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Abstract. As a well-known nonlinear tool, mathematical morphology (MM) is still
active in image processing. Benefiting from the fixed structuring element (SE),
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traditional MM (TMM) gets solid theoretical foundation. However, due to the in-
herent diversity of pixels in an image, the rigid SE paradigm is not always practical.
As a result, the development of morphology with adaptive SE, known as adaptive
MM (AMM), has been a significant challenge. In this work, we present a novel ap-
proach for designing adaptive SE using the α-cut of a fuzzy set. By implementing
dilation and erosion operations serially, we obtain an AMM (named SAMM) that is
both adaptive to image content and robust to noise. Additionally, the operators in
SAMM inherit important properties from TMM as much as possible. We provide
theoretical proofs and simulated results to support our conclusion. Preliminary
experiments on edge detection and noise reduction confirm the effectiveness of our
SAMM both quantitatively and perceptually. In the denoising experiments, SAMM
achieves the best performance in the nine algorithms involved, with its PSNR value
surpassing the second-ranked approach by more than 0.6 dB overall. Additionally,
its SSIM quantification metric also ranks prominently among the top performers.

Keywords: Adaptive morphology, fuzzy structuring element, serial implementa-
tion, stability

1 INTRODUCTION

Mathematical morphology (MM) was originally proposed for binary images [1, 2,
3, 4], and then developed to grey-level ones [5, 6, 7, 8]. Up to now, MM has been
successfully applied in wide imaging applications, including edge detection [9, 10],
image restoration [11], image segmentation [12, 13], and others [14, 15, 16, 17,
18]. Among the morphological operators, erosion and dilation are the two ba-
sic ones. Other operators, such as opening and closing, are generally formulated
with the combinations of these two [19, 20]. The operators are all defined on
a small component called structuring element (SE). With solid theoretical basis
of lattices and topology [21, 22, 23], morphological operators usually have many
important mathematical properties, including ordering, adjunction and idempo-
tent [24, 25].

Traditional mathematical morphology (TMM) employs fixed-shaped structuring
elements (SEs) for all pixels in an image, which may lead to undesired outputs. To
address this issue, adaptive mathematical morphology (AMM) has been proposed,
where the SE can adapt to the image content [26, 27]. Many AMMs have been
developed [28, 29, 30, 31, 32, 33, 34, 35, 36, 37] with a focus on important mathe-
matical properties and noise robustness [7, 24, 29, 38]. A comprehensive survey on
this topic can be found in [27].

Recently, Graham Treece proposed a robust adaptive mathematical morphology
(RAMM) that uses a rank strategy to make operators adaptive to content and
robust to noise [39]. In this approach, the author directly plugs the operators from
RAMM into a bitonic framework, resulting in a morphological filter [39] that reveals
promising prospects and outperforms traditional filters such as NL-means [40] and
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Guided filter [41], particularly in terms of visual results. However, as analyzed in
subsection later, some crucial mathematical properties are missed for the operators
from RAMM, making the theoretical basis of RAMM weaker than that of TMM.
This motivates our work to address the shortcomings of RAMM.

Fuzzy sets extends the characteristic function from the binary values {0, 1} to
the unit interval [0, 1] [42], providing a flexible tool for formulating problems and
designing adaptive algorithms [43, 44]. Inspired by the fact, we employ a fuzzy SE
to design our AMM. Compared with that in RAMM, the SE obtains two major
advantages: symmetry and attention to the current pixel, as seen in classical filters
like Gaussian and NL-means [40]. With the adaptive SE, serial implementations of
the operators are designed, achieving a better trade-off between the adaptivity and
robustness while preserving important properties.

Hereafter, we call our proposed AMM approach with serial operators SAMM.
Figure 1 shows a denoising experiment on a one-dimensional signal, demonstrating
the effectiveness of SAMM in noise removal and structure preservation.

The main contributions of this work are twofold:

• By defining the serial operators with fuzzy SE, we provide a novel mathematical
morphology (SAMM), whose behaviors are not only adaptive to contents but
also robust to noises.

• Theoretical proofs and numerical verifications both suggest that the operators
in SAMM successfully inherit important mathematical properties from TMM,
ensuring their reasonable behaviors in practice.

The remainder of this paper is organized as follows. Section 2 provides a brief
review of related works, including TMM, RAMM and fuzzy set theory. In Section 3,
we present the proposed SAMM and provide theoretical proofs for its mathematical
properties. Section 4 evaluates SAMM through experiments. Finally, Section 5
concludes this paper.

2 KNOWLEDGE PREPARATION

Considering the closeness to this work, we briefly review related works, including
TMM [20, 25], RAMM [39], and fuzzy set theory [42]. Additionally, we ntroduce
the mathematical properties of the operators, such as ordering, adjunction, and
idempotent. Furthermore, we define weak idempotent to describe the stability of
the operators.

2.1 Traditional Mathematical Morphology

2.1.1 Definition

TMM considers a digital image f as a function from definition domain Ω to value
field F . For a grey-level image with n pixels, Ω is a subset of Zn, F is the set of grey
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a) b)

c) d)

Figure 1. Comparison of the noise reduction on one-dimensional signal obtained by dif-
ferent morphological methods. To clearly show performance, the noisy input (grey curve)
is embedded in every subfigure.

values. That is, the image f maps each pixel x ∈ Ω into f (x) ∈ F . Let Fun (Ω, F )
denote the functions set from Ω to F , then f ∈ Fun (Ω, F ) and Fun (Ω, F ) compose
a complete lattice [21, 22].

Morphological operators rely on a small component called Structuring Element
(SE) which is used to probe and modify the image being studied. SEs can be
classified into two categories based on their function values: flat and non-flat. A flat
SE has constant or zero values at all coordinates, while a non-flat SE has various
values. This means that flat SEs can avoid mixing spatial units with intensity
values, and hence are applied more widely than non-flat ones in practice [20, 25].
In this paper, we also focus on flat SEs in designing mathematical morphology
operators.

The two basic operators from MM, i.e., dilation (δ) and erosion (ε), are defined
via maximizing and minimizing pixel values on a neighbourhood (determined by the
structuring element, SE):
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a) b) c)

Figure 2. An instance of non-symmetric SE in RAMM. a) is an image region, two different
pixels in which are marked in different colors. b) and c) respectively illustrate the adaptive
SEs (in Equation (19), c = 20) of the two pixels in different color rectangles.

δSE (f)(x) = ∨
y∈SE

{f(y)}, (1)

εSE (f)(x) = ∧
y∈ŜEx

{f(y)}. (2)

Here, SE x is used to denote the definition domain of the SE with origin pixel x.
ŜE x is the transposed SE (i.e., reflection w.r.t. the origin).

Go a step further, by combining the two basic operators, some other morpho-
logical operators such as opening (γ) and closing (ψ) can be defined:

γSE (f)(x) = δSE (εSE (f)) (x), (3)

ψSE (f)(x) = εSE (δSE (f)) (x). (4)

The definitions indicate that opening suppresses bright details smaller than the SE,
while closing suppresses dark details. These operators are widely used in image
processing tasks [19, 20].

2.1.2 Properties

As aforementioned, TMM is defined on a solid theoretical basis, which endows its
operators with important properties that guarantee their reliable behavior.

One important property of TMM is the ordering relation between the two basic
operators. For an image f , this property can be formulated as follows:

ε(f) ≤ f ≤ δ(f). (5)

With this property, the difference between dilation and erosion operations can be
expressed as a non-negative value, which leads to the definition of the basic mor-
phological gradient ρ (also called Beucher gradient):

ρ(f) = δ(f)− ε(f). (6)
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a) b)

Figure 3. An instance contradicting ordering property of the two basic operators from
RAMM. a) and b) are two image regions, two current pixels with 100 grey value in them
and are marked in different colors. For the SE settings in Equation (19), the threshold
and the size of the rank filter window is 5 × 5. Under this condition, the dilation and
erosion results of x and y are equal to 50 and 200, respectively.

Using the gradient, the boundaries or edges in the image can be detected [20, 24].
Another property introduced here is the adjunction, which comes from complete

lattices and links the couple operators closely. For any two given images f , g ∈
Fun(Ω, F ), (ε, δ) is an adjunction if and only if the following equation holds:

δ (f ) ≤ g ⇔ f ≤ ε (g). (7)

Many works in designing morphologies strive to keep the adjunction relationship be-
tween the two basic operators [7, 24, 29]. With adjunction property, the idempotent
of opening (closing) naturally holds, which can be described as

(ηSE (f ))n = ηSE (f) , ∀n ≥ 1, (8)

where, f still represents an image, η denotes the opening γ (closing ψ). As pointed
out in [45], idempotent indicates that the filter η has already affected the input as
far as possible and hence further passes will not alter the signal any more. In this
sense, idempotent reflects the stability of the filter’s behavior.

However, as verified in the later section, idempotent is not always held in
various MMs. To describe the stability of the operators conveniently, we define
a weak idempotent as follows, which is a generalization of the traditional idempo-
tent above.

Definition 1. For an operator η on image f , it is weak idempotent, if the following
equation holds:

∃k ∈ N ⇒ (ηSE (f))n = (ηSE (f))k , ∀n ≥ k. (9)

Here, the symbols represent the same meanings as those in Equation (8). Obviously,
the smaller k means the more stability of the operator. Particularly, the weak
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a)

b)

Figure 4. The pipeline for SAMM. a) is the block diagram of the proposed method. b) is
an instance to construct the SE in SAMM. The grey value of current pixel x is 150. The
memberships of the fuzzy set Dx are marked in red, and the α-cut with threshold 0.8.

idempotent degenerates into the traditional one when k = 1, that is the most stable
case.

2.2 Robust Adaptive Mathematical Morphology

Unlike many other adaptive methods being fragile to noises, RAMM [39] can be
robust to noises. For a pixel x in image f , RAMM takes the rank filter of cth centile
as erosion:

rSE ,c(x) = cth centile
y∈SEx

{f(y)}, (10)

where SE x still represents the SE centered at the current pixel x, which is also
named filter window in [39]. c is recommended as a small centile.

Naturally, the dilation becomes

rSE ,100−c(x) = (100− c)thcentile
y∈SEx

{f(y)}. (11)

Go ahead, the closing and opening are respectively implemented as

CSE ,c (x) = rSE ,c (rSE ,100−c (x )) , (12)

OSE ,c (x) = rSE ,100−c (rSE ,c (x )) . (13)

Then, by plugging RAMM into a bitonic framework, the author presents an im-
age filter as follows:

bSE ,t(x) =
eO(x)CSE ,t(x) + eC(x)OSE ,t(x)

eO(x) + eC(x)
, (14)
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a) Chessboard 150× 150 b) Toy objects 380× 375 c) Plane 512× 512 d) Boat 512× 512

e) Cameraman 256× 256 f) Lena 512× 512 g) House 256× 256 h) Peppers 512× 512

Figure 5. Eight standard images that make up the test datasets for experiments

where eO(x) and eC(x) represent the difference between the original and opened/clo-
sed signals smoothed with Gaussian. For further details, see [39], where a filter
defined in Equation (14) is presented that preserves edges and removes noise simul-
taneously, showing promising prospects.

However, as numerically validated later (Section 3.1), the operators in RAMM
lack the important properties of ordering, adjunction, and idempotent that are
present in TMM. This suggests that the theoretical foundation of RAMM is not
as solid as TMM. In order to overcome this drawback, we propose a novel adaptive
MM that ensures the operators have these important mathematical properties.

2.3 Fuzzy Sets

Since its inception half a century ago, the theory of fuzzy sets has found successful
applications in various areas, such as image processing, pattern recognition, etc. [46,
47, 48]. A typical crisp set is originally defined with the characteristic function as
follows:

χX(x) =

{
1, x ∈ X,

0, x /∈ X.
(15)

That is, as for the traditional set theory needs, the candidates must either belong
to the set or not. In fuzzy set theory, the value set of the characteristic function is
extend from {0, 1} to [0, 1], and then the function is recalled as membership function.
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a) Fixed Opening

b) Fixed Closing

Let a classical set X denote definition domain, and the interval [0, 1] represent value
field, the membership function of a fuzzy set A can be specified as

Property
Fixed Dynamic
Implementation Implementation

Symmetry of SE
√ √

Ordering
√ √

Adjunction
√

–
Idempotence

√
–

Table 1. Properties of the operators from SAMM

µA (x) : X → [0, 1] . (16)

Compared to classical sets, fuzzy sets allow for objects to have varying degrees of
membership, resulting in a richer and more applicable value field.

In practice, a fuzzy set is inevitable to determine its members. To achieve the
purpose, α-cut is introduced. Specifically, for every α ∈ [0, 1], the α-cut of a given
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c) Dynamic Opening

d) Dynamic Closing

Figure 6. Comparisons of stability between RAMM [25] and SAMM. MSE curves are
computed between the nth result and the first one on two images “House” (top row)
and “Lena” (bottom row). a), b) report the opening and closing, respectively. They are
both according to fixed implementation. c), d) describe the same operations according
to dynamic implementation. The threshold α2 is set to different values (0.5, 0.7, 0.9) in
SAMM. Three SEs with different size (3 × 3, 5 × 5, 7 × 7) are employed in RAMM. The
dotted lines and the solid ones represent the results of RAMM and SAMM, respectively.

a) TMM
3× 3

b) TMM
5× 5

c) TMM7× 7 d) RAMM
3× 3

e) RAMM
5× 5

f) RAMM
7× 7

g) SAMM

Figure 7. Edge detection with Beucher gradient (defined in Equation (6))
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Method
Fixed Dynamic

Opening Closing Opening Closing

RAMM 3× 3 37 36 – –
RAMM 5× 5 11 9 119 108
RAMM 7× 7 36 31 – –
SAMM α2 = 0.5 1 1 1 1
SAMM α2 = 0.7 1 1 5 2
SAMM α2 = 0.9 1 1 8 9

Table 2. Minimum k in Definition 1 on “Lena”

fuzzy set A is defined as follows:

Aα = {x ∈ X | µA (x) ≥ α} . (17)

Clearly, it is a crisp set derived from the fuzzy one. In this sense, α-cut is a bridge
between fuzzy sets and crisp ones.

Method
Fixed Dynamic

Opening Closing Opening Closing

RAMM 3× 3 31 32 – –
RAMM 5× 5 13 8 189 195
RAMM 7× 7 30 29 – –
SAMM α2 = 0.5 1 1 1 1
SAMM α2 = 0.7 1 1 2 3
SAMM α2 = 0.9 1 1 8 8

Table 3. Minimum k in Definition 1 on “House”

3 PROPOSED METHOD

With fuzzy SEs, we propose a novel adaptive morphology, SAMM, in this section.
The serial implementation operators of SAMM are adaptive to image content, ro-
bust to noise, and possess important mathematical properties simultaneously. We
first analyze the limitations of RAMM in Subsection 3.1, which provides the the-
oretical motivation for SAMM. Then, we provide a detailed design of SAMM in
Subsection 3.2. The theoretical properties of the SAMM operators will be proven
in Subsection 3.3.

3.1 Theoretical Motivation

To obtain the adjunction property of operators, the symmetry rule is generally
pursued in designing adaptive SEs [7, 24, 29]. That is, for any x, y ∈ Ω ,

y ∈ SE x ⇔ x ∈ SE y . (18)
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Unfortunately, the SE in RAMM cannot satisfy this rule, and the basic operators
in this morphology also fail to meet the ordering property. The detailed analysis is
given below.

3.1.1 Non-Symmetry Analysis of RAMM

First, to reformulate RAMM in a typical method, an adaptive structuring element
(SE) centered at pixel x is constructed as follows:

SE ′
x = {rSE ,t(x) | c ≤ t ≤ 100− c} . (19)

Similar in Equation (10), c is still a threshold, rSE ,t (x) is the output of rank
filter defined on the window SE x. Taking a step forward, we can reformulate the
dilation and erosion of RAMM as follows:

δSE ′(f)(x) = ∨
y∈SE ′

x

{f (y)}, (20)

εSE ′(f)(x ) = ∧
y∈SE ′

x

{f(y)}. (21)

Now, with maximization and minimization on SE
′

x, the two basic operators origi-
nally defined in Equations (10) and (11) are now interpreted in typical ways.

Based on the aforementioned preparation, Figure 2 shows a simulated instance
demonstrating that the SE defined in Equation (19) in RAMM is non-symmetric.
In Figure 2 a), an image region is shown, with two pixels marked in red and blue,
denoted by x and y, respectively.

The size of the rank filter window is set to 5× 5, and the threshold c = 20. As
a result, the adaptive SEs of the two pixels (i.e., SE

′

x and SE
′

y) are illustrated in

Figures 2 b) and 2 c) in different rectangles. Clearly, x ∈ SE
′

y and y /∈ SE
′

x, that
is contrary to the definition of symmetry in Equation (18). Therefore, the SE in
RAMM does not meet symmetric property.

3.1.2 Non-Ordering Analysis of RAMM

Figure 3 illustrates that the ordering property is also no longer kept in the operators
from RAMM. Here, Figures 3 a) and 3 b) are two image regions, the two pixels (x
and y) in which are marked in red and blue, respectively. Using the same settings
for SE as them in Figure 2, the dilation and erosion results of x and y are equal to
50 and 200, respectively. That means δ (f) (x) ≤ f (x) and ε (f) (y) ≥ f (y), which
contradicts the definition in Equation (5). Therefore, the ordering property cannot
be met either in the two basic operators from RAMM.
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3.2 Proposed Morphology (SAMM)

3.2.1 Construct Fuzzy SE

In TMM, the SE centered a pixel (i.e., SE x) is a crisp set that leads to fix members.
To get adaptivity, we first convert the crisp set to a fuzzy one with the following
membership function:

µ(y) = 1− |f(y)− f(x)|
255

, (y ∈ SE x) . (22)

Here the membership µ (y) measures the similarity between the pixel y (in SE x) and
the current pixel x. Due to µ (x) = 1, it pays great attention to x. Let Dx denote
the fuzzy set constituted by the memberships, then

µ(y) ∈ Dx ⇔ µ(x) ∈ Dy. (23)

That is, the fuzzy set is symmetric. Additionally, by assigning a threshold α ∈ [0, 1],
the α-cut of Dx is achieved as

Dα
x = {y ∈ SE x | µ(y) ≥ α, x ∈ Ω} , (24)

which is the SE in our SAMM. Bridging Equations (23) and (24), we know the SE
is still symmetry. Meanwhile, it exhibits different robustness to noises according
to different α. With an instance, Figure 4 presents the pipeline to construct SE in
SAMM.

In a nutshell, compared with the structuring element SE
′

x (in Equation (19))
in RAMM, the Dα

x designed above has two main advantages. On one hand, it is
symmetric. On the other hand, like many classical filters, it pays more attention to
the current pixel. As indicated later, the two changes make SAMM obtain important
mathematical properties as much as possible.

3.2.2 Implement Operators Serially

When defining an adaptive morphology, the reflection of the SE is generally not
recommended because it should be fully determined by the input contents [20, 25].
Therefore, we provide the embryonic forms of the two basic operators (i.e., dilation
and erosion) as follows:

δDα(f)(x) = ∨
y∈Dα

x

{f(y)}, (25)

εDα(f)(x) = ∧
y∈Dα

x

{f(y)}. (26)

Here, the adaptability of the structuring element Dα
x enables the operators to exhibit

adaptive behaviors. In particular, a larger α means less members belonging to the
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SE, that is prone to protecting structures in the operations. Conversely, as α de-
creases, the operators become more robust to noises because of increasing members.
To achieve a good balance between adaptivity and robustness, we adopt the serial
forms [20] to implement the dilation and erosion in SAMM, as below:

δDα1Dα2 (f)(x) = δDα1
x

(
δDα2

x
(f)

)
, (27)

εDα2Dα1 (f)(x) = εDα2
x

(
εDα1

x
(f)

)
. (28)

Here, Dα1
x and Dα2

x are two different SEs. For diversity, α1 is usually recommended
smaller than α2.

3.3 Properties Discussion

To guarantee the operators possess important mathematical properties, for adaptive
SEs, “one has to fix the neighborhoods once they have been derived from an initial
input image” [7, 29]. That means, the SEs only rely on the initial input image,
which is called fixed implementation. Otherwise, we call it dynamic implementation
when the SEs are updated according to current inputs. Next, for the operators from
the above two implementations of SAMM, we discuss their mathematical properties.

3.3.1 Fixed Implementation

For the fixed implementation of SAMM, we first focus on the two embryonic op-
erators defined in Equations (25) and (26). Theorem 1 guarantees the ordering
property, and Theorem 2 establishes the adjunction property. With Theorems 3
and 4, similar conclusions can be guaranteed for the serial forms adopted in SAMM,
defined in Equations (27) and (28), respectively.

Theorem 1. For an image f of (Ω ,F ), and Dα
x is the SE centered at the current

pixel x, a pair of operators (ε, δ) have the following ordering:

εDα(f) ≤ f ≤ δDα(f), ∀f ∈ Fun(Ω ,F ).

Proof.

y ∈ Dα
x , ∀x ∈ Ω

⇒ f(x) ∈ {f(y)}, ∀x ∈ Ω, y ∈ Dα
x by (24)

⇒ f(x) ≤ ∨
y∈Dα

x

{f(y)}, ∀x ∈ Ω

⇒ f(x) ≤ δDα(f)(x), ∀x ∈ Ω by (25)

⇒ f ≤ δDα(f).

In a similar way, f ≥ εDα(f) can be deduced. Thus, εDα(f) ≤ f ≤ δDα(f). 2
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Theorem 2. For any two given images f and g of (Ω ,F ), andDα
x is the SE centered

at the current pixel x, a pair of operators (ε, δ) is called an adjunction, if following
equivalence holds:

δDα(f) ≤ g ⇔ f ≤ εDα(g).

Proof.

δDα(f) ≤ g

⇔ ∨
y∈Dα

x

{f(y)} ≤ g(x), ∀x ∈ Ω by (25)

⇔ f(y) ≤ g(x), ∀x ∈ Ω,∀y ∈ Dα
x

⇔ f(y) ≤ g(x), ∀y ∈ Ω,∀x ∈ Dα
y by (23)

⇔ f(y) ≤ ∧
x∈Dα

y

{g(x)}, ∀y ∈ Ω

⇔ f ≤ εDα(g). by (26)

2

Theorem 3. Suppose (δDα1 , εDα1 ) and (δDα2 , εDα2 ) are both ordering, then
(εDα1εDα2 , δDα2δDα1 ) is also ordering:

εDa1εDa2 (f) ≤ f ≤ δDa2δDa1 (f),∀f ∈ Fun(Ω ,F ).

Proof. Since (δDα1 , εDα1) and (δDα2 , εDα2 ) are both ordering, we get εDa1 (f) ≤ f ≤
δDa1 (f) and εDa2 (f) ≤ f ≤ δDa2 (f), by Theorem 1. Then

f ≤ δDa1(f)

⇒ δDa2(f) ≤ δDa1 (δDa2(f))

⇒ f ≤ δDa2(f) ≤ δDa1 (δDa2(f))

⇒ f ≤ δDa1 (δDa2(f))

⇒ f ≤ δDa1δDa2(f).

In a similar way, f ≥ εDα1εDα2 (f) can be deduced. Thus, εDα1εDα2 (f) ≤ f ≤
δDα1δDα2 (f). 2

Theorem 4. Suppose (δDα1 , εDα1 ) and (δDα2 , εDα2 ) are both adjunction, then
(εDα2εDα1 , δDα1δDα2 ) is also adjunction:

δDa1δDa2 (f) ≤ g ⇔ f ≤ εDa2εDa1 (g),∀f, g ∈ Fun(Ω ,F ).
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Proof. Since (δDα1 , εDα1 ) and (δDα2 , εDα2 ) are both adjunction, we get δDa1 (f) ≤
g ⇔ f ≤ εDa1 (g), δDα2 (f) ≤ g ⇔ f ≤ εDα2 (g) by Theorem 2. Then

δDa1δDα2 (f) ≤ g

⇔ δDa1 (δDa2 (f)) ≤ g

⇔ δDα2 (f) ≤ εDa1 (g)

⇔ f ≤ εDa2 (εDa1 (g))

⇔ f ≤ εDa2εDa1 (g).

2

3.3.2 Dynamic Implementation

The difference between the fixed implementation and the dynamic one of SAMM
only lies in the SEs being frozen or changed with the current (filtered) inputs. Thus,
the SE still pays great attention to the current pixel in the dynamic implementation.
Meanwhile, the proofs of Theorems 1 and 3 indicate that the operators of SAMM still
meet ordering property. Moreover, Equations (22) and (24) tell us, the SEs employed
in SAMM always keep symmetry regardless of the two implementations. However, as
stated in [7], with changing SEs, the adjunction property cannot be satisfied. That
means, the idempotent (defined in Equation (8)) of the operators from the dynamic
implementation of SAMM cannot be guaranteed. For clarity, Table 1 summarizes
the properties of the operators from the two different implementations of SAMM.

In a nutshell, compared with RAMM, our SAMM (regardless of the two different
implementations) obtains more important mathematical properties.

Method Time(s) Overall means
Standard deviation σ

10 20 30 40 50
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Input – 20.10 0.306 28.18 0.601 22.21 0.353 18.81 0.244 16.51 0.184 14.78 0.146
TMM
3 × 3

0.32 27.042 0.676 30.782 0.8502 28.562 0.764 26.723 0.669 25.223 0.585 23.913 0.514

TMM
5 × 5

0.32 26.08 0.724 28.853 0.815 27.23 0.7733 25.93 0.724 24.77 0.675 23.61 0.632

TMM
7 × 7

0.31 24.74 0.719 27.25 0.783 25.87 0.753 24.73 0.718 23.62 0.687 22.25 0.652

RAMM
3 × 3

3.56 23.28 0.681 26.62 0.8293 24.89 0.761 23.11 0.679 21.57 0.601 20.21 0.534

RAMM
5 × 5

3.35 26.403 0.7582 28.23 0.818 27.283 0.7922 26.342 0.7612 25.472 0.7261 24.672 0.6912

RAMM
7 × 7

3.49 24.61 0.7423 25.65 0.778 25.23 0.762 24.65 0.7443 24.05 0.7232 23.45 0.7031

NLMM [7]
7 × 7

3 771 21.84 0.612 28.16 0.665 23.92 0.637 21.10 0.622 18.81 0.601 17.85 0.533

NLMM [24]
7 × 7

3 771 21.72 0.582 25.90 0.573 22.57 0.501 21.01 0.560 20.10 0.645 19.04 0.630

SAMM 6.49 27.871 0.7671 31.231 0.8551 29.201 0.8121 27.581 0.7681 26.281 0.7223 25.051 0.6783

Table 4. Average values of PSNR (dB) and SSIM on 8 images using OCCO framework.
The best three results are indicated by their ranking, with 1 also in bold
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Method Time(s) Overall means
Standard deviation σ

10 20 30 40 50
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Input – 20.10 0.306 28.17 0.601 22.21 0.353 18.82 0.244 16.50 0.184 14.78 0.146
TMM
3 × 3

0.36 26.86 0.585 32.832 0.847 28.77 0.683 26.07 0.550 24.09 0.456 22.55 0.389

TMM
5 × 5

0.35 27.90 0.690 32.393 0.8633 29.453 0.767 27.35 0.674 25.81 0.601 24.50 0.544

TMM
7 × 7

0.38 28.032 0.729 31.90 0.860 29.39 0.790 27.613 0.721 26.23 0.663 25.023 0.613

RAMM
3 × 3

2.36 26.59 0.612 30.79 0.844 28.45 0.714 26.28 0.591 24.48 0.494 22.93 0.419

RAMM
5 × 5

2.36 28.013 0.7362 31.48 0.8672 29.472 0.8053 27.762 0.7342 26.291 0.6662 25.032 0.6073

RAMM
7 × 7

2.27 27.43 0.7591 29.75 0.852 28.60 0.8111 27.39 0.7611 26.243 0.7091 25.181 0.6601

NLMM [7]
7 × 7

2 067 23.31 0.634 29.26 0.722 24.05 0.645 23.40 0.600 20.85 0.625 18.99 0.579

NLMM [24]
7 × 7

2 072 22.81 0.618 26.76 0.607 23.09 0.581 24.05 0.677 21.08 0.645 20.40 0.580

SAMM 4.18 28.641 0.7382 33.631 0.8791 30.381 0.8062 28.121 0.7323 26.282 0.6643 24.77 0.6082

Table 5. Average values of PSNR (dB) and SSIM on 8 images using bitonic framework.
The best three results are indicated by their ranking, with 1 also in bold.

4 EXPERIMENTS

The experiments in this section evaluate the stability and performance of RAMM
and SAMM, using both fixed and dynamic implementations. The edge detection
and noise reduction experiments focus only on dynamic methods to achieve optimal
results. This work mainly focuses on designing an adaptive mathematical morphol-
ogy (SAMM), whose operators can inherent important properties from traditional
mathematical morphology (TMM) as much as possible. Considering this motiva-
tion, the filters involved in our experiments for edge detection and image denoising
are all from mathematical morphologies.

For SAMM, we naively fix α1 with 0 and only set α2 empirically in the SEs Dα1
x

and Dα2
x . Considering unwanted structures that cannot be removed with a small SE

and useful structures that may be damaged with a large SE, we set the window size
of the two SEs 3× 3 and 5× 5, respectively.

Besides TMM and RAMM, two other adaptive morphological morphologies,
i.e., non-local mathematical morphologies (NLMM), are also involved in the denois-
ing experiments, which were proposed in [7] and [24], respectively. For TMM and
RAMM, three different sizes (3×3, 5×5, 7×7) of SEs are separately used to search
the ideal results. Other parameters of RAMM and the two NLMMs all follow the
original settings.

As shown in Figure 5, we conducted experiments on eight standard images,
including two cartoon images and six natural ones. To handle the neighborhood
outside the image areas, we used a symmetrical padding strategy as the SEs were
slid over the input images.

4.1 Stability Test

With different (fixed and dynamic) implementations of SAMM and RAMM, the
opening and closing are both iterated 300 times on “House” and “Lena”. To be
objective, the α2 in SAMM is assigned to different values (0.5, 0.7 and 0.9).
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Tables 2 and 3 list the minimum k in the weak idempotent (Definition 1, subsec-
tion 3.1.2)) on the two images, respectively. As aforementioned, the smaller k means
the more stable performances, and k = 1 corresponds to the typical idempotent.
Clearly, the operators from fixed implementation of SAMM all meet idempotent,
which is consistent with Theorem 4. Meanwhile, for dynamic implementation, the
k are all not greater than 10. That means, the operators from SAMM all become
stable within 10 iterations. On the other side, for RAMM, even for the most stable
case (with 5 × 5 SE in the fixed implementation), it still cannot meet idempotent
(k > 1).

For RAMM, as analyzed in Subsection 3.1, despite its meaningful performance,
its SEs are not symmetric and the ordering property of the operators no longer
hold. Additionally, due to the significance of symmetry property in proving Theo-
rem 2, the adjunction property of the operators from RAMM cannot be guaranteed
theoretically. That means, the idempotent cannot be guaranteed either.

For dynamic implementation of RAMM, the k are all greater than 100 disas-
trously. The curves of mean square error (MSE) between the nth opening (closing)
result and the first one plotted in Figure 6 also agree with the quantitative results
from Tables 2 and 3. In summary, compared to RAMM, SAMM exhibits more stable
behaviors.

Note that, as stated in [39], “It must be acknowledged that PSNR and SSIM
are not complete measures of image quality, and are not responsive to small but
visually distracting artefacts.” Therefore, visual results for the two frameworks are
presented in Figures 8 and 9, in addition to the quantitative indicators. The figures
include magnified fragments of the noisy inputs (σ = 20) and the denoised results
for comparison.

As shown there, although TMM can preserve image details well using small
(3 × 3) SEs, it cannot effectively remove the noises. Additionally, many patchy
artifacts arise due to the low-level ability of smoothing. With large (7× 7) SEs, the
images are over-smoothed, causing noticeable geometrical structures to be damaged.
Due to the rigidity of shape and size, using 5× 5 SEs, TMM cannot get a satisfying
trade-off either. With the help of adaptivity and robustness advantages, RAMM
gets better results. Particularly, with 5× 5 SEs, the operators from RAMM achieve
a nice balance between denoising and structure-preserving.

4.2 Edge Detection

We conducted an edge detection experiment on two standard images using SAMM,
TMM, and RAMM, where the Beucher gradient (defined in Equation (6)) is used
to describe edges. The parameters of TMM and RAMM are kept the same as in
the beginning of the section, while the parameter in SAMM is set to 0.95 empiri-
cally.

The frozen shape and fixed size of SEs in TMM oversmooth several small struc-
tures in the outputs, while RAMM achieves better edge preservation due to its
adaptivity. However, RAMM’s operators fail to meet the ordering property, which
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a) Input b) TMM
3× 3

c) TMM
5× 5

d)
NLMM
[7]

e)
NLMM
[24]

f)
SAMM
7× 7

Figure 8. Noise reduction using OCCO framework. The local magnifications are also
presented in red rectangles.

affects its performance. In contrast, the operators from SAMM, which possess math-
ematical properties such as symmetry and ordering, exhibit the best performance
among the competitors. The results are validated with the regions marked by the
red rectangles in Figure 7.

4.3 Noise Reduction

To evaluate their denoising performance, we apply the morphological operators to
two methods: the opening-closing and closing-opening (OCCO) [49] and the bitonic
filter, which is a weighted average of opening and closing originally proposed in [39]
and reformulated in Equation (14) for convenience. We conduct the experiment
on the image set (shown in Figure 5) by adding white Gaussian noise with different
standard deviations (σ = 10, 20, 30, 40, 50). Following the parameter settings at the
beginning of this section, we only modify the parameter α2 in SAMM for different
tasks. Here, the linear model is employed to describe the relationship between this
parameter and the standard deviation. Specifically, α2 = 1−0.002 ·σ for the OCCO
framework and α2 = 1− 0.005 · σ for the bitonic framework.
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a) Input b) TMM
3× 3

c) TMM
5× 5

d)
NLMM
[7]

e)
NLMM
[24]

f)
SAMM
7× 7

Figure 9. Noise reduction using bitonic framework. The local magnifications are also
presented in red rectangles.

Two typical indicators, i.e., peak signal to noise ratio (PSNR) and structural
similarity (SSIM) [50], are both used to make the comparison. Table 4 and Table 5
respectively report the quantitative results in the two denoising frameworks, where
the average indicator values on the eight images are listed. On one hand, as indi-
cated in Table 4, in the OCCO framework, SAMM always obtains the best PSNR.
Meanwhile, according to SSIM, our SAMM also almost outperforms its all rivals.
On the other hand, Table 5 demonstrates that the bitonic framework improves the
performance of most of the denoisers to various extents, with SAMM still exhibit-
ing powerful performance. Simultaneously, the run time of the counterparts are all
reported. We can see that, SAMM runs twice as long as RAMM due to its serial
implementations.

5 CONCLUSION

In adaptive morphology studies, maintaining important mathematical properties of
operators has always been pursued by experts. However, achieving a satisfactory
balance between these properties and performance is a challenging task. To address
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this issue, we propose an adaptive mathematical morphology (SAMM) using fuzzy
set theory to define serial operators. SAMM operators inherit key mathematical
properties from traditional morphological operators while exhibiting both adaptiv-
ity and robustness. Mathematical proofs and simulations confirm these advantages.
Preliminary experiments on edge detection and noise reduction confirm the effec-
tiveness of our proposed methodology both quantitatively and perceptually. Among
the nine algorithms tested in the denoising experiments, SAMM stands out as the
top performer, achieving a PSNR value that surpasses the second-ranked approach
by more than 0.6 dB overall.

It should be noted that although we have provided a preliminary analysis of
the stability of SAMM in dynamic implementation and have numerically verified
its weak idempotence, further investigation is needed to guarantee its stability with
rigorous theories. Additionally, we would like to point out that the morphological
neural network (MNN), which combines mathematical morphology with deep neural
networks, has recently emerged as a promising tool [51, 52, 53]. Therefore, how to
incorporate adaptive morphology into MNN is also worthy of further studying.
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[27] Ćurić, V.—Landström, A.—Thurley, M. J.—Hendriks, C. L. L.: Adaptive
Mathematical Morphology – A Survey of the Field. Pattern Recognition Letters,
Vol. 47, 2014, pp. 18–28, doi: 10.1016/j.patrec.2014.02.022.

[28] Bobin, J.—Starck, J. L.—Fadili, J.M.—Moudden, Y.—Donoho, D. L.:
Morphological Component Analysis: An Adaptive Thresholding Strategy. IEEE
Transactions on Image Processing, Vol. 16, 2007, No. 11, pp. 2675–2681, doi:
10.1109/TIP.2007.907073.

[29] Roerdink, J. B.T.M.: Adaptivity and Group Invariance in Mathematical Mor-
phology. 2009 16th IEEE International Conference on Image Processing (ICIP), 2009,
pp. 2253–2256, doi: 10.1109/ICIP.2009.5413983.
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