
Computing and Informatics, Vol. 43, 2024, 529–560, doi: 10.31577/cai 2024 3 529

FORENSIC ANALYSIS OF THE IOT OPERATING
SYSTEM UBUNTU CORE

Juan Manuel Castelo Gómez

University of Castilla-La Mancha
Avda. de España s/n
02071, Albacete, Spain
e-mail: juanmanuel.castelo@uclm.es

José Roldán-Gómez

University of Oviedo
Federico Garćıa Lorca 18
33007, Gijón, Spain
e-mail: roldangjose@uniovi.es

Sergio Ruiz-Villafranca, Álvaro del Amo Mı́nguez

University of Castilla-La Mancha
Avda. de España s/n
02071, Albacete, Spain
e-mail: sergio.rvillafranca@uclm.es, alvarodel.amo@alu.uclm.es

Abstract. The number of cyber incidents in which the Internet of Things (IoT)
device or system is present is increasing every day, requiring the opening of forensic
investigations that can shed light on what has occurred. In order to be able to
provide investigators with proper solutions for performing complete and efficient
examinations in this new environment, IoT systems and devices are being studied
from a forensic perspective so that tools and procedures can be designed accordingly.
In this article, besides reviewing the proposals from the community on this matter,
the multi-purpose IoT operating system Ubuntu Core is studied to determine in
what way a forensic investigation of this system should be performed, detailing how

https://doi.org/10.31577/cai_2024_3_529


530 J.M. Castelo Gómez, J. Roldán-Gómez, S. Ruiz-Villafranca, Á. del Amo Mı́nguez

to approach the acquisition and analysis phases. In addition, both the volatile and
non-volatile artifacts that might hold useful information are listed and described,
and a forensic tool is presented for their recovery as well as for the acquisition of
the non-volatile memory.

Keywords: Internet of Things, IoT forensics, digital forensics, cybersecurity

Mathematics Subject Classification 2010: 68-M99

1 INTRODUCTION

The emergence of the Internet of Things (IoT) as a new environment in which to
conduct forensic investigations has introduced a great variety of new systems and
devices that had never been analyzed before. Computers and smartphones have
given way to smart switches, televisions, cars, and personal assistants. New contexts,
such as eHealth, smart cities, and smart industries, have appeared, something that
was unimaginable a few years ago. The technology which once was reserved for
certain scenarios has now been transformed and implemented in our everyday life,
being present in almost every aspect of it.

As a result, forensic investigators find it extraordinarily difficult to conduct an
investigation in this environment. Although all these contexts belong to the IoT,
they are quite dissimilar to each other and have been developed to perform very
different tasks. Aspects such as the operating system or firmware they run, whether
their memory is soldered onto the board or the way in which an investigator can
access them, are crucial for properly performing an examination. For example, the
approach that needs to be followed when analyzing a device running a real-time
operating system (RTOS) which has a soldered storage is not the same as when
studying a general-purpose operating system (GPOS) with a removable memory.
Therefore, in order to provide investigators with guidelines on how to deal with
them, the research community studies IoT devices and describes what information
can be recovered from them and how to do so.

In addition, these studies allow the community to develop solutions for conduct-
ing forensic investigations, such as methodologies or tools that, due to the charac-
teristics of the IoT, need to be adapted to the new environment. Unfortunately,
the number of IoT-centered solutions is still low and that hinders the examination
process. But this also works the other way round, as if there is not enough informa-
tion on how IoT devices work, which data they handle, how to recover them or how
they interact with each other, that means the solutions cannot be developed prop-
erly. Furthermore, the progression of such solutions will set the standards allowed
in court if an IoT investigation is involved in a legal process.

In view of this, the forensic analysis of new IoT operating systems and de-
vices, especially the most widely used ones, can be useful for acquiring knowledge



Forensic Analysis of the IoT Operating System Ubuntu Core 531

of the behaviour of this type of devices, and can shed some light on how to ap-
proach the development of solutions, ultimately improving IoT forensics as a whole.
Furthermore, such analysis is also useful for modelling the context in which these
devices are used, and for finding similarities and differences with others. There-
fore, the community not only benefits by having guidelines on how to examine
a system, but also by being provided with future areas and viewpoints on which to
work.

In this regard, this paper presents a forensic analysis of the multipurpose IoT
operating system Ubuntu Core, which is used in IoT gateways, dome cameras, smart
mirrors, bench top sequencers and single-board computers, among others. In ad-
dition, it is based on one of the most widely used Linux distributions for desktops
and servers, so the authors believe that its examination is of interest for the forensic
community.

Contributions. The main contributions of this study are as follows:

• We present a review of the proposals from the community regarding the forensic
analysis of IoT devices and systems.

• We perform the analysis of a forensically speaking unexplored operating system,
namely Ubuntu Core, studying its static and dynamic behavior.

• We detail how to carry out the acquisition and analysis phases, addressing both
the offline and remote methods for each one when handling the three main
types of evidence: non-volatile memory, volatile memory and network traf-
fic.

• We explain how the data are distributed in Ubuntu Core, and we list the relevant
information that can be retrieved from the operating system and which may be
useful in a real investigation. This serves as a guideline to quickly observe which
data can be extracted from the operating system, how to do it and where they
are located.

• We develop a tool to collect the relevant artifacts found in the non-volatile and
the volatile memory. In addition, it allows the acquisition of the raw data stored
in the non-volatile memory.

The rest of the paper is organized as follows. A brief description of the Ubuntu
Core operating system is presented in Section 2. Section 3 discusses the propos-
als from the research community regarding the forensic analysis of IoT devices and
systems, together with its challenges. The methodology followed to carry out the
research is described in Section 4. Section 5 details how to carry out the acquisition
and analysis of the IoT operating system, and Section 6 lists the forensic relevant in-
formation found after performing said investigation. A tool for the recovery of these
forensic artifacts and the raw data in non-volatile memory is presented in Section 7.
Finally, our conclusions are presented in Section 8.



532 J.M. Castelo Gómez, J. Roldán-Gómez, S. Ruiz-Villafranca, Á. del Amo Mı́nguez

2 UBUNTU CORE

Ubuntu Core is the IoT operating system developed by Canonical, and it was re-
leased for the first in 2014. It is based on the Ubuntu desktop and server versions, two
of the most widely used Linux-based distributions in their respective categories [1],
although it has many fundamental concept differences, as seen in Table 1. It can be
run in several IoT platforms, with Table 2 showing those with certified compatibility
and has been designed to be a flexible operating system that can be used in multiple
contexts, such as vehicle infotainment [2], but primarily in two: industrial settings
and smart homes. This is evidenced by its use on IoT gateways, dome cameras,
smart mirrors or bench top sequencers, among others. The main features of this
operating system are the following:

• It allows the execution of a version of Ubuntu on resource-constrained devices
built from Snap packages.

• It uses the snap daemon (snapd) to govern the system’s configuration, package
management, and update control. Unlike Advanced Package Tool (APT), snaps
are self-contained packages that run in sandbox mode, thus do not communicate
directly with the host.

• It is compatible with Bluetooth connectivity.

• It supports the creation of custom system images.

• It provides access to several IoT applications such as servers, home, machine to
machine (M2M) gateways, and radio access network platforms.

• It uses snap applications to provide functionality to the device. They can be
programmed in C, C++, Python, Java, Node.js and Go.

• It can be configured automatically using model assertions.

• It provides an app store named Snap Store, from which multiple tools and servers
can be installed.

• It allows remote access to the system via Secure SHell (SSH) by using a public
key linked with an Ubuntu Single Sign On (SSO) account, which is downloaded
when the system is set up.

• It supports access to a real-time-kernel.

• It provides bare metal cloud support through Metal-As-A-Service (MAAS).

• It is compatible with the installation of a graphical interface, although it has
none by default [3].

3 RELATED WORK

Before focusing on the forensic studies which address the IoT context, it is essential
to understand how the operating systems and the distribution from which Ubuntu



Forensic Analysis of the IoT Operating System Ubuntu Core 533

Feature Ubuntu Core Ubuntu Desktop

Application
execution

Applications and software are
self-contained and isolated in se-
cure sandboxes

Less strict confinement measures
for applications that rely on
system-wide dependencies

Application
development

Specific frameworks and software
development kits that integrate
IoT protocols and standards

Wide range of programming lan-
guages and frameworks

Updates Atomic updates that can be
rolled back and are applied au-
tomatically

Applied individually, without
rollback capability

User interface Headless Full-featured graphical interface

Authorization User based on Ubuntu SSO ac-
count with full permissions

Freedom to manage user and set
permissions as desired

System man-
agement

Using command-line through
SSH

Both command line and desktop
environment

Marketplace
for software
and applica-
tions

Snap Store Ubuntu Software Center

Table 1. Comparison between Ubuntu Core and Ubuntu Desktop

Core originates work. Since their appearance, the Linux and UNIX-based operating
systems have been a topic of interest for forensic investigators. This has led to
carrying out extensive studies on what data is handled by them, such as [4] and [5]
providing insights on how the file system, memory, logging system or booting process
operate, and discerning which forensic artifacts can be extracted, as well as which
commands allow their retrieval. Likewise, the Ubuntu distribution has undergone
similar analysis, with works such as [6] examining its file system, listing the most
relevant directories and files stored in it, and presenting an evidence collection tool
that can extract the user’s activity or generate a timeline.

Focusing on the IoT, the study of its devices and systems has proven to be quite
useful to determine how to approach forensic investigations. This has resulted in
guidelines that assist on examinations in a heterogeneous environment with different
characteristics to what investigators were used to. A proposal which addresses the
study of an IoT operating system from a forensic perspective is [7]. In it, a common
methodology for conducting investigations on IoT prototyping hardware platforms
is proposed and tested on the Raspbian [8] operating system, listing the directories
and file locations that provide essential information sources for the investigator.
A command-line tool is also introduced that allows the acquisition of these data
and generates a .csv file which stores the hash value of each artifact, their modified
access and creation times, and their size.

A similar study is performed in [9], in which the Windows 10 IoT Core operating
system is forensically analyzed, and the relevant information to be found in it is



534 J.M. Castelo Gómez, J. Roldán-Gómez, S. Ruiz-Villafranca, Á. del Amo Mı́nguez

Model Supported Ubuntu Core Versions

Raspberry Pi Models 2, 3, CM3 and CM3+ Ubuntu Core 22, 20, 18 and 16

Raspberry Pi Model 4, CM4 and Lite Ubuntu Core 22, 20, and 18

Intel NUC Ubuntu Core 22, 20 and 18

Raspberry Pi 400 Ubuntu Core 22 and 20

Raspberry Pi Zero 2W Ubuntu Core 22

ASUSTek PE100A Ubuntu Core 20

Advantech UNO-127, UNO-2271G, UNO-420 Ubuntu Core 20

Avnet AVTSE-RPI-IIOTG Ubuntu Core 20

Element Biosciences Instrument Aviti System Ubuntu Core 20

Honeywell HC70WB8R2, HC70W48R2 and
HC70WZ5130

Ubuntu Core 20

Lenovo ThinkEdge SE30 and SE50 Ubuntu Core 20

Qualcomm DragonBoard Ubuntu Core 18 and 16

Intel TANK-870-Q170 Ubuntu Core 18

FORME Life Studio Ubuntu Core 18

Dell Edge Gateway 3001, 3002, 3003 and 5000 Ubuntu Core 16

Rigado Cascade 500 Ubuntu Core 16

Table 2. Platforms with certified compatibility with Ubuntu Core

listed. In addition, a module is developed for the KAPE [10] tool, which allows the
extraction of data marked as relevant during the analysis, using an image or a clone
of the non-volatile memory as a source.

Focusing on another IoT operating system, [11] studies the file system used by
Contiki OS. Apart from analyzing its structure and dynamic behaviour, the authors
present a tool to reconstruct file versions from a memory dump that operates in
two stages. Firstly, it extracts files and their fragments from all memory pages,
categorizes them, and then detects other versions of that files by measuring the
similarity between them. This tool is tested in a simulated environment using the
Cooja simulator and achieving good results.

Finally, in [12] the forensic study targets Linux-Compatible platforms, specifi-
cally Tizen and Linux. Similarly to the approach followed in the previous research,
the authors examine several characteristics of the file systems used, such as the
metadata, type, size, files, and folders in it. In addition, they perform an experi-
ment to determine the possibility of checking file names by file system, extracting
them, and recovering deleted files.

With the aim of showing the differences between these already forensically-
studied IoT operating systems and Ubuntu Core, the one under the examination in
this article is presented Table 3.

One of the most challenging aspects of IoT investigations have proven to be
the acquisition phase. With storage now being soldered to the board, accessing the
data handled by these devices has become more difficult. In addition, having the
physical access to the devices is not a guarantee, and not all systems provide means



Forensic Analysis of the IoT Operating System Ubuntu Core 535

Feature Ubuntu
Core

Contiki OS Windows 10
IoT Core

Raspbian Tizen OS

Platform ARM, x86,
and others

Tiny low-
power
microcon-
trollers

ARM de-
vices

Raspberry
Pi

ARM, x86,
and MIPS

App
Manage-
ment

Snap Cooja sim-
ulator

Windows
Update

APT Tizen Pack-
age Manager

User In-
terface

Headless GUI GUI GUI GUI

Network
Protocols

Wi-Fi,
CoAP,
AMQP,
Zigbee, Z-
Wave, and
Bluetooth

LR-WPAN,
6LoWPAN,
CoAP and
RPL.

Wi-Fi, NFC,
LoRa, and
Bluetooth.

Wi-Fi and
Bluetooth

Wi-Fi, Blue-
tooth, and
NFC

User User man-
agement
linked with
Ubuntu
SSO

No user
manage-
ment

Built-in user
management

Built-in user
management

Built-in user
management

Table 3. Comparison between Ubuntu Core with other IoT operating systems forensically-
studied by the research community

of remotely connecting to them. Therefore, new approaches are needed to extract
data.

In [13], this issue is addressed focusing on consumer and industrial IoT devices.
Although the purpose of the research is to demonstrate that these devices are vulner-
able to certain attacks, the information provided is useful from a forensic perspective.
This is due to the acquisition method that the authors use for their two case studies
in which they examine two devices from each context, corresponding to the Joint
Test Action Group (JTAG) and the Universal Asynchronous Receiver/Transmitter
(UART). These methods are fairly common in smartphone forensics, but have been
replaced by the use of hardware tools, which do not exist in the IoT, therefore it is
important to know their feasibility in this environment. By using the methods, the
authors are able to dump the EEPROM memory and modify some parameters of
the devices to attack them.

Another interesting acquisition method mostly used on smartphones is tested
on an IoT device in [14], namely the chip-off. In this proposal, a forensic analysis of
the new TomTom navigation devices is carried out, describing the techniques which
allow dumping the memory and detailing how to decode its data. One of these
methods is chip-off, which consists in desoldering the memory chip and placing it in
a reader. Chip-off is not one of the most recurrent options for investigators due to its



536 J.M. Castelo Gómez, J. Roldán-Gómez, S. Ruiz-Villafranca, Á. del Amo Mı́nguez

complexity and risk, in addition it requires specific equipment and soldering knowl-
edge to be able to perform. The other method presented, which is only compatible
with specific versions of certain TomTom devices, consists in wiring certain points
of the memory chip to an SD card reader. Once the data is accessible, information
such as the last GPS position, the home location or the Bluetooth device connected
can be retrieved.

Chip-off and JTAG are also feasible methods for acquiring data from smart ve-
hicles, as described in [15]. Besides, detailing the challenges associated with vehicle
forensics and listing some generic and specific tools that can be used for their exam-
ination, two case studies are presented – one performing a forensic analysis of the
entertainment system of a Volkswagen Golf car, and the other studying the mobile
traffic data from several vehicles. In the first experiment, after determining the type
of system present in the car by scanning it using on-board diagnostics (OBD), the
multimedia device is extracted, confirming that the JTAG and chip-off are compat-
ible. Information such as the chassis number or engine control unit (ECU) serial
number can be recovered. With respect to the second experiment, after capturing
the mobile traffic data, information such as the location, chassis number and car
status can be accessed.

With the JTAG technique as a base, [16] presents a memory acquisition frame-
work for Industrial Control Systems (ICS). Using the hardware information of the
device, the proposal is able to create a JTAG profile that can be used for acquiring
and analyzing the contents of the non-volatile memory. The framework is tested
on an Allen-Bradley 1756-A10 device hosting a 1756-L61 controller, successfully
acquiring a dump of the memory together with its profile.

Also focusing on Programmable Logic Controllers (PLC) acquisition, but opting
for a completely different approach and technique, [17] introduces a framework,
PEM, for remotely collecting their volatile memory. Using the PLC’s communication
protocol, the control logic of the device is infected with a memory duplicator that
copies the memory contest to a free space in it, which can be accessed over the
network. In addition, the process is performed while the PLC is normally operating.
The effectiveness of the proposal is tested by using it for collecting a Schneider
Electric M221 PCL in a scenario simulating an attack.

As we can see, not only operating systems are the source of study, some works
focus on addressing specific IoT contexts. This approach can gather the knowledge
on how the most frequently used IoT systems work – which can be extrapolated and
used in other ones.

One example is [18] that reviews the forensic procedures available for the exam-
ination of Small Scale Digital Devices (SSDD). It addresses smartphones, drones,
gaming console, wearables and smart toys. For all of them, the authors mention
the acquisition methods available, the artifacts that can be found in them, and the
challenges such devices present for investigators, among other information.

Concentrating on the smart home context, [19] presents a forensic model that is
tested on the Amazon Echo smart assistant. With this analysis, the authors are able
to analyze the data type created, transmitted, processed and store by the device and



Forensic Analysis of the IoT Operating System Ubuntu Core 537

others that interact with it, being able to examine the network traffic exchanged,
the firmware of the Amazon Echo, and the app used to control it.

In this case, also addressing IoT consumer devices, but focusing on fitness track-
ers, [20], describes how to acquire and analyze the data from two devices, namely
the Xiaomi Mi Band 2 and Fitbit Alta HR. In addition, the significant data which
can be extracted from each one is listed, and guidelines are provided on how to
examine deleted and modified data from such devices.

Finally, in [21], the retrieval and analysis of the log of an intelligent robot vacuum
system and the app used to control it is described. Information such as the app
installation date and time, its version number, the usage events, the clean schedule
of the robot, the user credentials and network information can be extracted from
both devices.

After reviewing a range of proposals from the community regarding the forensic
analysis of multiple IoT contexts and their devices, the following conclusions can be
drawn:

• There is a worrisome lack of IoT-centered tools, which hinders the investiga-
tion process. Therefore, until they are developed, investigators must rely on
conventional tools to perform examinations.

• Regarding the acquisition process, methods such as JTAG, UART or chip-off
have become more feasible since the storage is usually soldered to the device’s
board, added to the fact that there are not any hardware solutions that can be
used to assist in this task. However, these techniques cannot always be carried
out, and they require specific equipment and knowledge, especially in the case
of chip-off, which also has a high chance of compromising the functioning of the
device.

• The interaction with the IoT device means that several other devices apart
from the IoT device might need to be examined as well. The cloud is the most
usual site to appear in this scenario, but investigators can also find smartphones
or computers. Consequently, it might be useful to study the data that are
exchanged between them, which usually can only be performed through a live
or remote analysis, as information is exchanged on-the-fly without being stored.

• The forensic analysis of the data extracted from IoT devices shows that con-
ventional tools allow investigators to obtain sufficient information to be able
to carry out investigations. In addition, the data that can be extracted from
each context and their form are quite dissimilar, which means that the approach
might need to change depending on the context in which the investigation is
taking place.

4 METHODOLOGY

To understand how the operating system distributes the data, three different sce-
narios were studied, with each one representing a different state of the operating



538 J.M. Castelo Gómez, J. Roldán-Gómez, S. Ruiz-Villafranca, Á. del Amo Mı́nguez

system. By doing this, we are able to approach the analysis gradually, avoiding
to miss the study of possible useful pieces of data, rather than facing a scenario
in which all the data are examined at once. See Figure 1. The three different
scenarios:

• The image file is written to the storage. It allows us to study the provisioning
files and the general structure of the storage before the system boots for the
first time. With respect to the latter, this also allows doing so without having
to determine which data were generated by the user and which are specifically
used by the system to work.

• The system boots for the first time. Through this analysis, we evaluate the
system once the initial configuration finished. In this scenario, we encounter
the first data that were generated by the user, namely the network configu-
ration and the Ubuntu SSO account linking that is required for the user to
connect to the device and for the system to work. In addition, we study how
the data change from the first scenario with respect to this one, as well as
we do so with the main services and process executed by the system, tak-
ing the advantage of the fact that there are none purposely launched by the
user.

• The system is used in a normal scenario. Lastly, the goal is to study the data
generated by the operating system when the user interacts with it. To achieve
this, all the features of the system are explored, some of them being the following:
establishing a connection between an external computer and the Ubuntu Core
system, applications and snaps are installed, deployed, restored and deleted,
snapshots are created, and external devices are paired.

Methodology Followed for Data Generation

System Creation

The Ubuntu Core 
image file is written 
to the storage

A forensic image
file of the filesystem
is created

The source of evidence
is analyzed

First Boot

The system is booted
for the first time

Normal user interaction
is simulated

Evidence from all scenarios
is evaluated and the useful

forensic artifacts are extracted

A forensic image
file of the filesystem
is created

The source of evidence
is analyzed

A forensic image
file of the filesystem
is created

The source of evidence
is analyzed

Normal Use

Figure 1. Methodology followed for performing the forensic analysis



Forensic Analysis of the IoT Operating System Ubuntu Core 539

Test Environment. In order to carry out the analysis, it is necessary to establish
and configure a proper environment to make sure that the experiment is performed
correctly. In our case, the components used are the following:

• Raspberry Pi Model 3B+ [22]: host of the Ubuntu Core operating system.

• 32 Gigabyte microSD Card: non-volatile memory of the IoT devices used, as
they do not include a soldered storage unit.

• Ubuntu Core 22, 20, 18 and 16: all the available releases of the long-term
support (LTS) version of the IoT operating system Ubuntu Core [23]. Each one
is individually tested following the methodology described above. Depending
on the version, the compatibility with the different platforms varies, so Table 2
which releases are supported by all of them.

• External PC: operates as the forensic computer, which has all the necessary
tools installed on it. It also contains the public key needed to connect to the
Ubuntu Core operating system via SSH.

• Operative Wi-Fi and wired network: needed to study the effects of using a net-
work on the device. We used a router executing the OpenWRT [24] operating
system in order to make sure that we could easily capture network traffic from
it if needed.

5 FORENSIC ANALYSIS OF UBUNTU CORE

In this section, a description of how to approach the acquisition and analysis phases
of the investigation is presented, describing both the physical and remote methods
for the three main types of evidence that can be studied, namely storage, volatile
memory and network traffic.

5.1 Acquisition

In order to carry out the data acquisition process when investigating the Ubuntu
Core operating system, there are two techniques that can be carried out: a physical
acquisition, and a remote acquisition. The physical acquisition refers to the process
of collecting the data stored in the non-volatile memory used by the platform in
which the Ubuntu Core operating system is running by physically interacting with
its storage while it is off. On the other hand, a remote acquisition consists of
executing the acquisition software directly on the device by connecting to it using
a remote service, thus allowing access to the non-volatile memory, the volatile one,
and the network traffic. In this experiment, all the available forensic techniques for
each have been tested, describing below the procedure and their feasibility.

5.1.1 Physical Acquisition

Carrying out a physical acquisition depends on the IoT platform in which the data
is stored. As described in Section 2, there are many platforms that are compatible



540 J.M. Castelo Gómez, J. Roldán-Gómez, S. Ruiz-Villafranca, Á. del Amo Mı́nguez

with Ubuntu Core, so, with the goal of summarizing which acquisition technique
can be executed in each one is presented in Table 4. The specific procedures that
can be carried out are the following:

Extraction and acquisition. Only feasible if the storage is removable. This is the
simplest method of acquisition, and the most common in conventional forensics.
The storage device, usually a microSD card or a drive, is extracted from the
system, placed in a write blocker to preserve its integrity, and then either cloned
or imaged.

JTAG/UART. A method that involves connecting to the Test Access Ports
(TAPs) of the memory using a JTAG connector in order to be able to read
its data and image it. It is normally a harmless option for soldered storage, and
can also be used on non-soldered ones, but the compatibility of the device with
the JTAG is not guaranteed.

In-System Programming (ISP). This involves connecting to an eMMC or an
embedded Multi Chip Package (eMCP) flash memory chip to access its content.
It is quite similar to the JTAG method, also requiring a connector, and the
method is usually non-destructive as well.

Chip-off. The memory is desoldered from the board and placed into a flash reader,
and then its image file is created. It requires specific soldering knowledge and
equipment. Furthermore, the chances of compromising the functioning of the
device are quite high.

5.1.2 Remote Acquisition

The main disadvantage of performing a remote acquisition is that the interaction
with the system will alter the data stored on it, and there are no guarantees that
the collection tool will be compatible with it. However, if the integrity does not
have to be preserved, it might be preferable to performing a JTAG or chip-off, as it
is faster, simpler, and it does not damage the device. On the other hand, it is the
only option available if the device cannot be physically accessed or if the physical
acquisition methods cannot be carried out.

Furthermore, with this technique the investigator might be able to access all
three main types of evidence: storage, volatile memory and network traffic. The
feasibility of the process does not depend on the platform being used, but on the
operating system, so the details provided in this section apply to all the IoT devices
compatible with Ubuntu Core. In this proposal, the authors tackled the collection
of said types of evidence, achieving the following results:

Non-volatile memory. The approach to performing a remote acquisition of the
storage is identical to any other Linux distribution, as the dd command is in-
cluded by default in Ubuntu Core. Therefore, once the Universally Unique
IDentifier (UUID) of the storage has been determined, which can be done us-
ing either the mount or blkid commands, the acquisition can be performed by



Forensic Analysis of the IoT Operating System Ubuntu Core 541

Model Storage Device
Extraction

&Acquisition
JTAG Chip-off

Raspberry Pi Models 1,
2, 3, 4

MicroSD card ✓
Not recom-
mended

Not recom-
mended

Raspberry Pi Model
CM 3

Soldered eMMC flash
memory

✗ ✓ ✓

Intel NUC M.2 or a 2.5-inch drive ✓ ✗ ✗

ASUSTek PE100A MicroSD card and
soldered eMMC flash
memory

✓ ✓ ✓

Advantech UNO-127
and UNO-2271G

mSATA drive and
soldered eMMC flash
memory

✓ ✓ ✓

Advantech UNO-420 MicroSD card and
soldered eMMC flash
memory

✓ ✓ ✓

Avnet AVTSE-RPI-
IIOTG

Soldered eMMC flash
memory

✗ ✓ ✓

Element Biosciences In-
strument AVITI System

Soldered eMMC flash
memory

✗ ✓ ✓

Honeywell
HC70WB8R2,
HC70W48R2 and
HC70WZ5130

Soldered eMMC flash
memory

✗ ✓ ✓

Lenovo ThinkEdge
SE30 and SE50

M.2 or SSD drive ✓ ✗ ✗

Qualcomm Drag-
onBoard

MicroSD card and
soldered eMMC flash
memory

✓ ✓ ✓

Intel TANK-870-Q170 2.5-inch drive ✓ ✗ ✗

FORME Life Studio Soldered eMMC flash
memory

✗ ✓ ✓

Dell Edge Gateway
3001, 3002 and 3003

MicroSD card and sol-
dered eMMC

✓ ✓ ✓

Dell Edge Gateway
5000

M.2 drive ✓ ✗ ✗

Rigado Cascade 500 Soldered eMMC flash
memory

✗ ✓ ✓

Table 4. Summary of the feasibility of each physical acquisition method for each compat-
ible platform



542 J.M. Castelo Gómez, J. Roldán-Gómez, S. Ruiz-Villafranca, Á. del Amo Mı́nguez

executing dd. In addition, apart from having the option of saving the resulting
image file in an external USB storage, netcat is also available by default, so it
can also be sent to a third device connected to the same network.

Volatile memory. Several conventional memory acquisition tools such as
LiME [25], lmg [26] or fmem [27] were tested in this experiment, but they
were not able to read the kernel module of the system that is needed for the
application which creates its own module that ultimately allows access to the
memory. The authors tried to install the kernel headers and the required pack-
ages manually, but the operation was unsuccessful. Furthermore, in order to
compile the tools, it was necessary to install the classic environment on the
system, as there is no native compiler included in it, and a snap-based one is
not available for installation, which generates a great amount of data that have
no forensic value and altering the system. Even directly accessing the memory
using dd was tested, as it used to work on older versions of Linux systems, but
with no success. As a last resort, the authors tried to make a cross-compilation
on an emulated ARM machine which had the same kernel as Ubuntu Core, but
the tools could not be compiled on this system either. However, this experi-
ment was useful to demonstrate how the lack of proper tools can compromise an
examination, and to show that not all IoT systems and devices can be studied
using conventional forensic solutions.

Network traffic. If the investigator opts to capture the data directly from Ubuntu
Core, tcpdump [28] is one of the tools that can perform this operation, but first
the classic environment needs to be installed on the system in the form of a snap
in order for it to work. After that, the application can be installed as in any
other Ubuntu distribution using apt-get. However, it is also possible to capture
the traffic from a different device in the network, normally a router or a switch.
The procedure is quite similar, but it does not require interacting with the IoT
device, thus preserving its integrity. Its downside is that it will also acquire
traffic from the other devices in the network. There is also a hardware-based
approach, consisting in using a router or switch with port mirroring capabilities
and then capturing the packets sent through the interface to which the IoT
device is connected.

5.2 Analysis

With respect to the study of the system generated data, some guidelines are pro-
vided on how to approach each analysis method, mentioning which tools and com-
mands can be used when examining Ubuntu Core. Firstly, the offline approach is
addressed, which uses a previously acquired forensic file or clone as the source data.
Secondly, the remote method is detailed. The former is performed by remotely
connecting to the system using SSH while the latter is done by debugging, which
can only be done in the platforms which allow that. In this case, all are listed in
Table 2 except from the Element Biosciences Instrument Aviti System, Honeywell



Forensic Analysis of the IoT Operating System Ubuntu Core 543

HC70WB8R2, HC70W48R2 and HC70WZ5130, FORME Life Studio, and Rigado
Cascade 500.

5.2.1 Offline Analysis

Once the storage has been either imaged or cloned, the investigator can treat the
data source like any other traditional one. To analyze it, since there are no IoT-
centered tools, conventional ones can be used to browse through the directories and,
in the case of the latter, to carve the deleted files from the storage. Although the
investigator cannot take the advantage of all the functionalities offered by these
tools, as they are centered on handling data from conventional sources, they provide
enough information to perform the analysis.

Regarding the network traffic, the resulting capture file can be analyzed with
conventional tools as well.

5.2.2 Remote Analysis

This method provides the opportunity to study all three types of data. Taking
advantage of the native SSH service and that most platforms are debugging com-
patible, it is quite easy for the investigator to carry out this type of examination,
which is not something usual in IoT devices. The result of this method studying
each source of evidence is as follows:

Non-volatile memory. A remote analysis is a less interesting method than an
offline one in terms of the information that can be extracted from the non-volatile
memory. The data available to study is the same in both techniques, but when
offline some external software can be used to assist in the process, so it is faster
and easier to browse through the contents of the file system. On the other hand,
there are few native commands that provide summarized information regarding
certain aspects of the system, especially snaps, so it speeds up certain processes
of the analysis.

Volatile memory. Dynamic information regarding the processes in the system,
virtual file systems, runtime and temporal data can be accessed by following
a remote approach. In order to have access to more tools, it is recommended
to install the classic environment. However, as previously discussed, this instal-
lation has a bad impact for the system’s integrity, as the number of packages
installed and data generated is quite high. Therefore, performing this action
is only recommended when it is not necessary to preserve the integrity of the
evidence in the investigation, or if there is no other analysis method available.

An alternative method is debugging. This requires connecting to specific ports
in the chip using an adaptor, which allows accessing the data by connecting it to
a computer that executes the debugging tool. Unfortunately, extracting valuable
information using this method is highly unlikely, as it requires analyzing data
at instruction level, so the authors would recommend investigators to use the



544 J.M. Castelo Gómez, J. Roldán-Gómez, S. Ruiz-Villafranca, Á. del Amo Mı́nguez

native commands instead, which are more likely to present useful data for the
investigation.

Network traffic. There are not many native tools available to study this type of
evidence, so, in order to perform an analysis in real time of the network traffic,
the classic environment needs to be installed and use external tools such as
iptraf [29], iftop [30] or netperf [31]. The downside of this approach is that
normally only general information about the traffic that is being exchanged by
the device is provided by these tools. While it is quite useful to get a general
idea on how the network works, to get packet-level data tcpdump must be used,
which shows every packet but in a very user-unfriendly manner. Under these
circumstances, it is better to opt for an offline analysis if the investigator wants
to study the network traffic at a packet-level.

As a summary of the static and dynamic information that can be extracted from
Ubuntu Core, Table 5 presents the most useful native commands which can be used
in a remote analysis.

Command Description

mount Lists all mounted file systems

ps -r Shows all running processes ordered by user

df Displays the space available on the file systems and
their mount point

dmesg Prints the boot up messages, which are not dis-
played on the screen

snap list –all Shows the list of all installed snaps, also displaying
their revisions

snap changes Shows the recent system changes regarding the
snaps

snap info <snap name> Shows additional details of a snap, such as its de-
scription, ID, or the version installed

snap connections<snap name> Shows the interfaces being used by a snap

snap services Shows information about the services in all the in-
stalled snaps or a specific one

snap logs <snap service> Shows the logs from a snap’s services

lastlog Provides information on when the users last logged
into the system

Table 5. Useful native commands for performing an online/remote analysis of Ubuntu
Core

6 FORENSIC INFORMATION AND ARTIFACTS IN UBUNTU CORE

In this section, the most relevant information which was detected during the analysis
of the operating system that would be interesting from a forensic perspective is listed
and summarized, describing their purpose, content, and location.



Forensic Analysis of the IoT Operating System Ubuntu Core 545

6.1 System Structure

It is crucial to know how the data are distributed in the storage, which is detailed in
Table 6. As any common Linux distribution, when running, Ubuntu Core combines
both virtual and physical file systems. Apart from the traditional some new ones
can be found. The first one is “/meta”, which contains the metadata information for
the base snap package of the Ubuntu release. The second one is “/snap”, which is
a symbolic link to /writable/system-data/snap, and contains files and folders from
installed snap packages. Finally, there is a virtual file system named “/host”, whose
purpose is unknown, as there are no data stored in it, and only appears in the latest
version of the operating system. With the aim of providing a detailed guideline on
the contents of the operating system, Table 7, explains all the file systems in it and
their purpose.

6.2 Physical Storage

The physical file system for data storage is located in the system in the /writable
directory. Consequently, when performing an offline analysis, it would be the source
of evidence to be examined. It is distributed in the following way:

• A directory for the system data named system-data, which contains the root
home folder, and the snap configuration and their data folder as well as for
other services and programs. In addition, it is also the location in which the
logs are stored.

• A directory for the user data named user-data, which contains the home folder
for the Ubuntu SSO account user and its personal configuration for the snaps
and services.

6.3 Process and Services

Although it is not possible to acquire the volatile memory and then perform an
extensive offline analysis of it using forensic memory tools, a bit of information can
be extracted using the native commands provided by the system to determine how
Ubuntu Core behaves dynamically, which can be useful to detect an anomaly in
the investigation. The usual behaviour of the operating system is described below.

• The only processes launched at user level are the systemd instance that manage
the user services, a child process for the Pluggable Authentication Modules
(PAM), which allow the user to log in to the system, and the SSH service.

• The rest of them are launched at the super-user level and are used to start ser-
vices such as the wireless connection, the snap package manager and systemd,
which then starts the processes associated with journaling, network configura-
tion, time synchronization, kernel, domain resolution and user login manager.



546 J.M. Castelo Gómez, J. Roldán-Gómez, S. Ruiz-Villafranca, Á. del Amo Mı́nguez

Ubuntu Core 22&20

Partition File System Size Description

ubuntu-seed FAT32 1.2GB It contains the overlays needed for the
hardware to work, as well as the base
snaps of the system. It is mounted
in /var/lib/snapd/seed when the system
boots as a read-only file system

ubuntu-boot FAT32 750MB Partition used for the system to boot. It
stores the kernel for the Raspberry Pi,
its image, the drivers to be loaded in
RAM to boot, and a file with data re-
garding the model of the operating sys-
tem. It is mounted in /run/mnt/ubuntu-
boot when the system boots

NONAME ext4 16MB It contains the assertions which describe
the policies for the device. It is mounted
in /var/lib/snapd/save when the system
boots

NONAME ext4
Remaining
space

It stores the system and user data. It is
mounted in /writable when the system
boots

Ubuntu Core 18&16

Partition File System Size Description

ubuntu-boot FAT32 256MB It contains the same data as in the newest
version, except for the description file,
plus the overlays

NONAME ext4
Remaining
space

It has the same data and purpose as the
last partition of the Ubuntu Core 20 ver-
sion

Table 6. Partitions into which the storage is divided

In addition, as usual in any Linux operating system, the /proc directory of-
fers some relevant information regarding each individual process that is running
in the system. Some of the data which can be extracted from this directory is as
follows:

• Information about the file systems that are mounted in the system can be found
in the file /proc/mounts. Additionally, data with respect to the blocks of each
partition both virtual and physical is presented in /proc/partitions, and more
concrete information for each file system, such as the number of inodes being
used or the options assigned to it, is located in /proc/fs/.

• Workload for the memory, CPU and IO devices is saved in /proc/pressure.



Forensic Analysis of the IoT Operating System Ubuntu Core 547

Directory Description

bin It is a symbolic link to /usr/bin, containing the binaries executables by
any user

boot It stores the files needed for the system to boot

dev It contains the files which represent the different devices in the system

etc In it, configuration files for services and programs are stored

home It is the route in which the personal directory of the user is located

host It is a directory which only appears in this version of the distribution, and
only in the latest release, but no data have been stored in it, therefore its
purpose is unknown by the authors

lib It a symbolic link to /usr/lib, and contains the shared libraries needed for
the system to work

media It is the location in which the removable media is usually mounted

meta A location only used by this operating system which contains the meta-
data information for the base snap package of the Ubuntu release, namely
“core20”

mnt It is the directory in which temporary file systems are mounted

opt It is the location in which software packages are normally installed in Linux,
but it is not used in Ubuntu Core

proc It handles processes and system data

root It is the personal directory for the superuser

run It stores temporal data in runtime

sbin It is a symbolic link to /usr/bin, and stores system binaries, as well as the
ones only executables by a superuser

snap It is a symbolic link to /writable/system-data/snap. It contains files and
folders from installed snap packages

srv It usually stores data for services provided by a Linux system, but it is
empty in Ubuntu Core

sys It contains information regarding system components such as drivers and
kernel features

tmp Temporary files used by programs are located in this directory

usr It is a read-only file system which stores all user utilities, such as libraries,
binaries, and documentation

var It contains writable system files which are modified during runtime, such
as logs

writable It is the location in which the physical storage is mounted

Table 7. Structure of the root file system



548 J.M. Castelo Gómez, J. Roldán-Gómez, S. Ruiz-Villafranca, Á. del Amo Mı́nguez

• In /proc/devices data regarding the devices which are connected to the system
is stored.

• Files containing network stats, such as the Address Resolution Protocol (ARP)
entries, Wi-Fi connection, packets sent and received by each network adapter
and socket in use are located in the /proc/net directory.

• Data regarding the state and configuration of the General-Purpose Input/Out-
put (GPIO) pins is stored in /proc/device-tree/ symbols , finding another di-
rectory for the override pins in /proc/device-tree/ overrides .

• For each process, information regarding the command that launched it, the
environment variables that it is using, the file systems that it has mounted,
its state, and a symbolic link to its current working directory can be found
in /proc/<PID> in the files cmdline, environ, mounts, stat, and cwd, respec-
tively.

6.4 Network

The file which contains the network configuration is located in /writable/system-
data/etc/netplan/00-snapd-config.yaml. An interesting aspect of the file is that it
shows the password of the access point to which it is connected. As mentioned in
Section 4, both a wired and a wireless connection were configured. Another relevant
artifact is /writable/system-data/etc/hosts, the local file for domain translations,
which is sometimes used by malware to connect to remote domains. By simple in-
teracting with the system no other network information can be obtained using native
commands, but if the classic environment is installed, typical Linux commands such
as ifconfig or netstat can be executed.

In addition, when the system is running, that information is stored in
/run/systemd/network, while data about the DHCP service can be found in
/run/systemd/leases, which informs of the lease assigned to the device.

6.5 Users

The only user who can access the system is the one that was linked with the Ubuntu
SSO account during the first boot configuration. The name of the user matches
the username’s account and has the ability to execute commands with super-user
privileges through su, since the root account is not protected. No other users can
be either created or deleted, although more do exist, but those are the system users
who are created by some applications or by the operating system in order for them
to work properly, which can be found in the usual /etc/passwd file, as well as the
groups, in /etc/group.

As mentioned, the home directory of the user is located in the ext4 partition,
specifically in the /writable/user-data directory, which is mounted in the system
when it boots in /home, while the root directory is located in /writable/system-
data/root/. Apart from the files stored by the user, the bash history can be found



Forensic Analysis of the IoT Operating System Ubuntu Core 549

in this route, as well as the file which contains the public keys associated with the
Ubuntu account which are authorized to log into the system, which are stored in the
personal configuration directory for the SSH service, namely .ssh/authorized keys.
This has additional relevance since manually adding a public key to this file al-
lows the device which is holding that key to connect to the Ubuntu Core sys-
tem even though if that key is not associated with the user’s Ubuntu SSO ac-
count.

In addition, the data regarding the Ubuntu SSO account can be found in
.snap/auth.json, showing its username and the associated email account.

6.6 SSH

SSH is one of the most relevant services provided by Ubuntu Core, as it is the only
way for both to interact and remotely connect to the system by default. In order to
do so, the user must connect with the username of their Ubuntu SSO account and
use its associated public key associated as an authentication method. Several keys
can be associated with one account, but only that individual account can be used
to connect.

The route in which the SSH files are stored is /writable/system-data/etc/ssh/.
Among others, both the server and the client configuration file and the public and
private key files of the host can be found here. Unless the logging level is changed
from info, which is the default mode, to verbose, not much more data can be re-
trieved. However, by using the btmp, lastlog and tallylog system log files, which are
located in /writable/system-data/var/log, information about failed login attempts,
the last login and the number of failed login attempts can be extracted. Addition-
ally, the last login information for each user in the system can also be extracted by
using the lastlogin command.

If the investigator is performing a remote analysis, information regarding the
SSH session which is currently opened can be found in the /run/systemd/sessions.

6.7 Snaps

This is the largest source of information about the system, and the one which
varies the most with respect to the desktop and server versions of Ubuntu, since
snap is the package manager by default in the IoT one. The snaps installed
can be found in /writable/system-data/snap/bin. The data generated by the applica-
tions are stored in the user’s home directory, specifically in the route
/writable/user-data/<username>/snap. In addition, the cached data of the in-
stalled snap are stored in /writable/system-data/var/lib/snapd/cache, and the snap-
shots, which can be created automatically by default, are located in
/writable/system-data/var/lib/snapd/snapshots/.

Using the native command snap also provides a great amount of data when
performing a remote analysis. Some of the useful information that can be extracted



550 J.M. Castelo Gómez, J. Roldán-Gómez, S. Ruiz-Villafranca, Á. del Amo Mı́nguez

like the list of installed snaps and their services, all the changes undergone by them,
the interfaces that they are using or specific logs for each snap.

6.8 Logs

Apart from the logs from the snaps, there are not many other logs that can be found
in the system, as there are not many services running. However, a few ones can be
found in /var/log/, which are described below:

• A log with information regarding the active session in the system, which has the
name 1. The IP address from which the connection has been established can be
found, as well as the user and service that have created it, which would be the
Ubuntu SSO account and the sshd service, among other data.

• The messages printed by the system when it booted for the first time can be
found in a file named install-mode.log.

• Data regarding subiquity, which is the first boot installer, are stored in console-
conf.

• As mentioned above, the btmp, wtmp and lastlog files are also located in this
directory providing information about failed login attempts, the last login and
the number of failed login attempts.

As a summary, Table 8 is presented, in which a list of the most relevant artifacts
detected in the physical storage of Ubuntu Core and their description can be found.
In addition, in Table 9 the volatile ones which can be studied when performing
a remote analysis are listed as well.

7 TOOL FOR THE COLLECTION
OF RELEVANT FORENSIC ARTIFACTS

With the aim of addressing the lack of solutions to perform forensic analysis in IoT
devices and systems, this section proposes a tool for the retrieval of the relevant
artifacts that are present in the non-volatile and volatile memory of any device
running the Ubuntu Core operating system, which have been described in Section 6,
as well as for the acquisition of the raw data stored in the non-volatile memory, more
specifically in the writable partition. Its description, together with the explanation
of its usage and an example of its execution, is presented below.

7.1 Tool Description

Although it is possible to execute only one of the tasks described above, with the
aim of providing the highest degree of detail, this explanation details the process
of executing all of them. This does not significantly change the execution flow as
the tool comprises modules that work independently. It is up to investigators to



Forensic Analysis of the IoT Operating System Ubuntu Core 551

Evidence Description Location

User’s home directory /user-data/username

Root’s home directory /system-data/root/

Bash history /user-data/username/.bash history

User’s Ubuntu Single Sing On ac-
count information

/user-data/username/.snap/auth.json

Authorized keys associated with
the Ubuntu Single Sign On account
which are allowed to log into the
system via SSH

/user-data/username/.ssh/authorized keys

Network configuration /system-data/etc/netplan/00-snapd-config.yaml

Local file for domain translation /system-data/etc/hosts

SSH server configuration /system-data/etc/ssh/sshd config

Public key used by the SSH host /system-data/etc/ssh/ssh host rsa key.pub

Snapshots of snaps created /system-data/var/lib/snapd/snapshots

Cache of the installed snaps /system-data/var/lib/snapd/cache

Local data from the snaps /user-data/<username>/snap

Last logged session’s IP /system-data/var/log/lastlog

Number of failed logins /system-data/var/log/tallylog

Information regarding failed logins /system-data/var/log/btmp

Log of the subiquity service /system-data/var/log/console-conf

Messages printed by the system
when it first booted

/system-data/var/log/install-mode.log

Table 8. Most relevant artifacts found in the physical storage of Ubuntu Core

choose which task suits their investigation better. The following actions are carried
out:

• The tool checks if the arguments are correct and if there is connectivity with the
target device. If everything is correct, it shows the user’s menu in which a task
to perform can be selected.

• Once an option is selected, it tries to establish a connection through SSH. If
the connection is successful, the operations for performing the artifacts’ collec-
tion and/or the filesystem acquisition are performed. Otherwise, the execution
halts.

• If the filesystem acquisition is to be performed, a directory with the name “Im-
age File” is created in the device that launched the tool which will contain the
resulting image file with the raw data of the writable partition. In addition,
a log file informing of the process’s result as well as of the characteristics of the
acquired filesystem is created. It is in the .txt form and contains the following
information:

– Size of the partition.

– Date and time in which the acquisition started.



552 J.M. Castelo Gómez, J. Roldán-Gómez, S. Ruiz-Villafranca, Á. del Amo Mı́nguez

Evidence Description Location

Configuration of the GPIO pins /proc/device-tree/ symbols

Override GPIO pins /proc/device-tree/ overrides

File systems mounted in the system /proc/mounts

Virtual and physical partitions in the system /proc/partitions

Details of each file system in the system /proc/fs/

Command which launched a process /proc/<PID>/cmdline

Environment variables being used by a process /proc/<PID>/environ

File systems used by a process /proc/<PID>/mounts

Data regarding the state of a process /proc/<PID>/stat

Current working directory for a process /proc/<PID>/cwd

Workload for the memory, CPU and IO devices /proc/pressure

Data regarding the devices connected to the system /proc/devices

Network configuration /run/systemd/network

Network stats, such as packets, ARP entries and Wi-
Fi connection

/proc/net

DHCP leases /run/systemd/leases

Information regarding the open SSH session /run/systemd/sessions

User information /run/systemd/users

Table 9. Most relevant volatile artifacts found in Ubuntu Core

– Date and time in which the acquisition finished.

– MD5 and SHA1 hash codes for the resulting image file.

– Name of the image file generated.

Both files have the date and time in which the acquisition started as a filename.
Additionally, in order to transfer the data from the target device to the one
that launched the tool, the output of the dd command is sent directly to the
latter.

• To perform the collection of the non-volatile artifacts, the tool connects to the
target device through the SSH File Transfer Protocol (SFTP) and performs
a logical copy of the directories and files of interest.

• Finally, if the volatile artifacts are to be collected, firstly the tool executes the
commands that perform a remote analysis of the device, saving their output
to an individual .txt file per command. Secondly, as it is done with the non-
volatile artifact collection, a SFTP connection is established and the files are
copied logically to the device that launched the tool. In this case, since there
are a high number of them, they are organized in directories depending on the
information that they present. In order to keep all artifacts in a structured way,
two directories are created, one for the command outputs, and one for the files
collected.

• Once the option selected by the investigator is completed, the tool shows the
menu again (or exits) if all three tasks have been performed.



Forensic Analysis of the IoT Operating System Ubuntu Core 553

The tool1 uses Python as a base language, and it is divided into six modules
that operate in the following way:

• tool.py. Main module checks whether the arguments are correct, presents the
selection menu to the user, and launches the corresponding modules.

• ssh connection.py. It performs the connection to the device using SSH.

• filesystem collection.py. It executes the corresponding commands to acquire the
writable partition, and generates the log file.

• non volatile acquisition.py. Collects the non-volatile artifacts listed in Table 8.

• volatile acquisition.py. Executes the commands listed in Table 5, and collects
the volatile artifacts detailed in Table 9.

• file collection.py. Executes the commands that collect the relevant files in the
system and stores them in the device which launched the tool, organizing them
in different directories depending on their type.

Evidence Preservation. In order to ensure that the execution of the tool is
performed in a way in which the integrity of the data stored in the system is best
protected, the measures described below are taken.

• If the user wants to execute the three different tasks available so that all artifacts,
together with writable filesystem, are collected, the processes are launched in the
order from the less intrusive to the most intrusive one in terms of modifying the
data stored in the system. As a result, first the acquisition of the filesystem
is performed, then the collection of the non-volatile artifacts, and finally the
collection of the volatile artifacts, which requires executing commands in the
system, thus altering its original state.

• Each time the tool is launched, it is checked whether the device which launches it
has already stored pieces of evidence in that directory, halting the process if that
is the case. This way, the tool offers protection against accidental re-executions
that may overwrite previously collected pieces of evidence.

• Any task carried out by the tool, except for the launch of the commands that
extract information regarding the dynamic behaviour of the operating system,
do not generate any data in the target system, it only does so in the device in
which the tool was launched.

• Finally, a log is generated for the acquisition of the writable filesystem, which
allows the investigator to check the integrity of the evidence.

1 The tool’s source code is publicly available in the fol-
lowing repository: https://bitbucket.org/juanmanuelcastelo/

ubuntu-core-forensic-artifact-collection-tool/src/master/

https://bitbucket.org/juanmanuelcastelo/ubuntu-core-forensic-artifact-collection-tool/src/master/
https://bitbucket.org/juanmanuelcastelo/ubuntu-core-forensic-artifact-collection-tool/src/master/


554 J.M. Castelo Gómez, J. Roldán-Gómez, S. Ruiz-Villafranca, Á. del Amo Mı́nguez

7.2 Usage and Execution Example

The tool is launched by executing the tool.py module, for which the following argu-
ments are required:

• IP address of the Ubuntu Core device, which is specified with the argument
“-a”.

• Private key file of the Ubuntu SSH account, which is specified with the argument
“-k”.

• Username, which is specified with the argument “-u”.

In Figure 2, an example of an execution is shown in which the three types of
evidence are collected, and how they are stored in the device which launches the
tool.

8 CONCLUSIONS

In this paper, we have addressed IoT forensics and how the research community is
dealing with the emergence of the IoT and the systems and devices that comprise
it in order to develop solutions for conducting complete and efficient forensic inves-
tigations. In this regard, one of the approaches followed is the study of the systems
and devices with the purpose of understanding what information they contain and
how to extract it, provides the investigators with guidelines how to examine the
information.

After reviewing the proposals from the community regarding the analysis of
IoT devices from different contexts, we have identified the techniques that could be
applied for the examination of systems in general, as well as it was understood what
approach researchers follow when they perform these studies.

As a result, the IoT operating system developed by Canonical, namely Ubuntu
Core, was selected as an interesting one to examine, since it can be used in many
IoT contexts and has a multipurpose nature. In addition, it is based on one of the
most widely used operating systems in the desktop and server environment, a fact
that may ultimately lead to Ubuntu Core being one of the most widely used systems
in the IoT.

We had looked at the dynamic and static behavior of Ubuntu Core and iden-
tified how the system distributes its data. Furthermore, the process that can be
conducted for acquiring and analyzing this operating system has been detailed,
describing how to approach both the remote and offline methods. During this anal-
ysis, it became clear that the lack of IoT forensic tools, and in particular those
compatible with Ubuntu Core, severely hindered the volatile memory examination
process, in fact we were not able to acquire it at all. In addition, this issue also
affected the usefulness of performing a remote analysis of the system, since the
investigator must rely on its native tools, which do not provide much informa-
tion.



Forensic Analysis of the IoT Operating System Ubuntu Core 555

a) Tool execution example and its options b) Tool’s output with the
structure of all the pieces of
evidence collected

c) Execution of the filesytem’s acquisition task d) Image file and log generated after the acquisition
is completed

e) Execution of the volatile artifacts’
acquisition task

f) Example of the output of a launched command



556 J.M. Castelo Gómez, J. Roldán-Gómez, S. Ruiz-Villafranca, Á. del Amo Mı́nguez

g) Execution of the non-volatile artifacts’ acqui-
sition task

h) Example of a collected file containing the authorized keys
to sign in the system

Figure 2. Example of the execution of the tool for the collection of the forensic artifacts
and its output

After carrying out this analysis, the useful forensic artifacts found have been
listed and described, detailing their location and how to access the information
they present. That can serve as a handbook to be used by investigators in future
examinations of Ubuntu Core. Finally, a tool has been developed for the retrieval
of these artifacts as well as the acquisition of the raw data stored in the non-volatile
memory.

8.1 Future Work

As mentioned above, there is a wide spectrum of research regarding IoT foren-
sics that requires attention. Some projects that could be addressed are the follow-
ing:

• Gather the knowledge extracted from this forensic analysis, apply the knowledge
gained from studying similar systems belonging to the same context, the aim to
design the methodology for conducting investigations.

• Develop additional solutions compatible with Ubuntu Core and similar IoT op-
erating systems to improve the effectiveness of the analysis and facilitate this
task for investigators, especially for acquiring and analyzing the volatile mem-
ory.

• Perform further forensic analysis of IoT systems so that the community has
more information on how to deal with them, and what approach to follow in the
solutions development in order to help investigators.



Forensic Analysis of the IoT Operating System Ubuntu Core 557

Acknowledgements

This research was supported by the University of Castilla-La Mancha under the
contract No. 2022-PRED-20677, and the project No. 2022-GRIN-34056, by the
Spanish Ministry of Economic Affairs and Digital Transformation under the project
No. PID2021-123627OB-C52, and by the Regional Government of Castilla-La Man-
cha under the project No. SBPLY/21/180501/000195.

REFERENCES

[1] W3Techs: Usage Statistics and Market Share of Linux for Websites, March 2023.
2023, https://w3techs.com/technologies/details/os-linux.

[2] Ubuntu: Pelagicore Signs Up to Ubuntu Core for in-Vehicle Infotainment Develop-
ment. 2011, https://bit.ly/3wFL2IT.

[3] Get Started with Ubuntu Core. 2024, https://ubuntu.com/core/docs/

get-started.

[4] Altheide, C.—Casey, E.: Chapter 6 – UNIX Forensic Analysis. In: Casey, E.,
Altheide, C., Daywalt, C., de Donno, A. et al. (Eds.): Handbook of Digital Foren-
sics and Investigation. Academic Press, 2010, pp. 301–351, doi: 10.1016/B978-0-12-
374267-4.00006-9.

[5] Ling, T.: The Study of Computer Forensics on Linux. 2013 International Conference
on Computational and Information Sciences, 2013, pp. 294–297, doi: 10.1109/IC-
CIS.2013.85.

[6] Patil, D.N.—Meshram, B.B.: Digital Forensic Analysis of Ubuntu File System.
International Journal of Cyber-Security and Digital Forensics, Vol. 5, 2016, No. 4,
175–186 pp., doi: 10.17781/p002213.

[7] Bharadwaj, N.K.—Singh, U.: Acquisition and Analysis of Forensic Artifacts from
Raspberry Pi an Internet of Things Prototype Platform. In: Sa, P.K., Bakshi, S.,
Hatzilygeroudis, I. K., Sahoo, M.N. (Eds.): Recent Findings in Intelligent Computing
Techniques (ICACNI 2017). Springer, Singapore, Advances in Intelligent Systems and
Computing, Vol. 707, 2019, pp. 311–322, doi: 10.1007/978-981-10-8639-7 32.

[8] Raspberry Pi OS. 2022, https://www.raspberrypi.org/downloads/

raspberry-pi-os/.

[9] Castelo Gómez, J.M.—Roldán Gómez, J.—Carrillo Mondéjar, J.—
Mart́ınez Mart́ınez, J. L.: Non-Volatile Memory Forensic Analysis in Windows
10 IoT Core. Entropy, Vol. 21, 2019, No. 12, Art. No. 1141, doi: 10.3390/e21121141.

[10] Zimmerman, E.: Introducing KAPE - Kroll Artifact Parser and Ex-
tractor. 2019, https://www.kroll.com/en/insights/publications/cyber/

kroll-artifact-parser-extractor-kape.

[11] Sandvik, J. P.—Franke, K.—Abie, H.—Årnes, A.: Coffee Forensics – Recon-
structing Data in IoT Devices Running Contiki OS. Forensic Science International:
Digital Investigation, Vol. 37, 2021, Art. No. 301188, doi: 10.1016/j.fsidi.2021.301188.

https://w3techs.com/technologies/details/os-linux
https://bit.ly/3wFL2IT
https://ubuntu.com/core/docs/get-started
https://ubuntu.com/core/docs/get-started
https://doi.org/10.1016/B978-0-12-374267-4.00006-9
https://doi.org/10.1016/B978-0-12-374267-4.00006-9
https://doi.org/10.1109/ICCIS.2013.85
https://doi.org/10.1109/ICCIS.2013.85
https://doi.org/10.17781/p002213
https://doi.org/10.1007/978-981-10-8639-7_32
https://www.raspberrypi.org/downloads/raspberry-pi-os/
https://www.raspberrypi.org/downloads/raspberry-pi-os/
https://doi.org/10.3390/e21121141
https://www.kroll.com/en/insights/publications/cyber/kroll-artifact-parser-extractor-kape
https://www.kroll.com/en/insights/publications/cyber/kroll-artifact-parser-extractor-kape
https://doi.org/10.1016/j.fsidi.2021.301188


558 J.M. Castelo Gómez, J. Roldán-Gómez, S. Ruiz-Villafranca, Á. del Amo Mı́nguez

[12] Lee, J.—Shon, T.: Forensic Analysis of IoT File Systems for Linux-Compatible
Platforms. Electronics, Vol. 11, 2022, No. 19, Art. No. 3219, doi: 10.3390/electron-
ics11193219.

[13] Wurm, J.—Hoang, K.—Arias, O.—Sadeghi, A.R.—Jin, Y.: Security Anal-
ysis on Consumer and Industrial IoT Devices. 2016 21st Asia and South Pacific
Design Automation Conference (ASP-DAC), 2016, pp. 519–524, doi: 10.1109/AS-
PDAC.2016.7428064.

[14] Elstner, J.—Roeloffs, M.: Forensic Analysis of Newer TomTom Devices. Digital
Investigation, Vol. 16, 2016, pp. 29–37, doi: 10.1016/j.diin.2016.01.016.

[15] Le-Khac, N.A.—Jacobs, D.—Nijhoff, J.—Bertens, K.—Choo, K.K.R.:
Smart Vehicle Forensics: Challenges and Case Study. Future Generation Computer
Systems, Vol. 109, 2020, pp. 500–510, doi: 10.1016/j.future.2018.05.081.

[16] Rais, M.H.—Awad, R.A.—Lopez Jr, J.—Ahmed, I.: JTAG-Based PLC
Memory Acquisition Framework for Industrial Control Systems. Forensic Sci-
ence International: Digital Investigation, Vol. 37, 2021, Art. No. 301196, doi:
10.1016/j.fsidi.2021.301196.

[17] Zubair, N.—Ayub, A.—Yoo, H.—Ahmed, I.: PEM: Remote Forensic Acquisi-
tion of PLC Memory in Industrial Control Systems. Forensic Science International:
Digital Investigation, Vol. 40, 2022, Art. No. 301336, doi: 10.1016/j.fsidi.2022.301336.

[18] Hosani, H.A.—Yousef, M.—Shouq, S.A.—Iqbal, F.: State of the Art in
Digital Forensics for Small Scale Digital Devices. 2020 11th International Confer-
ence on Information and Communication Systems (ICICS), 2020, pp. 72–78, doi:
10.1109/ICICS49469.2020.239531.

[19] Li, S.—Choo, K.K.R.—Sun, Q.—Buchanan, W. J.—Cao, J.: IoT Forensics:
Amazon Echo as a Use Case. IEEE Internet of Things Journal, Vol. 6, 2019, No. 4,
pp. 6487–6497, doi: 10.1109/JIOT.2019.2906946.

[20] Kang, S.—Kim, S.—Kim, J.: Forensic Analysis for IoT Fitness Trackers and
Its Application. Peer-to-Peer Networking and Applications, Vol. 13, 2020, No. 2,
pp. 564–573, doi: 10.1007/s12083-018-0708-3.

[21] Zhou, H.—Deng, L.—Xu, W.—Yu, W.—Dehlinger, J.—Chakraborty, S.:
Towards Internet of Things (IoT) Forensics Analysis on Intelligent Robot Vac-
uum Systems. 2022 IEEE/ACIS 20th International Conference on Software Engi-
neering Research, Management and Applications (SERA), 2022, pp. 91–98, doi:
10.1109/SERA54885.2022.9806735.

[22] Raspberry Pi Foundation: Raspberry Pi 3 Model B. 2024, https://www.

raspberrypi.org/products/raspberry-pi-3-model-b/.

[23] Canonical Group: Ubuntu Core: The Embedded Linux OS for Devices. 2024, https:
//ubuntu.com/core.

[24] OpenWrt Project: Welcome to the OpenWrt Project. 2024, https://openwrt.org/.

[25] 504ensics Labs: 504ensicsLabs/LiME. 2022, https://github.com/504ensicsLabs/
LiME.

[26] Pomeranz, H.: halpomeranz/Lmg. 2020, https://github.com/halpomeranz/lmg.

[27] Brune, N.: NateBrune/Fmem. 2022, https://github.com/NateBrune/fmem.

[28] Tcpdump/Libpcap Public Repository. 2024, https://www.tcpdump.org.

https://doi.org/10.3390/electronics11193219
https://doi.org/10.3390/electronics11193219
https://doi.org/10.1109/ASPDAC.2016.7428064
https://doi.org/10.1109/ASPDAC.2016.7428064
https://doi.org/10.1016/j.diin.2016.01.016
https://doi.org/10.1016/j.future.2018.05.081
https://doi.org/10.1016/j.fsidi.2021.301196
https://doi.org/10.1016/j.fsidi.2022.301336
https://doi.org/10.1109/ICICS49469.2020.239531
https://doi.org/10.1109/JIOT.2019.2906946
https://doi.org/10.1007/s12083-018-0708-3
https://doi.org/10.1109/SERA54885.2022.9806735
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://ubuntu.com/core
https://ubuntu.com/core
https://openwrt.org/
https://github.com/504ensicsLabs/LiME
https://github.com/504ensicsLabs/LiME
https://github.com/halpomeranz/lmg
https://github.com/NateBrune/fmem
https://www.tcpdump.org


Forensic Analysis of the IoT Operating System Ubuntu Core 559

[29] Java, G.P.: IPTraf – An IP Network Monitor. 2024, http://iptraf.seul.org/.

[30] Warren, P.—Lightfoot, C.: iftop: Display Bandwidth Usage on an Interface.
2017, http://www.ex-parrot.com/pdw/iftop/.

[31] Kirby, C. et al.: HewlettPackard/Netperf. 2022, https://github.com/

HewlettPackard/netperf.

http://iptraf.seul.org/
http://www.ex-parrot.com/pdw/iftop/
https://github.com/HewlettPackard/netperf
https://github.com/HewlettPackard/netperf


560 J.M. Castelo Gómez, J. Roldán-Gómez, S. Ruiz-Villafranca, Á. del Amo Mı́nguez

Juan Manuel Castelo G�omez joined the Computer Architec-
ture and Technology research group at the Albacete Research In-
stitute of Informatics in 2016. In 2017, he received his M.Sc. de-
gree in computer science from the University of Castilla La Man-
cha (Spain), and in 2021 he obtained his Ph.D. in advanced in-
formation technologies from the aforementioned university. His
research interests are related to cybersecurity, especially digital
forensics, as well as malware detection.

José Rold�an-G�omez obtained his Bachelor’s degree in com-
puter engineering from the University of Castilla-La Mancha in
2017, his Master’s degree in computer engineering from the Uni-
versity of Castilla-La Mancha in 2018, and his Ph.D. in advanced
information technologies from the University of Castilla-La Man-
cha in 2023. His main interests are artificial intelligence applied
to threat detection in IoT environments and automatic rule gen-
eration in CEP engines.

Sergio Ruiz-Villafranca received his B.Sc. degree in com-
puter engineering from the University of Castilla-La Mancha in
2017 and his M.Sc. degree in computer science in 2021. Since
then, he is a Ph.D. student in advanced information technolo-
gies at the aforementioned university. His research interests are
related to cybersecurity, especially Industrial Internet of Things,
machine learning for anomaly detection as well as computer
forensics.

Álvaro del Amo M��nguez obtained his Bachelor’s degree in computer engineering from
the University of Castilla-La Mancha in 2020. His main interests are related to IoT
forensics.


