively indicate that the
performance of the CGQBA algorithm is better than, worse than and equivalent
to the QPSO algorithm. The results of the Wilcoxon signed-rank test are shown
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N, D Functions Algorithms Fitness T

20, 200

F1
CGQBA 0.00E+00 24
QPSO 2.27E+02 500

F2
CGQBA 0.00E+00 44
QPSO 2.26E+01 500

F3
CGQBA 0.00E+00 35
QPSO 7.30E+04 500

F4
CGQBA 0.00E+00 58
QPSO 2.86E+01 500

F5
CGQBA 1.98E+02 500
QPSO 8.65E+07 500

F6
CGQBA 2.69E+01 500
QPSO 3.40E+02 500

F7
CGQBA 1.14E−04 500
QPSO 6.63E+07 500

F8
CGQBA −8.53E+03 50
QPSO −1.03E+03 500

F9
CGQBA 0.00E+00 30
QPSO 1.79E+03 500

F10
CGQBA 8.88E−16 43
QPSO 4.89E+00 500

F11
CGQBA 0.00E+00 17
QPSO 9.78E−01 500

F12
CGQBA 2.27E−01 500
QPSO 4.35E+06 500

Table 6. Performance comparison of 12 benchmarks with high dimensions

Functions
CGQBA CGQBA CGQBA CGQBA
vs. QPSO vs. QPSO vs. QPSO vs. QPSO

p-value (100 D) R p-value (200 D) R

F1 .000 + .000 +
F2 .000 + .000 +
F3 .000 + .000 +
F4 .000 + .000 +
F5 .000 + .000 +
F6 .000 + .000 +
F7 .000 + .000 +
F8 .000 + .000 +
F9 .000 + .000 +
F10 .000 + .000 +
F11 .000 + .000 +
F12 .144 − .000 +

Table 7. P-value of numerical simulation results under Wilcoxon rank-sum test
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Figure 3. Comparison of optimization iteration times for CGQBA and QPSO algorithm
under different dimensions

in Table 7, and it illustrates that the performance of CGQBA algorithm is better
than QPSO algorithm on 11 functions when the dimension is 100 dimensions, and
the p-values of CGQBA are all less than 0.01. When the dimension is 200, the
solution performance of CGQBA algorithm is still stable and all better than that of
the QPSO algorithm. Such statistical test results show that the superiority of the
CGQBA algorithm is statistically significant.

In view of the convergence of the two algorithms under different dimensions, the
dimension setting was increased from 50 dimensions to 100 dimensions, 150 dimen-
sions and 200 dimensions in turn. And the convergence iteration curves of the two
algorithms for the test function under different dimension settings were drawn re-
spectively. An intuitive comparison of the convergence performance of the CGQBA
and the QPSO algorithm is shown in Figure 4. In these convergence plots, the
horizontal and vertical axes represent the number of iterations and fitness values,
respectively. It can be clearly revealed that under the same dimension setting, the
convergence performance of the proposed CGQBA algorithm on all test functions is
significantly better than that of the QPSO algorithm. Whether it is to solve a uni-
modal function or a multimodal function, the convergence accuracy of the CGQBA
algorithm is higher, and the number of iterations required to achieve convergence
is significantly less than that of the QPSO. In addition, with the large increase of
dimension setting, the difficulty of testing functions increases rapidly. The optimiza-
tion performance of the CGQBA algorithm proposed is more stable than that of the
QPSO algorithm. For example, the CGQBA algorithm has searched for the theoret-
ical optimal solution in less than 100 iterations as the dimension setting continues
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to increase for test functions F9, F10 and F11. In contrast to the QPSO algorithm,
with the increase of the dimension, the optimization performance of the algorithm
decreases.

From the results of the above numerical simulation experiments, it can be con-
cluded that compared with the QPSO algorithm, the CGQBA algorithm can still
quickly converge to the optimal value in almost all test functions, and is not af-
fected by the drastic changes in the data dimension. With the sharp increase of
the dimension, the CGQBA algorithm shows stronger convergence ability than the
QPSO algorithm at 100 and 200 dimensions. The comparison results show that the
CGQBA algorithm has obvious advantages in processing high-dimensional complex
data. Next, the multi-threshold image segmentation problem has been transformed
into an optimization problem, and the proposed improved algorithm is applied to it
to further verify its practicability in real-world optimization.

6 APPLICATION OF IMPROVED ALGORITHM
IN MULTI-THRESHOLD SEGMENTATION

Image segmentation is one of the important methods of image processing, and it is
a preprocessing step for effective analysis and understanding of images. The max-
imum between-class variance method is an effective image segmentation method
that adaptively determines the threshold value. It has been favored by scholars
because of its stable segmentation performance. However, with the expansion of
the threshold dimension, the computational complexity of the corresponding seg-
mentation problem grows exponentially, making it very tough to solve. Since most
problems in the image processing direction can be transformed into optimization
problems, swarm intelligence algorithm has been successfully applied in this field as
an effective method to solve optimization problems. Nevertheless there is not much
research literature on solving image segmentation problems using BA algorithms
with quantum behavior. Therefore, using the proposed CGQBA algorithm to solve
the image segmentation problem can not only provide a new solution idea for the
corresponding image segmentation problem, but also further expand the application
scope of the algorithm. This section combines the multi-threshold segmentation
method with the CGQBA algorithm to construct a new image segmentation model,
in order to verify the effectiveness and practicability of the proposed algorithm.

6.1 Multi-Threshold Image Segmentation Model
Based on CGQBA Algorithm

The maximum between-class variance method (Otsu) was proposed by the Japanese
scholar Otsu. It divides the image into two categories: background and foreground
according to the grayscale characteristics of the image to be processed, and then it
uses variance to segment the image. This method is not affected by the character-
istics of image brightness and contrast, it is a commonly used method for a class of



Quantum-Behaved Bat Algorithm (CGQBA) for Optimization 1329

a) F1 b) F2

c) F3 d) F4

e) F5 f) F6
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g) F7 h) F8

i) F9 j) F10

k) F11 l) F12

Figure 4. Comparison of convergence between CGQBA and QPSO in different dimensions
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image segmentation. The standard Otsu method is a single-threshold segmentation
method. Assuming that the gray levels of the image to be segmented are expressed
as 0, 1, . . . , L − 1, respectively, then the pixels with gray level j can be expressed
as mj = hist(j). The single threshold t divides the image into 2 regions, and the
average probability level of each region is expressed as:

c0 =
t∑

j=0

j · hist(j)
P0

, (28)

c1 =
L−1∑
j=t

j · hist(j)
P1

, (29)

where P0 and P1 represent the probability distribution of the two divided regions
respectively, and their specific expressions are:

P0 =
t−1∑
j=0

hist(j), (30)

P1 =
L−1∑
j=t

hist(j). (31)

The between-class variance of the single-threshold Otsu method is recorded as:

S∗
b = P0(c0 − Eg)

2 + P1(c1 − Eg)
2, (32)

where Eg is the expected gray value of the image to be segmented. The single-
threshold Otsu method can be extended to multiple thresholds, assuming that the
n thresholds for segmentation are: TH = [t1, t2, . . . , tn], and the n thresholds divide
the image into C0, C1, . . . , Cn classes, and the gray levels corresponding to these
n + 1 classes are respectively expressed as: 0, 1, 2, . . . , t1, t1+1, t1+2, . . . , t2, t2+1,
t2+2, . . . , tn, tn+1, tn+2, . . . , L− 1, so the inter-class variance of the multi-threshold
Otsu method can be written as:

Sb =
n∑

j=0

Pj(mj − Eg)
2. (33)



1332 Y. Chen, S. Chen, J.-H. Li

Among them, the average probability level cj and probability distribution Pj of each
divided region can be expressed as:

c0 =
∑t1−1

j=0

j · hist(j)
P0

,

cj =
∑tj+1−1

j=ti

j · hist(j)
Pj

,

...

cn−1 =
∑L−1

j=tn

j · hist(j)
Pn−1

,

(34)



P0 =
∑t1−1

j=0 hist(j),

Pj =
∑tj+1−1

j=tj
hist(j),

...

Pn−1 =
∑L−1

j=tn
hist(j).

(35)

The objective function of the image segmentation problem based on Otsu method
can be expressed as:

F (TH) = Sb. (36)

And the optimization objective function of the multi-threshold maximum inter-class
variance method based on the CGQBA algorithm can be expressed as:

{t1, t2, . . . , tn} = argmax{F (TH)}. (37)

So far, the multi-threshold image segmentation problem has been transformed
into an optimization problem based on threshold selection. Next, this optimization
problem will be solved by using the proposed CGQBA algorithm.

6.2 Segmentation Experiment Results and Analysis

In this subsection, the effectiveness and practicability of the multi-threshold image
segmentation based on the CGQBA algorithm are verified, and they are compared
with three traditional image segmentation methods. Six test images in the classic
database BSDS300 are selected, and the histogram of the test images is shown in
Figure 5. The parameters of the CGQBA algorithm are set as: the maximum
number of iterations is 100, and the population size is 20.

In order to verify the effectiveness of the improved CGQBA algorithm to solve
the segmentation problem, a segmentation comparison experiment was conducted
on 6 test images with three classic segmentation algorithms, namely the water-
shed segmentation algorithm, the local threshold algorithm and the region growing
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a) image 1 b) image 2

c) image 3 d) image 4

e) image 5 f) image 6

Figure 5. Histogram of 6 test images
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algorithm. The segmentation results are shown in four groups of subgraphs in Fig-
ures 6 a), 6 c), 6 e), and 6 g). It can be clearly illustrated from the segmentation
results that the proposed CGQBA algorithm can effectively solve the image seg-
mentation problem, and its segmentation results retain more detailed information.
For example, under noise-free conditions, the segmentation results of the six test
images by the watershed algorithm all contain redundant area lines, which reduces
the segmentation accuracy. The local threshold algorithm has the misclassification
of background and foreground in the test image, especially the misclassification of
test images 1, 4, and 5 is more serious. Except for test images 2 and 6, the seg-
mentation results of the watershed algorithm are worse than other algorithms. The
segmentation results of the proposed CGQBA algorithm are rich in detail and more
stable in all test images.

In addition, in order to increase the difficulty of segmentation and further test
the performance of the algorithm, Gaussian noise was added to all test images to
test the anti-noise ability of each contrasting algorithm. The results of this part
of the segmentation are shown in four groups of subgraphs in Figures 6 b), 6 d),
6 f), and 6 h). After adding Gaussian noise to the test image, the segmentation
performance of several traditional algorithms is significantly reduced. It can be
clearly observed from the results that the segmentation accuracy is significantly
reduced. On the other hand, the segmentation effect of the CGQBA algorithm is
still better under the interference of Gaussian noise, which reflects the algorithm
has anti-noise ability and better stability.

It can be seen from the above results that the proposed CGQBA algorithm
effectively improves the convergence speed and accuracy, and can effectively solve the
real-world optimization of multi-threshold segmentation problem. Its segmentation
accuracy and ability to deal with noise interference are better than the traditional
segmentation algorithms compared.

7 CONCLUSION

Aiming at the shortcomings of the basic QBA algorithm that the optimization accu-
racy is reduced in the later search stage and it is easy to fall into the local extrema,
an improved QBA algorithm (CGQBA) based on the directional convergence factor
and the self-learning predictive mutation mechanism is proposed. Numerical sim-
ulation and comparison experiments with various algorithms on 20 test functions
with different characteristics show that the CGQBA algorithm is superior to the
basic QBA algorithm and other comparison algorithms. In addition, in the practi-
cal application of image segmentation problem, the CGQBA algorithm also shows
better segmentation performance and anti-noise ability.

Despite the good performance, it is worth pointing out that the results obtained
are preliminary. Further studies can validate the proposed algorithm further by
a systematic tuning of relevant parameters and the test of even higher-dimensional
problems. In the follow-up research, we will continue to optimize the algorithm
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a) Segmentation results without noise

b) Segmentation results with Gaussian noise; Segmentation results of the Watershed Algorithm

c) Segmentation results without noise

d) Segmentation results with Gaussian noise; Segmentation results of the Local Thresholding Algorithm

e) Segmentation results without noise

f) Segmentation results with Gaussian noise; Segmentation results of the Region Growing Algorithm

g) Segmentation results without noise

h) Segmentation results with Gaussian noise; Segmentation results of CGQBA Algorithm

Figure 6. Segmentation comparison between CGQBA and traditional algorithms
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to ensure the optimization accuracy while reducing the time consumption of the
algorithm. And the improved quantum behavioral bat algorithm can be applied to
the problem of abnormal brain image segmentation to further verify the performance
of the algorithm in complex problems.
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