
Computing and Informatics, Vol. 43, 2024, 1–37, doi: 10.31577/cai 2024 1 1

FEDDRL: TRUSTWORTHY FEDERATED LEARNING
MODEL FUSION METHOD BASED ON STAGED
REINFORCEMENT LEARNING

Leiming Chen, Weishan Zhang, Cihao Dong,
Ziling Huang, Yuming Nie

School of Computer Science and Technology
China University of Petroleum (East China)
Qingdao 266580, China
e-mail: chenleiming2020@163.com, zhangws@upc.edu.cn

Zhaoxiang Hou

Digital Research Institute
ENN Group
Langfang 065001, China
e-mail: houzhaoxiang@enn.cn

Sibo Qiao∗

School of Software
Tiangong University
Tianjin 300387, China
e-mail: siboqiao@126.com

Chee Wei Tan

School of Computer Science and Engineering
Nanyang Technological University
Singapore 639798, Singapore
e-mail: cheewei.tan@ntu.edu.sg

∗ Corresponding author

https://doi.org/10.31577/cai_2024_1_1


2 L. Chen, W. Zhang, C. Dong, Z. Huang, Y. Nie, Z. Hou, S. Qiao, C.W. Tan

Abstract. Federated learning facilitates collaborative data analysis among multiple
participants while preserving user privacy. However, conventional federated learn-
ing approaches, typically employing weighted average techniques for model fusion,
confront two significant challenges: 1. The inclusion of malicious models in the fu-
sion process can drastically undermine the accuracy of the aggregated global model.
2. Due to the heterogeneity problem of devices and data, the number of client sam-
ples does not determine the weight value of the model. To solve those challenges,
we propose a trustworthy model fusion method based on reinforcement learning
(FedDRL), which includes two stages. In the first stage, we propose a reliable client
selection mechanism to exclude malicious models from the fusion process. In the
second stage, we propose an adaptive model fusion method that dynamically assigns
weights based on model quality to aggregate the best global models. Finally, we
validate our approach against five distinct model fusion scenarios, demonstrating
that our algorithm significantly enhanced reliability without compromising accu-
racy.

Keywords: Federated learning, model fusion, model attack, reinforcement learning

1 INTRODUCTION

With the advent of deep learning technologies, various industries have been inte-
grating these technologies into their sectors, promoting the development of intel-
ligent transportation, smart logistics, and healthcare systems. These technologies
are crucial in reducing production and management costs, enhancing operational
efficiency, and accelerating industry digitization. However, supervised learning re-
mains the primary method for training deep learning models, where the volume
and diversity of samples are essential for creating high-quality models. Conse-
quently, acquiring extensive and varied data samples has emerged as the initial
step in training deep learning models. This approach has led to sample sources
expanding from single industries to collaborations across multiple sectors to de-
velop large-scale datasets. To achieve multi-party joint data analysis under the
condition of protecting data security and privacy, Google has proposed federated
learning technology for the first time. Although federated learning solves the prob-
lem of user privacy protection, the traditional federated learning algorithm assumes
that all participants are trustworthy. On the contrary, in the actual scenario, if
participants exhibit malicious behavior and intentionally contribute harmful mod-
els to the fusion process, it can significantly disrupt the global model’s conver-
gence. Thus, creating adaptive defenses for federated learning systems becomes
increasingly crucial [1]. Identifying methods to remove malicious models in fed-
erated learning model fusion has become a critical issue. Simultaneously, when
a client submits low-quality models for fusion, determining how to adaptively ad-
just each model’s fusion weights based on their quality is also an urgent prob-
lem needing resolution. Some studies have applied reinforcement learning tech-



FedDRL: Trustworthy Federated Learning Model Fusion Method 3

niques to address these weighting issues. For instance, the Favor [2] method uses
the DDPG [3] to assign weights to participant models. Additional research has
applied reinforcement learning to address device selection [4, 5], resource opti-
mization [6, 7], and communication optimization in IoT federated learning con-
texts.

Reinforcement learning (RL) employs a trial-and-error strategy. The essence
of this approach is training an intelligent agent that interacts with the external
environment through varied actions. The environment then provides feedback in
the form of rewards and penalties based on the agent’s actions, guiding the agent
toward optimal action selection by maximizing reward value. However, employing
reinforcement learning presents certain challenges. Firstly, continuous training is
required for sample collection through environmental interaction. When the cost of
such interactions is prohibitive or unacceptable (for example, in our scenario, where
the server must frequently calculate the global model’s parameters), the efficiency of
sample collection significantly impacts the reinforcement learning training duration.
Secondly, when the agent’s action space is vast and continuous, it leads to prolonged
sampling periods. These issues mean traditional single-agent reinforcement learning
training approaches can be exceedingly time-consuming. Applying reinforcement
learning in federated learning requires addressing these problems, as increasing par-
ticipant numbers escalates the agent training time. Therefore, optimizing the action
space for reinforcement learning to expedite the agent training process is an essential
challenge to address.

Why opt for phased reinforcement learning? We take an example to explain this
problem. Consider a robot learning to cook through reinforcement learning with the
process divided into washing, chopping, and cooking stages. The robot must master
each stage to prepare a successful dish. Traditional reinforcement learning aims to
identify the optimal action across all stages simultaneously; however, mastering the
initial stage is essential before progressing. By adopting a phased learning approach,
the robot sequentially masters each stage, streamlining the learning process and
leading to more effective outcomes. Similarly, if malicious models are not initially
filtered out, the agent’s trial-and-error costs in weight assignment for these models
will increase. To resolve these issues, we propose a staged reinforcement learning
algorithm (FedDRL).

The contributions of the paper are as follows.

• We design a federated learning framework that employs reinforcement learning
for model fusion, designed to select trustworthy clients and optimally assign
model weights.

• We propose an adaptive client selection strategy based on the A2C algorithm,
dynamically identifying and selecting trustworthy clients while excluding mali-
cious ones from the model fusion process based on situational analysis.

• We propose an adaptive weight assignment method that adaptively adjusts the
weights according to the quality of their uploaded models.



4 L. Chen, W. Zhang, C. Dong, Z. Huang, Y. Nie, Z. Hou, S. Qiao, C.W. Tan

• We present five types of model fusion scenarios to validate the performance of
each algorithm. We also compare the performance of our algorithm with the
baseline algorithm on three public datasets.

2 RELATED WORK

2.1 Federated Learning

Research in federated learning primarily aims to address two challenges: enhanc-
ing the generalization of the global model on the server side and personalizing the
model on the client side. Consequently, federated learning algorithms are bifur-
cated into server-side and client-side optimization strategies. Google initially in-
troduced the FedAvg algorithm [8] to address the problem of server-side global
model fusion. To improve global model convergence, Karimireddy et al. developed
the Scaffold method [9], which mitigates client-side drift by integrating a control
variable. Similarly, Li et al. introduced FedProx [10], applying a regularization
function to client models to correct deviations. Additionally, Wang et al. un-
veiled FedNova [11], addressing global model convergence issues by normalizing
parameters on both client and server ends. Furthermore, Li et al. have intro-
duced the MOON [12] technique, leveraging model comparison learning to enhance
global model convergence. Chen et al. [13] also proposed a client identification
method based on model parameter features to achieve trustworthy federated learn-
ing.

While those approaches enhance the global model’s convergence speed, practi-
cal federated learning situations reveal variances in the quality of models trained
by individual participants. These discrepancies stem from the diversity in com-
putational resources and the calibre of data samples available to each participant.
Additionally, variations arise due to the quantity and type of samples possessed by
each participant, a phenomenon known as Non-IID (Non-Independent and Identi-
cally Distributed). Consequently, these factors complicate the attainment of optimal
global model aggregation in the Non-IID environments.

2.2 Challenges of Non-IID Data Distribution

The Non-IID data issue significantly impacts federated learning models’ convergence.
Zhao et al. explored various federated learning methods’ performance on non-IID
datasets, demonstrating significant accuracy challenges [14]. Accordingly, several
studies have addressed the non-IID dilemma in federated learning. For instance,
Zhang et al. proposed the FedPD approach [15], optimizing models and commu-
nication for non-convex objective functions. Moreover, Gong et al. introduced Au-
toCFL [16], utilizing a weighted voting client clustering strategy to mitigate non-IID
and imbalanced data effects. Huang et al. developed FedAMP [17], which addresses
Non-IID data-induced client-side model personalization issues through personalized



FedDRL: Trustworthy Federated Learning Model Fusion Method 5

model updates. Li et al. devised FedBN [18], incorporating a batch normalization
layer into local models to address feature shift challenges due to data heterogeneity.
Briggs et al. suggested a hierarchical clustering method (FL+HC) [19], improv-
ing Non-IID dataset model performance by grouping clients for independent model
training. Additionally, Gao et al. offered the FedDC approach [20], bridging client
and global model parameter disparities through a control variable. Lastly, Mu et al.
introduced FedProc [21], directing client model training by integrating a compar-
ative loss between client and global models. Chen et al. [22] proposed a federated
learning method based on adaptive knowledge distillation to improve the accuracy
of heterogeneous model scenarios.

Although these methodologies advance Non-IID issue mitigation in federated
learning, they typically assign uniform fusion weights to all clients, failing to exclude
malicious or low-quality model contributions. Consequently, dynamically selecting
clients for fusion and adaptively calculating each model’s weight remains critical for
successful global model integration.

2.3 Federated Reinforcement Learning

Given the adaptive learning potential of reinforcement learning, its application
within federated learning contexts has garnered interest. Some research has con-
centrated on leveraging reinforcement learning to boost global model performance.
For instance, Wang et al. introduced the Favor method [2], which adaptively selects
clients for model fusion. Sun et al. developed the PG-FFL framework [23], addressing
the challenge of client weight computation during model fusion. Additional studies
have applied reinforcement learning for device optimization within federated IoT
frameworks. For example, Zhang et al. utilized the DDPG algorithm [4] for optimal
device selection. Zhang et al. also formulated the FedMarl strategy [24], employing
multi-agent reinforcement learning for node selection. Similarly, Yang et al. pro-
posed a digital twin architecture (DTEI) [5], applying reinforcement learning for
device selection issues. Other investigations have addressed resource optimization
and scheduling challenges within IoT contexts, such as Zhang et al.’s RoF methodol-
ogy [6], which leverages multi-intelligent reinforcement learning for optimal resource
scheduling. Additionally, Rjoub et al. have developed trusted device selection tech-
niques [25] and the DDQN-Trust method [7], utilizing Q-learning to assess devices’
credit scores for optimal scheduling. To ameliorate federated learning communica-
tion issues, Yang et al. introduced a reinforcement learning-based model evaluation
method [26], selecting optimal devices for training and fusion. Nevertheless, while
these efforts predominantly focus on IoT environment applications – such as device
selection, resource optimization, and communication enhancement – they seldom
address federated learning’s model weight calculation challenges. Therefore, Zhang
et al. proposed the R2Fed framework [27], employing the DDPG reinforcement learn-
ing method for adaptive client weight calculation. Chen et al. [28] also constructed
a trustworthy federated learning platform based on reinforcement learning meth-
ods.



6 L. Chen, W. Zhang, C. Dong, Z. Huang, Y. Nie, Z. Hou, S. Qiao, C.W. Tan

Although current research addresses the issue of weight allocation in federated
learning, it often neglects the training efficiency of the agents. Therefore, optimizing
the training efficiency of agents is a significant challenge that needs attention.

3 METHOD

3.1 Problem Definition

In this section, we scrutinize the prevailing challenges of the current federated learn-
ing approach and subsequently propose a solution. In federated learning, the ob-
jective is to get the global model by amalgamating local models from all clients
through server-side aggregation. We define n clients as involved in model fusion,
and the client is denoted as Ci where Ci ∈ {C1, C2, C3, . . . , Cn}. Each client has
a network model Mi, where Mi ∈ {M1,M2,M3, . . . ,Mn}. Each client has its private
data Di, where Di ∈ {D1, D2, D3 . . . Dn}. The number of samples in each dataset
is Si, where Si ∈ {S1, S2, S3 . . . Sn}. The total number of samples is

∑N

i=1 Si. We
define the θi as a model parameter of Mi, where θi ∈ {θ1, θ2, θ3, . . . , θn}.

Additionally, the server-side model aggregation process per round is defined as
shown in Equation (1):

θglobal =
N
∑

i=1

wiθi, where wi =
Si

∑N

i=1 Si

, wi ≥ 0,
N
∑

i=1

wi = 1. (1)

The wi is the fusion weight of each model parameter.
Traditional Federated Learning typically employs a weighted average approach

for computing model fusion weights, with each model’s weight determined by its
corresponding client’s data sample size relative to the total. Thus, clients contribut-
ing more data exert a greater influence on the aggregated model. However, this
method fails to consider the quality of each client’s model and the potential inclu-
sion of malicious models in real-world scenarios. We illustrate the deficiencies of the
traditional federated fusion algorithm through two scenarios:

Scenario 1: A client’s data represents 20% of the total, yet its model’s accuracy
is merely 53%. Employing the conventional federated fusion algorithm in this
case would detrimentally impact the global model’s accuracy.

Scenario 2: A client engaged in model fusion launches malicious attacks, intention-
ally skewing its model’s output to reflect a mere 10% accuracy. If such malicious
models are incorporated through the standard fusion process, the accuracy of
the global model would be severely compromised.

Addressing these challenges necessitates an adaptive weight calculation strat-
egy capable of nullifying malicious models by assigning them a weight of zero, thus
excluding them from the fusion process. Concurrently, this approach should dynam-
ically adjust the weights of each client’s model, prioritizing those of higher quality
to enhance the global model’s overall accuracy.



FedDRL: Trustworthy Federated Learning Model Fusion Method 7

Adopting a single-agent reinforcement learning strategy to tackle these issues
introduces new challenges. As the number of clients increases, so does the agent’s
action space as well, prolonging the training duration. Additionally, a single-agent
framework is limited to interacting with just one environment, further extending
the sampling period. We propose a bifurcated solution inspired by hierarchical
reinforcement learning to mitigate these concerns, thereby streamlining the lengthy
reinforcement learning training process. This solution comprises two primary stages:
the selection of trustworthy clients and the assignment of optimal weights.

Stage 1: During this phase, the objective is to identify K trustworthy models from
a pool of N for inclusion in the global model fusion. Identifying clients who
have uploaded malicious models is challenging. We address this by employing
reinforcement learning to dynamically select and autonomously screen client
models, as delineated in Equation (2).

{Ma,Mb, . . . ,Mk} ← SelectTrustworthyModel ({M1,M2, . . . ,Mn}) . (2)

Stage 2: Building on the first step, we then allocate optimal weights to the verified
models to bolster the global model’s accuracy, formalized in Equation (3).

{W1,W2, . . . ,Wn} ← AdaptCalculateWeight ({Ma,Mb, . . . ,Mk}) . (3)

Here, AdaptCalculateWeight(.) signifies a method for adaptive weight compu-
tation, and Wi represents the optimal computational weight assigned to each
client’s output.

3.2 A Trustworthy Federated Learning Approach
Based on Staged Reinforcement Learning

To address these challenges, we introduce a trusted federated learning framework
anchored in staged reinforcement learning (FedDRL). This framework unfolds across
two distinct phases. In the first phase, we propose an adaptive client selection strat-
egy aimed at identifying and selecting trustworthy clients for participation in model
fusion. Subsequently, in the second phase, we formulate a model weight assignment
algorithm designed to dynamically allocate fusion weight values to models based on
the prevailing fusion environment. The process is depicted in Figure 1.

3.2.1 Adaptive Client Selection Method

In federated learning, selecting clients is analogous to navigating a Markov decision
process. Suppose there are N client models available for upload to a server, which
requires a subset for global model aggregation. The collection of these clients forms
a node state. Our goal is to select trustworthy clients through agent training adap-
tively. Prior to agent training, it is essential to outline the fundamental elements of
reinforcement learning as follows:



8 L. Chen, W. Zhang, C. Dong, Z. Huang, Y. Nie, Z. Hou, S. Qiao, C.W. Tan

Figure 1. The process of FedDRL framework



FedDRL: Trustworthy Federated Learning Model Fusion Method 9

State: We define the state at moment t as St. To better allow the state to contain
key information about the clients, we design the state space to include the
accuracy and Loss values of the K client models, the accuracy of the global
model after the fusion of the K models, and the number of clients selected. The
state space is then used as the state space for the client models, and the state
space is used as the state space for the client models. The State space is shown
as Equation (4).

St =
{

lt1, l
t
2, . . . , l

t
k, acc

t
1, acc

t
2, acc

t
3 . . . acc

t
k, acc

t
global, K

}

. (4)

Action: Our main objective is to eliminate the malicious models and select the
trusted models to participate in the fusion. To achieve this purpose, we randomly
choose several models to fusion the global model and evaluate the accuracy of
global models. If a malicious model is selected to participate in the fusion,
the accuracy of the global model will be very low. If only trusted clients are
selected to participate in the fusion, the accuracy of the global model will also
increase.

We define the action of selecting a model as at ∈ {0, 1}, where one means that
the model is selected and 0 means that the model is not selected. Thus, n models
correspond to the action space that can be expressed as Equation (5).

At =
{

at1, a
t
2, a

t
3 . . . a

t
n

}

, at ∈ {0, 1} . (5)

Reward: In order to be able to make the agent select as many trusted clients
as possible, we define a composite reward function that consists of a global
model accuracy improvement reward and a reward for the number of clients
selected. We define the accuracy of the global model using all models fused
as Accall, and at the same time, we define the accuracy of the global model
obtained from the mth randomly selected client model as Accm, and com-
pute the reward value Reward1 by the difference of (Accm − Accall). Mean-
while, in order to allow the agent to select all trusted clients as much as pos-
sible, we define the reward corresponding to selecting K number of nodes as
Reward2, and the total reward as the sum of the two parts, as shown in Equa-
tion (6).

Reward =







α · (Accm − Accall) + β ·K, Accm > Accall,

0, Accm ≤ Accall.
(6)

The α and β are fixed values that can balance the two rewards.

The goal of the agent is to obtain the maximum long-term reward value based
on the discount factor γ, and the process is expressed as Equation (7).

Rγ =
T
∑

t=1

γtrt. (7)



10 L. Chen, W. Zhang, C. Dong, Z. Huang, Y. Nie, Z. Hou, S. Qiao, C.W. Tan

Once we have defined the base elements of reinforcement learning, We use a dis-
tributed A2C approach to train the agent; A2C is an improved method-based A3C
algorithm [29]. Figure 1 shows the A2C architecture, which consists of a central
node and K workers. Each worker contains an Actor and a Critic network, where
the actor network generates action, and the Critic network evaluates the action and
gives the corresponding reward. Meanwhile, each worker independently interacts
with the related environment to achieve sampling and training of the Actor and
Critic networks. In addition, the Actor and Critic networks of the central node
are used to synchronize the network information of each worker and to achieve the
fusion and sharing of network parameters of multiple workers.

Therefore, our main objective is to train Actor and Critic networks. We define
the Actor network parameters as π(θ) and the Critic network parameters as V (w).
The process of the worker and the central node is as follows.

Step 1: Each worker initializes the local network by pulling the global network
model parameters from the centre node. Then, each worker trains the Actor and
Critic networks by interacting with the environment independently. Finally, the
two networks are uploaded to the central node.

Step 2: After the central node collects the network parameters uploaded by all
workers, it updates the global model by the weighted averaging method. Then,
the server sends the two networks to each worker.

Steps 1 and 2 are repeated according to the total number of times to obtain the
final global model.

The training process for the Step 1 neutralization network is as follows: The
gradient of the primary communication algorithm of the policy network is calculated
as Equation (8).

∇θJ(θ) = ∇θ log π (at | st; θ)A (st, at; w) , (8)

where A (st, at; θv) is the advantage function. The k-step sampling strategy is used in
the A2C algorithm to calculate the advantage function, so the definition is expressed
as Equation (9).

A (st, at; θv) =
k−1
∑

i=0

γirt+i + γkV (st+k; w)− V (st; w) . (9)

The Loss function of the Actor network is calculated as in Equation (10), and the
Critic network is calculated as in Equation (11).

∇θJ(θ) = ∇θ log π (at | st; θ)

(

k−1
∑

i=0

γirt+i + γkV (st+k; w)− V (st; w)

)

, (10)

∇wJ(w) = ∇w

(

k−1
∑

i=0

γirt+i + γkV (st+k; w)− V (st;w)

)2

. (11)



FedDRL: Trustworthy Federated Learning Model Fusion Method 11

We update the Actor and Critic network parameters using the derivative formula as
Equation (12).

w ← w +∇wJ(w), θ ← θ +∇θJ(θ). (12)

Finally, each worker uploads the Actor and Critic network to the server. Then, the
network parameters of the server are calculated using the weighted average method.
The process is shown in Equation (13).

wglobal =
1

n

n
∑

1

wi, θglobal =
1

n

n
∑

1

θi, i ∈ [1, n]. (13)

When the parameters of the Actor and Critic networks in the central stage
are updated, the central node sends down these two networks to all workers, and
each worker uses the updated networks to continue interacting with the external
environment. The process is repeated for the specified number of rounds until the
agent at the central node can obtain a stable reward value.

The process is shown in Algorithm 1.

3.2.2 Adaptive Model Weight Calculation Method

In this phase, our main objective is to achieve the optimal weight assignment for
each model. For each communication round, we assume that K trustworthy client
models were selected. We need to train the agents in each communication round
and use the weight output of the agent to achieve the global model fusion. We first
describe the process of global model fusion for agent-based actions. We define θi as
the ith client model, and the all client models as {θ1, θ2, . . . , θk}. We also define si
as the number of samples of ith client. The process is as follows:

1. In this step, the agent needs to output the weight values for each model. We
define the tth time, the action adopted by the agent as Equation (14).

Wt =
{

wt
1, w

t
2, w

t
3, . . . , w

t
k

}

. (14)

wi is the ith weight value output by agent for ith model.

2. We aggregate the global models based on the model weights assigned by the
agent, and the process is expressed as Equation (15).

θkglobal =
T
∑

t=1

wt
iθi. (15)

We aim to train the agent so that it can output the optimal fusion weight values
based on the quality of each model. To accomplish this goal, we first describe the
basic elements of reinforcement learning as follows:



12 L. Chen, W. Zhang, C. Dong, Z. Huang, Y. Nie, Z. Hou, S. Qiao, C.W. Tan

Algorithm 1 The process of trustworthy client selection

Input: Client Models {mt
1,m

t
2,m

t
3, . . .m

t
n}, Round T, Worker Number K, Sampling

Step Length S
Output: Chosen Credible Client Model List M = {mt

2,m
t
3, . . . ,m

t
k}

1: /* Each Worker Training Step */
2: worker (θ, w)← GetGlobalParamter (θglobal, wglobal)
3: the Client Upload Current Epoch Model, Turn to State s0, tstart = t = 1
4: for e from 1 to S do
5: According to Current State s0 Randomly Choose Action st
6: st, at, r, st+1 ← Step (at) // Execute Action at to Acquire Reward r and Next

State st+1

7: tstart = tstart + 1
8: if st! =terminal: R← V(st;w) else: R = 0

9: for i ∈ {t− 1, . . . , tstart} do
10: R← ri + γR // Compute Target TD
11: ∇θJ(θ) = ∇θ log πθ (at | st) (R− v (si;w)) // Compute Strategy Gradient
12: ∇wJ(w) = ∇w (R− v (si;w))

2 // Compute Critic Network Gradient
13: Update Actor Network Parameters: θ ← θ +∇θJ(θ)
14: Update Critic Network Parameters: w ← w +∇wJ(w)

15: /* Center Node Process */
16: for round from 1 to T do
17: for workeri from 1 to K do
18: Receive Each Worker Parameters(θ, w)
19: Global (θglobal, wglobal)← Agg ({(θ1, w1) , (θ2, w2) , . . . }) // Aggregate Pa-

rameters
20: workeri ← SendGlobal (θglobal, wglobal) // Send New Parameters to Worker

21: /* Results Process */
22: Output Trusted Client Model List M = {mt

1,m
t
2, . . . ,m

t
k}

Environment: The external environment is the server-side global model fusion
module, which fuses the global model based on the actions output by the agent
and then verifies the accuracy of the global model on the reserved dataset on
the server side. Finally, the server side feeds back to the agent the corre-
sponding reward and punishment values based on the accuracy of the global
model.

State: We define the agent’s state information to include the number of samples
corresponding to each client, the accuracy of each client’s model, and the accu-
racy of the global model fused using the weights output by the agent, as shown
in Equation (16).

St =
{

st1, s
t
2, s

t
3, . . . , s

t
k, acc

t
1, acc

t
2, acc

t
3, . . . , acc

t
k, acc

t
global

}

. (16)



FedDRL: Trustworthy Federated Learning Model Fusion Method 13

The acctglobal is the accuracy of the global model fused using the weights output
by the agent.

Action: In each stage, the agent needs to assign each model’s weights based on
the model’s quality. The action space is shown as Equation (17). ati denotes
the weight value assigned to the ith client in the state t, while the sum of the
corresponding weight values of all clients is 1.

At =
{

at1, a
t
2, . . . , a

t
k

}

,

k
∑

1

ati = 1, ati ∈ (0, 1). (17)

Reward: We define the model accuracy aggregated using the average method as
Accall, where each model weight is 1

N
. At the mth time, we define the weight

set output by the agent as W . Then, we use the weight set to fusion the global
model, and we define the accuracy of the global model as Accm. We calcu-
late the reward value by subtracting the difference of Accm from Accall. If
the calculated result is greater than zero, this indicates that the weights as-
signed by the agent improve the accuracy of the global model, and we give
a positive reward. Conversely, we give a penalty reward. ϕ, φ denotes the
reward and penalty factors, respectively. So, the reward is defined as Equa-
tion (18).

Reward =







ϕ · (Accm − Accall), Accm > Accall,

φ · (Accm − Accall), Accm ≤ Accall.
(18)

When we have finished defining the basic elements, we implement a distributed
reinforcement learning approach based on TD3 [30] to train the agent. The training
process is shown in Figure 1. This stage includes a central Learner and multiple
Worker nodes. Each worker corresponds to a parallel environment. The work-
flow of each worker is as follows: first, each worker performs global model fusion
based on the assigned weights; then verifies the accuracy of the global model by
interacting with the parallel environment; and finally receives the reward values
from the parallel environment feedback. Finally, each worker stores the corre-
sponding ones in the sampling buffer pool. Multiple workers interact with each
environment independently, thus achieving parallel sampling to improve the sam-
pling efficiency. After each worker collects a certain batch of samples, the Learner
trains the agent by taking a certain amount of sample data from the experience
pool.

The TD3 algorithm consists of six network models, including an Actor network
P (w), two Critic networks Q1 (θ1), Q2 (θ2), and a target Actor-network P ′(w), two
target Critic networks Q′

1 (θ1) , Q
′

2 (θ2). Each network is shown in Figure 1. The
Learner randomly draws N batches of sample data from the buffer pool every certain
round to train the model. The training processes are as follows.



14 L. Chen, W. Zhang, C. Dong, Z. Huang, Y. Nie, Z. Hou, S. Qiao, C.W. Tan

1. First, select the action at+1 based on the target Actor-network P′ (st+1). The
state st+1 and action at+1 are input to the target Critic network Q′

1 (θ
′

1) and
Q′

2 (θ
′

2), respectively. The two target Critic networks will calculate the predicted
reward q1 and q2.

2. The TD target value is calculated using Equation (19), where Min (q1, q2) takes
the minimum value of both.

yt ← r + γMin(q1, q2). (19)

3. Select the action based on the actor network, input the state and action into the
critical network separately, and let these two networks output the corresponding
prediction reward sum.

4. Calculate the TD error. The calculation formula is as Equation (20).

δ1,t = q1,t − yt, δ2,t = q2,t − yt. (20)

5. Update the Critic network as Equation (21).

θ1 ← θ1 − α · δ1,t · ∇wQ1 (st, at; θ1) ,

θ2 ← θ2 − α · δ2,t · ∇wQ2 (st, at; θ2) .
(21)

6. Update the strategy network every d rounds through the Actor-network output
action as Equation (22).

w← w + β · ∇wP (st; w) · ∇wQ1 (st, at; θ1) . (22)

7. Update the target Actor and Critic network parameters every d rounds as Equa-
tion (23).

w′ ← τw + (1− τ)w′,

θ′1 ← τθ1 + (1− τ)θ′1, (23)

θ′2 ← τθ2 + (1− τ)θ′2.

Repeating the above steps for the specified number of rounds, we will get the
trained agent. Finally, we output the optimal value of each model through the agent.
The process is shown in Algorithm 2.

4 SYSTEM DESIGN

To establish a reliable federated learning process, we developed a framework for
trustworthy federated learning (FedDRL). The framework employs a staged rein-
forcement learning approach to achieve trustworthy federated learning. In the first



FedDRL: Trustworthy Federated Learning Model Fusion Method 15

Algorithm 2 The process of model weight calculation

Input: Client Models {θt1, θ
t
2, θ

t
3, . . . , θ

t
n}, Round R, Worker Number N, Buffer Mem-

ory Pool M
Initialize Learner Parameters: Actor Parameter P(w), Critic Network

Q1 (θ1) , Q2 (θ2)
Target Actor Parameter P ′ (w′), Target Critic Network Q′

1 (θ
′

1) , Q
′

2 (θ
′

2)
w′ ← w, θ′1 ← θ1, θ

′

2 ← θ2
Output: Optimized Client Model Weight W = {wt

1, w
t
2, . . . , w

t
k}

1: /* Each Worker Sampling Step */
2: for worker from 1 to N do
3: at ← P (st, w) // Randomly Choose an Act from P (st, w)
4: {wt

1, w
t
2, w

t
3, . . . , w

t
k} ← Step (at)

5: θtglobal ← Agg
(

∑k

i=1 w
t
iθi

)

6: Rt ← CaculateReward (ACC t − ACC avg)
7: M ← Store (⟨St, At, Rt, St+1⟩)

8: /* Center Learner Training Step */
9: for r from 1 to R do

10: Randomly Sampling N Batches of Data from M
11: a′t+1 ← P ′ (st+1)
12: y ← r + γMin (Q′

1 (st+1, a
′

t) , Q
′

2 (st+1, a
′

t))
13: Update Critic Network θ1 ← argminθ1

1
N

∑

(y −Qθ1 (s, a))
2

14: Update Critic Network θ2 ← argminθ2
1
N

∑

(y −Qθ2 (s, a))
2

15: Every d Rounds:
16: Update Actor-Network: ∇wJ (w) = N−1

∑

∇wQθ1 (s, a) |a=P (s) ∇wP (s)
17: Update Target Critic Network: θ′1 ← τθ1 + (1− τ) θ′1, θ

′

2 ← τθ2 + (1− τ) θ′2
18: Update Target Actor-Network: w′ ← τw + (1− τ)w′

19: After R Rounds, Save Trained Model
20: Output Optimized Model Weight W = {wt

1, w
t
2, . . . , w

t
k}

stage, we train agents to accomplish the selection of trustworthy clients to partic-
ipate in global model fusion. Then, in the second stage, we also use the trained
agent to dynamically adjust the fusion weights of each model and finally realize the
optimal global model fusion. The framework workflow consists of six steps, as shown
in Figure 2.

Step 1 (Local Model Training): Each client downloads the global model, initial-
izes its parameters accordingly, and conducts model training using local private
data.

Step 2 (Upload Model): After local model training, each client uploads its model
parameters to the server.



16 L. Chen, W. Zhang, C. Dong, Z. Huang, Y. Nie, Z. Hou, S. Qiao, C.W. Tan

Step 3 (Select Trustworthy Clients): Upon receiving client model parameters,
the server employs the SelectTrustClient(.) algorithm to train an agent. Subse-
quently, the trained agent selects trustworthy clients.

Figure 2. The system architecture of FedDRL

Step 4 (Assigning Model Weights): The server utilizes models from trustwor-
thy clients and performs global model fusion. Then, it employs the
AdaptCalculateWeight(.) algorithm to train an agent, which optimizes weight
assignments for each client model.

Step 5 (Fusing Global Model): The server fuses the global model using the
calculated weights from the previous step.

Step 6 (Distribute Global Model): The server disseminates the global model
to all clients, initiating the subsequent federation task.

The federation task is set to execute a specified number of communication
rounds until the final global model is obtained. This process is shown in Algo-
rithm 3.



FedDRL: Trustworthy Federated Learning Model Fusion Method 17

Algorithm 3 The FedDRL framework

Input: Private Dataset {D1, D2, . . . , Dn}, communication round E
Output: The Global model {Mglobal}
1: /* Client Process */
2: for Ci from 1 to N do
3: Mi ← GetGlobalModel(round = i) // Get the global model and init client

model
4: Mi ← TrainLocalModel(Di) // Train model Mi based Dataset {Di}
5: Server← Send(Mi)

6: /* Server Process */
7: for e from 1 to E do
8: Store({M1,M2, . . . ,Mn})← Receive (Mi) // Receive Client Model

/* FedDRL Algorithm Process */
9: Train the Stage 1 Agent

10: Update the SelectTrustClient (.) Algorithm parameters // According to Al-
gorithm 1

11: {Ma,Mb, . . . ,Mk} ← SelectTrustClient ({M1,M2, . . . ,Mn})
12: Train the Stage 2 Agent
13: Update the AdaptCalculateWeight (.) Algorithm parameters // According

to Algorithm 2
14: {W1,W2, . . . ,Wn} ← AdaptCalculateWeight ({Ma,Mb, . . . ,Mk})
15: Mglobal ← FusionGlobalModel ({W1,W2, . . . ,Wn})
16: Ci ← SendGlobalModel (Mglobal)

5 EXPERIMENT

5.1 Experiment Setup

5.1.1 Experiment Datasets

We evaluated the FedDRL framework using three distinct image classification data-
sets:

Fashion-MNIST: This dataset includes 60 000 training samples and 10 000 test
samples, each a 28× 28 grayscale image, classified into one of 10 categories.

CIFAR-10: The CIFAR-10 dataset comprises 60 000 32× 32 colour images, evenly
distributed across ten classes, each containing 6 000 images.

CIFAR-100: Similar in size to CIFAR-10 but with a broader spectrum, CIFAR-100
features 100 classes with 600 images each, totalling 60 000 colour images.

Data Set Partitioning: For simulating non-IID data distribution among clients.
We utilized the Dirichlet function to segregate data across various clients in the
open-source dataset. This method can partition the data for each client by ad-
justing the alpha parameter. As the alpha parameter approaches zero, clients’



18 L. Chen, W. Zhang, C. Dong, Z. Huang, Y. Nie, Z. Hou, S. Qiao, C.W. Tan

data distributions are skewed towards specific classes within the dataset. Con-
versely, as alpha increases towards infinity. Using the CIFAR-10 dataset as
a case study, we set alpha to 1, thereby dividing the three datasets among ten
clients. In the figure, Different categories are represented by distinct colours,
and the length of each segment within the graphs reflects the sample count
within that category. The resulting data distribution is illustrated in Fig-
ure 3.

a) Fashion-MNIST b) CIFAR-10

c) CIFAR-100

Figure 3. The non-IID distribution of 10 clients (alpha = 1)

5.1.2 Comparison of Methods

We contrasted the FedDRL algorithm with two established federated learning ap-
proaches.



FedDRL: Trustworthy Federated Learning Model Fusion Method 19

FedAvg [8]: Serving as the foundational benchmark in federated learning, the Fe-
dAvg method determines the weight of each client model based on the proportion
of samples contributed by the client relative to the aggregate sample size.

FedProx [10]: Enhancing the FedAvg approach, FedProx incorporates a regular-
ization term within the client model, thereby refining federated learning perfor-
mance.

5.1.3 Experimental Metrics

We employed accuracy as the metric to gauge the performance of the global model
in multi-classification tasks and across individual clients. Assuming n clients engage
in model fusion with m communication rounds, the accuracy of the global model in

the tth round is denoted as A
(t)
global. The collective global model accuracies across all

rounds are represented as follows:

Aglobal = {A
1
global, A

2
global, . . . , A

m
global}. (24)

We denote the accuracy of the cth client’s model as Ac. Additionally, we docu-
ment each client model’s accuracy per round, compiling these as follows:

Ac = {A
1
c, A

2
c, . . . , A

m
c }, c ∈ [1, 2, . . . , n]. (25)

5.1.4 Experimental Configuration

Hardware Configuration: The experiments were conducted on a workstation
equipped with an Intel i9-12900k CPU, 64 GB RAM, and an NVIDIA RTX3090
GPU.

Software Configuration: We utilized two distinct frameworks for the Federated
Learning and Reinforcement Learning experiments. Federated Learning trials
were carried out using FedBolt, our custom-built framework, enabling simula-
tion of varied client numbers and data distributions. For reinforcement learning
model training, we employed the stablebaseline3 framework, designing two dis-
tinct algorithms for trusted client selection and model weight assignment.

Network Setup: We implemented different network architectures tailored to each
dataset. For CIFAR-10 and CIFAR-100, a 6-layer CNN was utilized for model
training. Conversely, a 4-layer MLP was developed for the Fashion-MNIST
dataset.

Agent Network Setup: Implementing a staged reinforcement learning strategy
necessitated the training of two distinct agents. The initial phase, adhering to
Section 3.2.1, utilizes the A2C algorithm, with each worker and the central node
comprising a 6-layer MLP Actor and Critic network. For the second phase, the
TD3 algorithm outlined in Section 3.2.2 was employed for agent training, where
each module within the TD3 setup incorporates a 6-layer MLP, with further
details available in Section 3.2.2.



20 L. Chen, W. Zhang, C. Dong, Z. Huang, Y. Nie, Z. Hou, S. Qiao, C.W. Tan

5.2 Experimental Results

We evaluate the FedDRL framework through four experiments: client attack sce-
narios, low-quality model fusion, hybrid scenarios, and multi-agent training effi-
ciency. The client attack experiments assess the efficacy of the trustworthy client
selection algorithm (stage 1). The low-quality model fusion experiment examines
the adaptive weight calculation method (stage 2). The hybrid experiments, com-
bining client attacks and low-quality model elements, validate the comprehensive
performance of FedDRL. The final experiment focuses on the training efficiency of
multi-agents.

5.2.1 Malicious Client Attack Experiment

In this experiment, we define three types of client-side attacks in federated learning
to evaluate our FedDRL framework under adversarial conditions. The experiment
spans different client numbers and attack types across three datasets, detailed in
Table 1.

Type 1: The client directly uploads the initialized model or makes the model ac-
curacy less than 10% by modifying the model’s hyperparameters.

Type 2: We use falsified data to perform the attack. We use a certain percent-
age of forged data to participate in model training (e.g., mix the CIFAR-10
dataset with 80% of CIFAR-100 data and generate these CIFAR-100 data la-
bels as CIFAR-10 corresponding label types). We conduct the attack by faking
sample data to train the client’s local model, thus reducing the client model’s
accuracy.

Type 3: We select some clients to simulate the attack and divide the training pro-
cess of these clients into standard and attack rounds. In the standard round,
each client does not perform the attack behavior. Instead, each client deliber-
ately uploads the prepared malicious model in the attack round. We also set
that these clients alternately initiate the attack behavior.

According to the experimental setup, we compared the FedDRL algorithm with
the FedAvg and FedProx. In the attack experiments, we set the total number of
communication rounds to 100 rounds, and each client performs local model training
with one epoch. To show the attack behavior of each client and the accuracy of
different algorithms in more detail, we counted the accuracy of each client’s local
model and the accuracy of the server-side global model in each communication
round. The specific experimental results are shown in Table 2.

To show the effect of the FedDRL algorithm on global model fusion at each
communication round, we conducted experiments using the CIFAR10 dataset on 5,
10, and 15 clients. We compared FedDRL with the FedAvg and FedProx algorithms
for the global model accuracy.

We analyze the experimental results for different numbers of client models and
other client data. In attack type 2, our algorithm outperforms the FedAvg algorithm



FedDRL: Trustworthy Federated Learning Model Fusion Method 21

Number
of Clients

Attack
Type

Malicious ID
Number
of Samples

Accuracy of Models (≤)

5
Type 1 Client1 7 750 A ≤ 10%
Type 2 Client1 7 750 10% ≤ A ≤ 20%
Type 3 Client1 7 750 Attack round A ≤ 10%

10
Type 1 Client1, Client6 4 222, 4 938 A ≤ 10%
Type 2 Client1, Client6 4 222, 4 938 10% ≤ A ≤ 20%
Type 3 Client1, Client6 4 222, 4 938 Attack round A ≤ 10%

15
Type 1 Client1, Client6, Client11 3 670, 3 314, 4 454 A ≤ 10%
Type 2 Client1, Client6, Client11 3 670, 3 314, 4 453 10% ≤ A ≤ 20%
Type 3 Client1, Client6, Client11 3 670, 3 314, 4 453 Attack round A ≤ 15%

Table 1. Experimental setup for malicious attack scenarios

DataSet Method
Clients = 5 Clients = 10 Clients = 15

Type
1

Type
2

Type
3

Type
1

Type
2

Type
3

Type
1

Type
2

Type
3

Fashion
-MNIST

FedAvg 0.862 0.875 0.863 0.792 0.881 0.821 0.776 0.878 0.812
FedProx 0.873 0.8840.8840.884 0.864 0.791 0.882 0.824 0.764 0.879 0.811
Ours 0.8850.8850.885 0.878 0.8830.8830.883 0.8770.8770.877 0.8860.8860.886 0.8870.8870.887 0.8810.8810.881 0.8860.8860.886 0.8820.8820.882

Cifar10
FedAvg 0.596 0.691 0.751 0.335 0.681 0.314 0.139 0.664 0.197
FedProx 0.586 0.7320.7320.732 0.7750.7750.775 0.331 0.7160.7160.716 0.363 0.122 0.7190.7190.719 0.202
Ours 0.7310.7310.731 0.701 0.747 0.6940.6940.694 0.711 0.7270.7270.727 0.6790.6790.679 0.702 0.6890.6890.689

Cifar100
FedAvg 0.376 0.412 0.298 0.273 0.416 0.287 0.162 0.398 0.176
FedProx 0.398 0.4420.4420.442 0.321 0.223 0.4360.4360.436 0.208 0.172 0.4260.4260.426 0.183
Ours 0.4120.4120.412 0.438 0.4310.4310.431 0.4260.4260.426 0.432 0.4210.4210.421 0.4230.4230.423 0.412 0.4220.4220.422

Table 2. Accuracy of each algorithm under different malicious attack scenarios

and slightly underperforms the FedProx algorithm alone. In attack types 1 and 3,
our algorithm outperforms the comparison algorithm in most cases, especially when
multiple malicious clients are involved in model fusion.

To show the relationship between the global and client model’s accuracy in
each attack scenario. We conducted more detailed experiments on the Cifar10
dataset.

In attack type 1, the global model accuracy plummets with increasing ma-
licious clients under FedAvg and FedProx, dropping below 40% and 20% in 10
and 15 client setups, respectively. Conversely, FedDRL’s dynamic client selection
maintains higher reliability. However, our trained agent can dynamically select
trusted clients for model fusion and eliminate malicious models from participat-
ing, so our algorithm has higher reliability. The experimental results are shown in
Figure 4.

In attack type 2, our algorithm is better than FedAvg but lower than FedProx.
The FedProx algorithm uses control parameters to force the models of each client to



22 L. Chen, W. Zhang, C. Dong, Z. Huang, Y. Nie, Z. Hou, S. Qiao, C.W. Tan

a) 10 clients FedAvg b) 10 clients FedProx

c) 10 clients FedDRL d) 15 clients FedAvg

e) 15 clients FedProx f) 15 clients FedDRL

Figure 4. The accuracy of the global model for a different number of clients in the attack
type 1



FedDRL: Trustworthy Federated Learning Model Fusion Method 23

converge to the global model, which will improve the global model’s accuracy by im-
proving the malicious model’s accuracy to some extent. Our trained agent will filter
out low-accuracy models to participate in the fusion after several communication
rounds. The experimental results are shown in Figure 5.

In attack type 3 scenarios, the FedAvg and FedProx algorithms experience sig-
nificant fluctuations in global model accuracy due to alternating attack behaviors by
malicious clients. Conversely, the agent within the FedDRL framework adaptively
selects trusted clients, effectively excluding malicious entities from participating in
model fusion, thereby enabling the FedDRL algorithm to operate with stability. The
experimental results are shown in Figure 6.

5.2.2 Low-Quality Model Fusion Experiments

In evaluating our FedDRL framework, we undertook validation using the Fashion-
MNIST, CIFAR-10, and CIFAR-100 datasets. Given their open-source nature, these
datasets are of high quality, leading to minimal variance in model accuracy among
clients utilizing them directly. Thus, to simulate real-world conditions, we incor-
porated low-quality models into the global fusion process. We established a model
accuracy threshold, ensuring that models uploaded by low-quality clients did not
exceed this threshold in any communication round.

Experiments were carried out on the three datasets, with client groups of varying
sizes – 5, 10, and 15 – participating in the global model fusion. We applied a Dirich-
let distribution with parameter alpha = 1 to achieve dataset segmentation among
clients. We set some clients to upload low-quality models; after several communica-
tion rounds, we controlled these client models’ accuracy in global fusion, ensuring
it remained within the 40% to 55% range.

Details of these low-quality model experiment configurations are specified in
Table 3. The FedDRL algorithm was compared against the FedAvg and FedProx
methods across 100 communication rounds, with each client executing one epoch of
local model training. Results are summarized in Table 4.

Employing the CIFAR-10 dataset for illustrative purposes, we performed com-
parative analyses for setups with 10 and 15 clients, respectively; the findings are
depicted in Figure 7. The experiments indicate that the accuracy of the FedAvg
and FedProx methods deteriorates as the prevalence of low-quality models increases.
This decline can be attributed to these algorithms’ reliance on sample count for de-
termining the fusion weight values of the models, where the inclusion of low-quality
models adversely impacts the global model’s accuracy. Conversely, FedDRL sur-
passes both methodologies in terms of global model convergence speed and accuracy.
This is because FedDRL adaptively recalibrates the weights assigned to each client’s
model based on quality, thereby diminishing the adverse effects of low-quality mod-
els on the global model’s accuracy and consequently hastening the global model’s
convergence rate.



24 L. Chen, W. Zhang, C. Dong, Z. Huang, Y. Nie, Z. Hou, S. Qiao, C.W. Tan

a) 10 clients FedAvg b) 10 clients FedProx

c) 10 clients FedDRL d) 15 clients FedAvg

e) 15 clients FedProx f) 15 clients FedDRL

Figure 5. The accuracy of the global model for a different number of clients in the attack
type 2



FedDRL: Trustworthy Federated Learning Model Fusion Method 25

a) 10 clients FedAvg b) 10 clients FedProx

c) 10 clients FedDRL d) 15 clients FedAvg

e) 15 clients FedProx f) 15 clients FedDRL

Figure 6. The accuracy of the global model for a different number of clients in the attack
type 3



26 L. Chen, W. Zhang, C. Dong, Z. Huang, Y. Nie, Z. Hou, S. Qiao, C.W. Tan

a) 10 clients FedAvg b) 10 clients FedProx

c) 10 clients FedDRL d) 15 clients FedAvg

e) 15 clients FedProx f) 15 clients FedDRL

Figure 7. The accuracy of a global model for the different numbers of clients in Low-
quality scenario



FedDRL: Trustworthy Federated Learning Model Fusion Method 27

Number
of Clients

Dataset
Low-quality
Model ID

Number
of Samples

Accuracy
of Models (≤)

5
Fashion-MINST Client1 9 061 53%
CIFAR-10 Client1 7 750 52%
CIFAR-100 Client1 9 278 22%

10
Fashion-MINST Client1, Client5 5 071, 7 245 51%, 52%
CIFAR-10 Client1, Client5 4 222, 6 039 50%, 54%
CIFAR-100 Client1, Client5 4 191, 5 491 22%

15

Fashion-MINST Client1, Client5,
Client10

4 405, 3 752, 1 809 52%, 51%, 53%

CIFAR-10 Client1, Client5,
Client10

3 670, 3 128, 1 509 49%, 52%, 55%

CIFAR-100 Client1, Client5,
Client10

3 073, 3 494, 2 910 22% 19% 23%

Table 3. Experimental settings for low-quality model experiments

Method
Fashion-MINST CIFAR-10 CIFAR-100

C = 5 C = 10 C = 15 C = 5 C = 10 C = 15 C = 5 C = 10 C = 15

FedAvg 0.857 0.858 0.841 0.705 0.664 0.602 0.386 0.373 0.365

FedProx 0.865 0.861 0.829 0.714 0.652 0.607 0.402 0.391 0.386

Ours 0.8850.8850.885 0.8870.8870.887 0.8840.8840.884 0.7250.7250.725 0.7060.7060.706 0.6980.6980.698 0.4220.4220.422 0.4180.4180.418 0.4070.4070.407

Table 4. Accuracy of each algorithm for low-quality modeling experiments

5.2.3 Hybrid Experiment

In this section, we establish a hybrid scenario incorporating two types of attacking
clients (type 1 and type 3) alongside clients submitting low-quality models. We
assess the effectiveness of the FedDRL algorithm within this mixed scenario and
benchmark it against the FedAvg and FedProx approaches.

Employing the CIFAR-10 dataset, we set different numbers of clients (10, 15)
participating in global model fusion, respectively. Client 1 persistently uploads
merely the initial model at each round. Client 6 emulates the submission of low-
quality models for fusion, and Client 10 or 11 engages in attack behaviour during
odd communication rounds but normally participates during even rounds. The
remainder of the nodes contribute routinely to each cycle of the federated learning
tasks. The experimental setup specifics are delineated in Table 5.

After completing 100 communication rounds, we present the global model ac-
curacy for each algorithm in Table 6. The comparative global model accuracies
and individual client model accuracies per communication round, as determined
by these three algorithms, are depicted in Figure 8. The experimental outcomes
from the hybrid scenario reveal that the FedAvg and FedProx algorithms falter in
properly conducting global model fusion due to the adversarial behavior of certain



28 L. Chen, W. Zhang, C. Dong, Z. Huang, Y. Nie, Z. Hou, S. Qiao, C.W. Tan

a) 10 clients FedAvg b) 10 clients FedProx

c) 10 clients FedDRL d) 15 clients FedAvg

e) 15 clients FedProx f) 15 clients FedDRL

Figure 8. Comparison of global model accuracy between different algorithms



FedDRL: Trustworthy Federated Learning Model Fusion Method 29

Number
of Clients

Client ID Type
Number

of Samples
Model Accuracy

10
Client1 Attack Type 1 4 222 A ≤ 10%
Client6 Low-quality Model 4 938 45% ≤ A ≤ 50%
Client10 Attack Type 3 3 560 Attack round A ≤ 15%

15
Client1 Attack Type 1 3 670 A ≤ 10%
Client6 Low-quality Model 3 314 45% ≤ A ≤ 50%
Client11 Attack Type 3 4 453 Attack round A ≤ 15%

Table 5. Experimental settings for hybrid scenarios

clients. Incorporating malicious models under traditional algorithmic frameworks
significantly degrades the global model’s accuracy.

Method
Fashion-MINST CIFAR-10 CIFAR-100
C = 10 C = 15 C = 10 C = 15 C = 10 C = 15

FedAvg 0.835 0.823 0.368 0.348 0.223 0.238

FedProx 0.821 0.846 0.308 0.341 0.241 0.266

Ours 0.8760.8760.876 0.8830.8830.883 0.7010.7010.701 0.6980.6980.698 0.4260.4260.426 0.4180.4180.418

Table 6. Accuracy of each algorithm for hybrid scenarios experiments

The experimental outcomes show that FedAvg and FedProx’s global model ac-
curacies suffer from malicious attacks due to their weighted average-based fusion,
which does not block harmful participants. Conversely, the FedDRL algorithm,
through its two-stage approach, initially filters out malicious models from fusion
and subsequently applies an adaptive weight strategy to diminish the impact of
substandard models. Consequently, our algorithm maintains operational integrity
even within this complex scenario.

5.2.4 Agent Training Efficiency in the FedDRL Framework

In this segment, our primary objective is to assess the training efficiency of agents
within the FedDRL framework. To expedite the training process, we have imple-
mented optimizations in two key areas. Initially, we adopted a distributed reinforce-
ment learning methodology, enabling multi-agents to interact concurrently with the
external environment. Concurrently, we introduced a memory cache module de-
signed to prevent redundant sampling by multiple agents.

Experimental Scenarios: Our investigation encompasses varied attack scenarios
across two distinct datasets: Fashion-MNIST and Cifar-10. In each scenario, we
involve a total of 10 and 15 clients in the federated task, including 2 and 3 ma-
licious clients accordingly.

Comparison Experiments: To ascertain the efficacy of the FedDRL framework,
we initiated experiments featuring 1, 5, 10, and 20 agents. To guarantee the



30 L. Chen, W. Zhang, C. Dong, Z. Huang, Y. Nie, Z. Hou, S. Qiao, C.W. Tan

stability of the reward values acquired by the final agents, we designated the
number of iterations for each experimental group to be 10 000, 15 000, 20 000,
and 25 000, correspondingly.

Experimental Metrics: Our evaluation involves counting the iterations necessary
for reinforcement learning to reach stable rewards across different agent counts.
We employ a sliding window approach to compute the average reward, depicting
the progression of rewards attained by the agents. We define rt the agent’s
reward obtains in the tth interaction and the sliding window as W . The formula
for calculating the average reward is represented as Equation (26):

R̄ =
1

W

W
∑

t=1

rt. (26)

Reward Parameter Setting: Our reward function comprises two components:
the global model accuracy reward and the reward for the number of credible
nodes. For this experiment, these parameters are set to α = 100 and β = 10,
respectively.

Dataset Attack Type
The Number of Agents

N = 1 N = 5 N = 10 N = 20

Fashion-MNIST
Type 1 25 000 20 000 16 000 8 000

Type 2 25 000 21 000 15 000 9 000

CIFAR-10
Type 1 25 000 20 000 12 000 10 000

Type 2 25 000 20 000 14 000 9 000

Table 7. The iterations of obtaining stable rewards for the different numbers of agents

Experimental Results: In accordance with our experimental setup, we recorded
the reward values for each iteration of the agents, as detailed in Figure 9. We
systematically arranged this information into Table 7 for enhanced clarity re-
garding the actual iterations across different experiments.

The data reveals a notable trend: The single agent does not get the optimal
reward in some attack scenarios, because the single agent is easy to fall into the
local optimal solution. Meanwile, an increase in agents correlates with reducing
the iterations required to achieve a stable reward. However, this relationship is not
strictly proportional because the multi-agent independently train their respective
Actor and Critic networks. Each agent necessitates a distinct number of iterations
to ensure the stability of its individual networks. Nevertheless, the simultaneous
interaction of multiple agents with the environment markedly decreases the sam-
pling time, demonstrating a clear trade-off between computational resources and
time. This strategy underlines the significant computational resources required,
highlighting a deliberate exchange of increased computational demand for reduced
computational time.



FedDRL: Trustworthy Federated Learning Model Fusion Method 31

a) Fashion-MNIST (Attack Type 1)

b) Fashion-MNIST (Attack Type 2)

6 CONCLUSION

To the realize trustworthy federated learning, we propose a trusted reinforcement
learning framework (FedDRL) based on staged reinforcement learning. The frame-
work comprises two phases: selecting trusted clients and adaptive weight assignment.
In the first phase, we design a reward strategy to train the agent, which allows the
trained agent to exclude malicious client models from participating in the model
fusion based on the environment, and it also adaptively selects trustworthy clients



32 L. Chen, W. Zhang, C. Dong, Z. Huang, Y. Nie, Z. Hou, S. Qiao, C.W. Tan

c) Cifar-10 (Attack Type 1)

d) Cifar-10 (Attack Type 2)

Figure 9. The iterations of obtaining stable rewards for different numbers of agents

for the model fusion. In the second phase, we design a dynamic model weight calcu-
lation method, which can adaptively calculate the corresponding weights based on
the model quality of each client. In addition, we propose a distributed reinforcement
learning method to accelerate agent training. Finally, we design five model fusion
scenarios to validate our approach, and the experiments show that our proposed
algorithm can work reliably in various model fusion scenarios while maintaining the
global model accuracy.



FedDRL: Trustworthy Federated Learning Model Fusion Method 33

Although a multi-agent distributed reinforcement learning approach can accel-
erate the agent training process, it sacrifices computational resources for the com-
putational time. In our future work, we will continue to explore more lightweight
and trustworthy federated learning methods. We will also investigate more efficient
reinforcement learning methods for credible federated learning.

Acknowledgments

The work is supported by the Singapore Ministry of Education (AcRF Tier 1
RG91/22 and NTU startup fund), the National Natural Science Foundation of China
(No. 62072469), and the China Scholarship Council (No. 202206450035).

REFERENCES

[1] Li, H.—Sun, X.—Zheng, Z.: Learning to Attack Federated Learning: A Model-
Based Reinforcement Learning Attack Framework. In: Koyejo, S., Mohamed, S.,
Agarwal, A., Belgrave, D., Cho, K., Oh, A. (Eds.): Advances in Neural Infor-
mation Processing Systems 35 (NeurIPS 2022). Curran Associates, Inc., 2022,
pp. 35007–35020, https://proceedings.neurips.cc/paper_files/paper/2022/

file/e2ef0cae667dbe9bfdbcaed1bd91807b-Paper-Conference.pdf.

[2] Wang, H.—Kaplan, Z.—Niu, D.—Li, B.: Optimizing Federated Learning on
Non-IID Data with Reinforcement Learning. IEEE INFOCOM 2020 – IEEE Con-
ference on Computer Communications, 2020, pp. 1698–1707, doi: 10.1109/INFO-
COM41043.2020.9155494.

[3] Lillicrap, T. P.—Hunt, J. J.—Pritzel, A.—Heess, N.—Erez, T.—

Tassa, Y.—Silver, D.—Wierstra, D.: Continuous Control with Deep Reinforce-
ment Learning. CoRR, 2015, doi: 10.48550/arXiv.1509.02971.

[4] Zhang, P.—Wang, C.—Jiang, C.—Han, Z.: Deep Reinforcement Learning As-
sisted Federated Learning Algorithm for Data Management of IIoT. IEEE Trans-
actions on Industrial Informatics, Vol. 17, 2021, No. 12, pp. 8475–8484, doi:
10.1109/TII.2021.3064351.

[5] Yang, W.—Xiang, W.—Yang, Y.—Cheng, P.: Optimizing Federated Learning
with Deep Reinforcement Learning for Digital Twin Empowered Industrial IoT. IEEE
Transactions on Industrial Informatics, Vol. 19, 2023, No. 2, pp. 1884–1893, doi:
10.1109/TII.2022.3183465.

[6] Zhang, W.—Yang, D.—Wu, W.—Peng, H.—Zhang, N.—Zhang, H.—

Shen, X.: Optimizing Federated Learning in Distributed Industrial IoT: A Multi-
Agent Approach. IEEE Journal on Selected Areas in Communications, Vol. 39, 2021,
No. 12, pp. 3688–3703, doi: 10.1109/JSAC.2021.3118352.

[7] Rjoub, G.—Wahab, O.A.—Bentahar, J.—Bataineh, A.: Trust-Driven Re-
inforcement Selection Strategy for Federated Learning on IoT Devices. Computing,
Vol. 106, 2024, No. 4, pp. 1273–1295, doi: 10.1007/s00607-022-01078-1.

[8] McMahan, B.—Moore, E.—Ramage, D.—Hampson, S.—y Arcas, B.A.:
Communication-Efficient Learning of Deep Networks from Decentralized Data. In:

https://proceedings.neurips.cc/paper_files/paper/2022/file/e2ef0cae667dbe9bfdbcaed1bd91807b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/e2ef0cae667dbe9bfdbcaed1bd91807b-Paper-Conference.pdf
https://doi.org/10.1109/INFOCOM41043.2020.9155494
https://doi.org/10.1109/INFOCOM41043.2020.9155494
https://doi.org/10.48550/arXiv.1509.02971
https://doi.org/10.1109/TII.2021.3064351
https://doi.org/10.1109/TII.2022.3183465
https://doi.org/10.1109/JSAC.2021.3118352
https://doi.org/10.1007/s00607-022-01078-1


34 L. Chen, W. Zhang, C. Dong, Z. Huang, Y. Nie, Z. Hou, S. Qiao, C.W. Tan

Singh, A., Zhu, J. (Eds.): Proceedings of the 20th International Conference on Artifi-
cial Intelligence and Statistics. Proceedings of Machine Learning Research (PMLR),
Vol. 54, 2017, pp. 1273–1282, http://proceedings.mlr.press/v54/mcmahan17a/
mcmahan17a.pdf.

[9] Karimireddy, S. P.—Kale, S.—Mohri, M.—Reddi, S.—Stich, S.—

Suresh, A.T.: SCAFFOLD: Stochastic Controlled Averaging for Fed-
erated Learning. In: Daumé III, H., Singh, A. (Eds.): Proceedings of
the 37th International Conference on Machine Learning. Proceedings of
Machine Learning Research (PMLR), Vol. 119, 2020, pp. 5132–5143,
http://proceedings.mlr.press/v119/karimireddy20a/karimireddy20a.pdf.

[10] Li, T.—Sahu, A.K.—Zaheer, M.—Sanjabi, M.—Talwalkar, A.—

Smith, V.: Federated Optimization in Heterogeneous Networks. In: Dhillon, I.,
Papailiopoulos, D., Sze, V. (Eds.): Proceedings of Machine Learning and Systems 2
(MLSys 2020). 2020, pp. 429–450, https://proceedings.mlsys.org/paper_

files/paper/2020/file/1f5fe83998a09396ebe6477d9475ba0c-Paper.pdf.

[11] Wang, J.—Liu, Q.—Liang, H.—Joshi, G.—Poor, H.V.: Tackling
the Objective Inconsistency Problem in Heterogeneous Federated Optimization.
2020, pp. 7611–7623, https://proceedings.neurips.cc/paper_files/paper/

2020/file/564127c03caab942e503ee6f810f54fd-Paper.pdf.

[12] Li, Q.—He, B.—Song, D.: Model-Contrastive Federated Learning. Proceed-
ings of the IEEE/CVF Computer Vision and Pattern Recognition (CVPR), 2021,
pp. 10708–10717, doi: 10.1109/CVPR46437.2021.01057.

[13] Chen, L.—Zhao, D.—Tao, L.—Wang, K.—Qiao, S.—Zeng, X.—Tan, C.W.:
A Credible and Fair Federated Learning Framework Based on Blockchain. IEEE
Transactions on Artificial Intelligence, 2024, doi: 10.1109/TAI.2024.3355362.

[14] Zhao, Y.—Li, M.—Lai, L.—Suda, N.—Civin, D.—Chandra, V.: Federated
Learning with Non-IID Data. CoRR, 2018, doi: 10.48550/arXiv.1806.00582.

[15] Zhang, X.—Hong, M.—Dhople, S.—Yin, W.—Liu, Y.: FedPD: A Federated
Learning Framework with Adaptivity to Non-IID Data. IEEE Transactions on Signal
Processing, Vol. 69, 2021, pp. 6055–6070, doi: 10.1109/TSP.2021.3115952.

[16] Gong, B.—Xing, T.—Liu, Z.—Xi, W.—Chen, X.: Adaptive Client Clustering
for Efficient Federated Learning over Non-IID and Imbalanced Data. IEEE Transac-
tions on Big Data, 2022, doi: 10.1109/TBDATA.2022.3167994.

[17] Huang, Y.—Chu, L.—Zhou, Z.—Wang, L.—Liu, J.—Pei, J.—Zhang, Y.:
Personalized Cross-Silo Federated Learning on Non-IID Data. Proceedings of
the AAAI Conference on Artificial Intelligence, Vol. 35, 2021, No. 9, pp. 7865–7873,
doi: 10.1609/aaai.v35i9.16960.

[18] Li, X.—Jiang, M.—Zhang, X.—Kamp, M.—Dou, Q.: FedBN: Federated
Learning on Non-IID Features via Local Batch Normalization. CoRR, 2021, doi:
10.48550/arXiv.2102.07623.

[19] Briggs, C.—Fan, Z.—Andras, P.: Federated Learning with Hierarchical Clus-
tering of Local Updates to Improve Training on Non-IID Data. 2020 Inter-
national Joint Conference on Neural Networks (IJCNN), 2020, pp. 1–9, doi:
10.1109/IJCNN48605.2020.9207469.

http://proceedings.mlr.press/v54/mcmahan17a/mcmahan17a.pdf
http://proceedings.mlr.press/v54/mcmahan17a/mcmahan17a.pdf
http://proceedings.mlr.press/v119/karimireddy20a/karimireddy20a.pdf
https://proceedings.mlsys.org/paper_files/paper/2020/file/1f5fe83998a09396ebe6477d9475ba0c-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2020/file/1f5fe83998a09396ebe6477d9475ba0c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/564127c03caab942e503ee6f810f54fd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/564127c03caab942e503ee6f810f54fd-Paper.pdf
https://doi.org/10.1109/CVPR46437.2021.01057
https://doi.org/10.1109/TAI.2024.3355362
https://doi.org/10.48550/arXiv.1806.00582
https://doi.org/10.1109/TSP.2021.3115952
https://doi.org/10.1109/TBDATA.2022.3167994
https://doi.org/10.1609/aaai.v35i9.16960
https://doi.org/10.48550/arXiv.2102.07623
https://doi.org/10.1109/IJCNN48605.2020.9207469


FedDRL: Trustworthy Federated Learning Model Fusion Method 35

[20] Gao, L.—Fu, H.—Li, L.—Chen, Y.—Xu, M.—Xu, C. Z.: FedDC: Feder-
ated Learning with Non-IID Data via Local Drift Decoupling and Correction. 2022
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022,
pp. 10112–10121, doi: 10.1109/CVPR52688.2022.00987.

[21] Mu, X.—Shen, Y.—Cheng, K.—Geng, X.—Fu, J.—Zhang, T.—Zhang, Z.:
FedProc: Prototypical Contrastive Federated Learning on Non-IID Data.
Future Generation Computer Systems, Vol. 143, 2023, pp. 93–104, doi:
10.1016/j.future.2023.01.019.

[22] Chen, L.—Zhang, W.—Dong, C.—Zhao, D.—Zeng, X.—Qiao, S.—

Zhu, Y.—Tan, C.W.: FedTKD: A Trustworthy Heterogeneous Federated Learning
Based on Adaptive Knowledge Distillation. Entropy, Vol. 26, 2024, No. 1, Art. No. 96,
doi: 10.3390/e26010096.

[23] Sun, Y.—Si, S.—Wang, J.—Dong, Y.—Zhu, Z.—Xiao, J.: A Fair
Federated Learning Framework with Reinforcement Learning. 2022 Interna-
tional Joint Conference on Neural Networks (IJCNN), 2022, pp. 1–8, doi:
10.1109/IJCNN55064.2022.9892211.

[24] Zhang, S.Q.—Lin, J.—Zhang, Q.: A Multi-Agent Reinforcement Learning Ap-
proach for Efficient Client Selection in Federated Learning. Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 36, 2022, No. 8, pp. 9091–9099, doi:
10.1609/aaai.v36i8.20894.

[25] Rjoub, G.—Wahab, O.A.—Bentahar, J.—Cohen, R.—Bataineh, A. S.:
Trust-Augmented Deep Reinforcement Learning for Federated Learning Client Se-
lection. Information Systems Frontiers, 2022, pp. 1–18, doi: 10.1007/s10796-022-
10307-z.

[26] Yang, N.—Wang, S.—Chen, M.—Brinton, C.G.—Yin, C.—Saad, W.—

Cui, S.: Model-Based Reinforcement Learning for Quantized Federated Learning
Performance Optimization. GLOBECOM 2022 – 2022 IEEE Global Communications
Conference, 2022, pp. 5063–5068, doi: 10.1109/GLOBECOM48099.2022.10001466.

[27] Zhang, W.—Yu, F.—Wang, X.—Zeng, X.—Zhao, H.—Tian, Y.—

Wang, F.Y.—Li, L.—Li, Z.: R2 Fed: Resilient Reinforcement Federated Learning
for Industrial Applications. IEEE Transactions on Industrial Informatics, Vol. 19,
2023, No. 8, pp. 8829–8840, doi: 10.1109/TII.2022.3222369.

[28] Chen, L.—Zhang, W.—Xu, L.—Zeng, X.—Lu, Q.—Zhao, H.—Chen, B.—

Wang, X.: A Federated Parallel Data Platform for Trustworthy AI. 2021 IEEE 1st

International Conference on Digital Twins and Parallel Intelligence (DTPI), 2021,
pp. 344–347, doi: 10.1109/DTPI52967.2021.9540175.

[29] Mnih, V.—Badia, A. P.—Mirza, M.—Graves, A.—Lillicrap, T.—

Harley, T.—Silver, D.—Kavukcuoglu, K.: Asynchronous Methods for
Deep Reinforcement Learning. In: Balcan, M. F., Weinberger, K.Q. (Eds.):
Proceedings of the 33rd International Conference on Machine Learning. Pro-
ceedings of Machine Learning Research (PMLR), Vol. 48, 2016, pp. 1928–1937,
http://proceedings.mlr.press/v48/mniha16.pdf.

[30] Fujimoto, S.—Hoof, H.—Meger, D.: Addressing Function Approximation Error
in Actor-Critic Methods. In: Dy, J., Krause, A. (Eds.): Proceedings of the 35th

International Conference on Machine Learning. Proceedings of Machine Learning

https://doi.org/10.1109/CVPR52688.2022.00987
https://doi.org/10.1016/j.future.2023.01.019
https://doi.org/10.3390/e26010096
https://doi.org/10.1109/IJCNN55064.2022.9892211
https://doi.org/10.1609/aaai.v36i8.20894
https://doi.org/10.1007/s10796-022-10307-z
https://doi.org/10.1007/s10796-022-10307-z
https://doi.org/10.1109/GLOBECOM48099.2022.10001466
https://doi.org/10.1109/TII.2022.3222369
https://doi.org/10.1109/DTPI52967.2021.9540175
http://proceedings.mlr.press/v48/mniha16.pdf


36 L. Chen, W. Zhang, C. Dong, Z. Huang, Y. Nie, Z. Hou, S. Qiao, C.W. Tan

Research (PMLR), Vol. 80, 2018, pp. 1587–1596, http://proceedings.mlr.press/
v80/fujimoto18a/fujimoto18a.pdf.

Leiming Chen received a Master’s degree in software engineer-
ing from the China University of Petroleum (East China). He
is pursuing his Ph.D. degree at the School of Computer Science
and Technology, China University of Petroleum (East China).
He is also a visiting Ph.D. student at the Nanyang Technologi-
cal University. His research interests include federated learning,
reinforcement learning, and brain-inspired computing.

Weishan Zhang received his Ph.D. degree in mechanical man-
ufacturing and automation from the Northwestern Polytechnical
University, Xi’an, China, in 2001. He is Full Professor and the
Deputy Head for Research with the Department of Software En-
gineering, School of Computer and Communication Engineering,
China University of Petroleum, Qingdao, China. His research in-
terests include big data platforms, pervasive cloud computing,
service-oriented computing, and federated learning.

Cihao Dong is pursuing a Master’s degree with the Department
of Computer Technology, China University of Petroleum (East
China). His research interests include graph neural networks,
continual learning, and data mining.

Ziling Huang enrolled in the China University of Petroleum
(East China) in 2020. He is pursuing a Bachelor’s degree at the
School of Computer Science and Technology in China University
of Petroleum (East China). His current research interests include
federated learning and data mining.

http://proceedings.mlr.press/v80/fujimoto18a/fujimoto18a.pdf
http://proceedings.mlr.press/v80/fujimoto18a/fujimoto18a.pdf


FedDRL: Trustworthy Federated Learning Model Fusion Method 37

Yuming Nie is pursuing a Master’s degree with the Department
of Computer Technology, China University of Petroleum (East
China). Her research interests include time series data analysis
and data mining.

Zhaoxiang Hou is an algorithm engineer at the Digital Re-
search Institute of ENN Group. He obtained his Master’s degree
from the School of Computer Science and Technology, School of
Software, China University of Petroleum (East China), in 2022.
His research interests include AI and federated learning.

Sibo Qiao received his Master’s and Ph.D. degrees at the China
University of Petroleum, Qingdao, China, in 2020 and 2023, re-
spectively. He works in the School of Software at the Tian-
gong University. His research interests include federated learn-
ing, deep learning, and image processing.

Chee Wei Tan received his M.A. and Ph.D. in electrical engi-
neering from the Princeton University. He is Associate Professor
of computer science and engineering at the Nanyang Technolog-
ical University. He conducts research in networks, distributed
optimization, and generative AI. He has served as IEEE Dis-
tinguished Lecturer and Editor for IEEE Transactions on Cog-
nitive Communications and Networking, IEEE/ACM Transac-
tions on Networking, and IEEE Transactions on Communica-
tions. He has received the Princeton University Wu Prize for
Excellence, the Google Faculty Award, and several teaching ex-

cellence awards. He was selected twice for the U.S. National Academy of Engineering
China-America Frontiers of Engineering Symposium. He is a Co-Chair of the Cognitive
Radio and AI-Enabled Networks Symposium at IEEE GLOBECOM 2025 and a member
of ACM Learning at Scale Extended Steering Committee.


